1
|
Zhu M, Wang X, Zhao H, Wang Z. Update on R-loops in genomic integrity: Formation, functions, and implications for human diseases. Genes Dis 2025; 12:101401. [PMID: 40271193 PMCID: PMC12017992 DOI: 10.1016/j.gendis.2024.101401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/02/2024] [Accepted: 07/28/2024] [Indexed: 04/25/2025] Open
Abstract
R-loops, three-strand nucleic acid structures, have emerged as crucial players in various physiological processes, including the regulation of gene expression, DNA replication, and class switch recombination. However, their presence also poses a significant threat to genome stability. A particularly challenging aspect is understanding the dynamic balance between R-loops' "light" and "dark" sites, especially concerning maintaining genome integrity. The complex and multifaceted roles of R-loops in genome stability necessitate a deeper understanding. This review offers a comprehensive exploration of the formation, resolution, and implications of R-loops, particularly in the context of DNA damage and human disease. We delve into the dualistic nature of R-loops, highlighting their role in DNA damage response and repair, and discuss the therapeutic potential arising from our evolving understanding of these enigmatic entities. Emphasizing recent advancements and unresolved questions, this review aims to provide a cohesive overview of R-loops, inviting further inquiry and investigation into their complex biological significance.
Collapse
Affiliation(s)
- Min Zhu
- Institute for Translation Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Xinyu Wang
- Institute for Translation Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266021, China
| | - Hongchang Zhao
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, China
- Institute of Emergency and Critical Care, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, China
| | - Zhenjie Wang
- Department of Emergency Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, China
- Institute of Emergency and Critical Care, The First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui 233004, China
| |
Collapse
|
2
|
Jin P, Bai X. Exploring the roles and clinical potential of exosome-derived non-coding RNAs in glioma. IBRO Neurosci Rep 2025; 18:323-337. [PMID: 40034544 PMCID: PMC11872630 DOI: 10.1016/j.ibneur.2025.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 01/17/2025] [Accepted: 01/30/2025] [Indexed: 03/05/2025] Open
Abstract
Non-coding accounts for 98 %-99 % of the human genome and performs many essential regulatory functions in eukaryotes, involved in cancer development and development. Non-coding RNAs are abundantly enriched in exosomes, which play a biological role as vectors. Some biofunctional non-coding RNAs are specifically designed as exosomes for the treatment of cancers such as glioma. Glioma is one of the most common primary tumors within the skull and has varying degrees of malignancy and histologic subtypes of grades I-IV. Gliomas are characterized by high malignancy and an abundant blood supply due to rapid cell proliferation and vascularization, often with a poor prognosis. Exosomal non-coding RNAs can be involved in the tumorigenesis process of glioma from multiple directions, such as angiogenesis, tumor proliferation, metastatic invasion, immune evasion, apoptosis, and autophagy. Therefore, non-coding RNAs in exosomes are suitable as markers or therapeutic targets for early diagnosis of diseases and for predicting the prognosis of a variety of diseases. Regulating exosome production and the level of exosomal non-coding RNA expression may be a new approach to prevent or eliminate glioma. In this review, we review the origin and characteristics of exosomal non-coding RNAs, and introduce the functional studies of exosomal non-coding RNAs in glioma and their potential clinical applications, in order to broaden new ideas for the treatment of glioma.
Collapse
Affiliation(s)
- Peng Jin
- Department of Neurosurgery, Hulunbuir People’s Hospital, Hulunbuir, Inner Mongolia Autonomous Region 021000, China
| | - Xue Bai
- Department of Intensive Care Unit, Hulunbuir People’s Hospital, No. 20, Shengli Street, Hailar District, Hulunbuir, Inner Mongolia Autonomous Region 021000, China
| |
Collapse
|
3
|
Deguchi S, Ohka F, Shiba Y, Yamaguchi J, Sato A, Shinjo K, Arakawa Y, Narita Y, Kondo Y, Saito R. Investigator-initiated phase I trial of an oligonucleotide therapeutic targeting long noncoding RNA TUG 1 for recurrent glioblastoma. BMC Cancer 2025; 25:251. [PMID: 39948537 PMCID: PMC11827348 DOI: 10.1186/s12885-025-13623-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
BACKGROUND Glioblastoma (GB) is the most common and aggressive primary malignant brain tumor in adults. To date, no effective treatment has been reported for recurrent GB (rGB). Long noncoding RNA taurine upregulated gene 1 (TUG1), which is highly expressed in GB, resolves the formation of R-loops, thereby maintaining tumor growth. TUG1-targeting antisense oligonucleotide (ASO) (TUG1ASO) is a nucleotide therapeutic with drug delivery system that targets TUG1, demonstrating efficacy against GB in mouse models. This multicenter, first-in-human, phase I trial aims to investigate the safety and maximum tolerated dose (MTD) of TUG1ASO. METHODS This study will enroll patients aged 18-75 years with rGB following postoperative temozolomide plus radiation therapy. The primary endpoints will be the safety and tolerability of TUG1ASO and the MTD. The secondary endpoints will be the response rate, duration of response, progression-free survival, overall survival, and pharmacokinetics of TUG1ASO. Dose escalation will be performed utilizing a 3 + 3 design with four dose levels. Unless the discontinuation criteria are met, four cycles will be administered, with each cycle lasting 7 days. Administration of TUG1ASO will be possible until the discontinuation criteria are met. DISCUSSION TUG1ASO is the first oligonucleotide therapeutic with drug delivery system targeting TUG1, expected to show an efficacy in rGB patients. In this first-in-human study, safety, tolerability and MTD of this new targeted therapy will be confirmed to find the recommended dose for the further clinical trial. This study may contribute to develop a new treatment option for rGB patients. TRIAL REGISTRATION Japan Registry of Clinical Trials (jRCT) 2041230136, registration date May 17, 2024. REGISTRY: jRCT2041230136. REGISTRATION DATE May 17, 2024. STUDY DATES January 1, 2024, to present.
Collapse
Affiliation(s)
- Shoichi Deguchi
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan
| | - Fumiharu Ohka
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan
| | - Yoshiki Shiba
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan
| | - Junya Yamaguchi
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan
| | - Aya Sato
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan
| | - Keiko Shinjo
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshiki Arakawa
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshitaka Narita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yutaka Kondo
- Division of Cancer Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryuta Saito
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan.
| |
Collapse
|
4
|
Li D, Shao F, Li X, Yu Q, Wu R, Wang J, Wang Z, Wusiman D, Ye L, Guo Y, Tuo Z, Wei W, Yoo KH, Cho WC, Feng D. Advancements and challenges of R-loops in cancers: Biological insights and future directions. Cancer Lett 2025; 610:217359. [PMID: 39613219 DOI: 10.1016/j.canlet.2024.217359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
R-loops involve in various biological processes under human normal physiological conditions. Disruption of R-loops can lead to disease onset and affect the progression of illnesses, particularly in cancers. Herein, we summarized and discussed the regulative networks, phenotypes and future directions of R-loops in cancers. In this review, we highlighted the following insights: (1) R-loops significantly influence cancer development, progression and treatment efficiency by regulating key genes, such as PARPs, BRCA1/2, sex hormone receptors, DHX9, and TOP1. (2) Currently, the ATM, ATR, cGAS/STING, and noncanonical pathways are the main pathways that involve in the regulatory network of R-loops in cancer. (3) Cancer biology can be modulated by R-loops-regulated phenotypes, including RNA methylation, DNA and histone methylation, oxidative stress, immune and inflammation regulation, and senescence. (4) Regulation of R-loops induces kinds of drug resistance in various cancers, suggesting that targeting R-loops maybe a promising way to overcome treatment resistance. (5) The role of R-loops in tumorigenesis remains controversial, and senescence may be a crucial research direction to unravel the mechanism of R-loop-induced tumorigenesis. Looking forward, further studies are needed to elucidate the specific mechanisms of R-loops in cancer, laying the groundwork for preclinical and clinical research.
Collapse
Affiliation(s)
- Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fanglin Shao
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Xinrui Li
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Qingxin Yu
- Department of Pathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo City, Zhejiang Province, 315211, China
| | - Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhipeng Wang
- Department of Urology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Dilinaer Wusiman
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA; Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
| | - Luxia Ye
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Yiqing Guo
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Zhouting Tuo
- Department of Urological Surgery, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing, China
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Koo Han Yoo
- Department of Urology, Kyung Hee University, South Korea.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong Special Administrative Region of China.
| | - Dechao Feng
- Division of Surgery & Interventional Science, University College London, London, W1W 7TS, UK.
| |
Collapse
|
5
|
Hu X, Wang Y, Zhang S, Gu X, Zhang X, Li L. LncRNA HOXA10-AS as a novel biomarker and therapeutic target in human cancers. Front Mol Biosci 2025; 11:1520498. [PMID: 39830983 PMCID: PMC11738949 DOI: 10.3389/fmolb.2024.1520498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/06/2024] [Indexed: 01/22/2025] Open
Abstract
Long non-coding RNAs (lncRNAs) are crucial regulatory molecules that participate in numerous cellular development processes, and they have gathered much interest recently. HOXA10 antisense RNA (HOXA10-AS, also known as HOXA-AS4) is a novel lncRNA that was identified to be dysregulated in some prevalent malignancies. In this review, the clinical significance of HOXA10-AS for the prognosis of various cancers is analyzed. In addition, the major advances in our understanding of the cellular biological functions and mechanisms of HOXA10-AS in different human cancers are summarized. These cancers include esophageal carcinoma (ESCA), gastric cancer (GC), glioma, laryngeal squamous cell carcinoma (LSCC), acute myeloid leukemia (AML), lung adenocarcinoma (LUAD), nasopharyngeal carcinoma (NPC), oral squamous cell carcinoma (OSCC), and pancreatic cancer. We also note that the aberrant expression of HOXA10-AS promotes malignant progression through various underlying mechanisms. In conclusion, HOXA10-AS is expected to serve as an ideal clinical biomarker and an effective cancer therapy target.
Collapse
Affiliation(s)
- Xin Hu
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University, Jinan, Shandong, China
| | - Yong Wang
- Shandong Provincial Engineering Research Center for Bacterial Oncolysis and Cell Treatment, Jinan, Shandong, China
| | - Sijia Zhang
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University, Jinan, Shandong, China
| | - Xiaosi Gu
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University, Jinan, Shandong, China
| | - Xiaoyu Zhang
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University, Jinan, Shandong, China
| | - Lianlian Li
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University, Jinan, Shandong, China
- Laboratory of Metabolism and Gastrointestinal Tumor, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
6
|
Zhan M, Xu H, Yu G, Chen Q, Yang R, Chen Y, Ge J, Wang Z, Yang R, Xu B. Androgen receptor deficiency-induced TUG1 in suppressing ferroptosis to promote benign prostatic hyperplasia through the miR-188-3p/GPX4 signal pathway. Redox Biol 2024; 75:103298. [PMID: 39121689 PMCID: PMC11364272 DOI: 10.1016/j.redox.2024.103298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/14/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Benign prostatic hyperplasia (BPH), characterized by the non-malignant enlargement of the prostate, exhibits a pronounced association with inflammation resulting from androgen receptor (AR) deficiency. Ferroptosis, a cell death mechanism triggered by iron-dependent lipid peroxidation and closely linked to inflammation, has yet to be fully understood in the context of BPH. Using RNA sequencing, we observed a significant elevation of taurine-upregulated gene 1 (TUG1) long noncoding RNA (lncRNA) in BPH tissues compared to normal prostate tissue. High levels of TUG1 exhibited a discernible correlation with both prostate volume and the extent of inflammatory infiltration in BPH patients. The suppression of TUG1 not only led to a reduction in prostate size but also ameliorated AR-deficiency-induced prostatic hyperplasia. Mechanistically, a decrease in AR in prostate luminal cells prompted macrophage aggregation and the release of IL-1β, subsequently fostering the transcription of TUG1 via MYC. Induced TUG1, through competitive binding with miR-188-3p, facilitated the expression of GPX4, thereby diminishing intracellular ROS levels and impeding ferroptosis in prostate luminal cells. Notably, the ferroptosis inducer JKE-1674 alleviated inflammation-induced prostatic hyperplasia in vivo. Together, these findings suggest that AR deficiency crucially inhibits ferroptosis, promoting BPH via the TUG1/miR-188-3p/GPX4 signaling axis, and making ferroptosis induction a promising therapeutic strategy for BPH patients with AR deficiency.
Collapse
Affiliation(s)
- Ming Zhan
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China; Department of Systems Biology, Beckman Research Institute, City of Hope, Monrovia, CA, 91016, USA
| | - Huan Xu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Guopeng Yu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Qi Chen
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Ruifeng Yang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Yanbo Chen
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Jianchao Ge
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Zhong Wang
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China; Department of Urology, Shanghai Pudong New Area Gongli Hospital, Shanghai, 200135, China.
| | - Ruimeng Yang
- Department of Pathology, City of Hope, Duarte, CA, 91010, USA; Department of Molecular Diagnostics & Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Bin Xu
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
7
|
Coan M, Haefliger S, Ounzain S, Johnson R. Targeting and engineering long non-coding RNAs for cancer therapy. Nat Rev Genet 2024; 25:578-595. [PMID: 38424237 DOI: 10.1038/s41576-024-00693-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2024] [Indexed: 03/02/2024]
Abstract
RNA therapeutics (RNATx) aim to treat diseases, including cancer, by targeting or employing RNA molecules for therapeutic purposes. Amongst the most promising targets are long non-coding RNAs (lncRNAs), which regulate oncogenic molecular networks in a cell type-restricted manner. lncRNAs are distinct from protein-coding genes in important ways that increase their therapeutic potential yet also present hurdles to conventional clinical development. Advances in genome editing, oligonucleotide chemistry, multi-omics and RNA engineering are paving the way for efficient and cost-effective lncRNA-focused drug discovery pipelines. In this Review, we present the emerging field of lncRNA therapeutics for oncology, with emphasis on the unique strengths and challenges of lncRNAs within the broader RNATx framework. We outline the necessary steps for lncRNA therapeutics to deliver effective, durable, tolerable and personalized treatments for cancer.
Collapse
Affiliation(s)
- Michela Coan
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Conway Institute of Biomedical and Biomolecular Research, University College Dublin, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Simon Haefliger
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | | | - Rory Johnson
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland.
- Conway Institute of Biomedical and Biomolecular Research, University College Dublin, Dublin, Ireland.
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
- Department for BioMedical Research, University of Bern, Bern, Switzerland.
- FutureNeuro, SFI Research Centre for Chronic and Rare Neurological Diseases, Dublin, Ireland.
| |
Collapse
|
8
|
Palihati M, Saitoh N. RNA in chromatin organization and nuclear architecture. Curr Opin Genet Dev 2024; 86:102176. [PMID: 38490161 DOI: 10.1016/j.gde.2024.102176] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/08/2024] [Accepted: 02/11/2024] [Indexed: 03/17/2024]
Abstract
In the cell nucleus, genomic DNA is surrounded by nonmembranous nuclear bodies. This might result from specific regions of the genome being transcribed into long noncoding RNAs (lncRNAs), which tend to remain at the sites of their own transcription. The lncRNAs seed the nuclear bodies by recruiting and concentrating proteins and RNAs, which undergo liquid-liquid-phase separation, and form molecular condensates, the so-called nuclear bodies. These nuclear bodies may provide appropriate environments for gene activation or repression. Notably, lncRNAs also contribute to three-dimensional genome structure by mediating long-range chromatin interactions. In this review, we discuss the mechanisms by which lncRNAs regulate gene expression through shaping chromatin and nuclear architectures. We also explore lncRNAs' potential as a therapeutic target for cancer, because lncRNAs are often expressed in a disease-specific manner.
Collapse
Affiliation(s)
- Maierdan Palihati
- Division of Cancer Biology, The Cancer Institute of JFCR, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan
| | - Noriko Saitoh
- Division of Cancer Biology, The Cancer Institute of JFCR, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan.
| |
Collapse
|
9
|
Sonobe R, Yang P, Suzuki MM, Shinjo K, Iijima K, Nishiyama N, Miyata K, Kataoka K, Kajiyama H, Kondo Y. Long noncoding RNA TUG1 promotes cisplatin resistance in ovarian cancer via upregulation of DNA polymerase eta. Cancer Sci 2024; 115:1910-1923. [PMID: 38558246 PMCID: PMC11145130 DOI: 10.1111/cas.16150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/07/2024] [Accepted: 03/01/2024] [Indexed: 04/04/2024] Open
Abstract
Chemoresistance is a major cause of high mortality and poor survival in patients with ovarian cancer (OVCA). Understanding the mechanisms of chemoresistance is urgently required to develop effective therapeutic approaches to OVCA. Here, we show that expression of the long noncoding RNA, taurine upregulated gene 1 (TUG1), is markedly upregulated in samples from OVCA patients who developed resistance to primary platinum-based therapy. Depletion of TUG1 increased sensitivity to cisplatin in the OVCA cell lines, SKOV3 and KURAMOCHI. Combination therapy of cisplatin with antisense oligonucleotides targeting TUG1 coupled with a drug delivery system effectively relieved the tumor burden in xenograft mouse models. Mechanistically, TUG1 acts as a competing endogenous RNA by downregulating miR-4687-3p and miR-6088, both of which target DNA polymerase eta (POLH), an enzyme required for translesion DNA synthesis. Overexpression of POLH reversed the effect of TUG1 depletion on cisplatin-induced cytotoxicity. Our data suggest that TUG1 upregulation allows OVCA to tolerate DNA damage via upregulation of POLH; this provides a strong rationale for targeting TUG1 to overcome cisplatin resistance in OVCA.
Collapse
Affiliation(s)
- Ryosuke Sonobe
- Division of Cancer BiologyNagoya University Graduate School of MedicineNagoyaAichiJapan
| | - Peng Yang
- Division of Cancer BiologyNagoya University Graduate School of MedicineNagoyaAichiJapan
- Department of Obstetrics and GynecologyNagoya University Graduate School of MedicineNagoyaAichiJapan
- Fourth Department of Gynecologic OncologyHunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangshaHunanChina
| | - Miho M. Suzuki
- Division of Cancer BiologyNagoya University Graduate School of MedicineNagoyaAichiJapan
| | - Keiko Shinjo
- Division of Cancer BiologyNagoya University Graduate School of MedicineNagoyaAichiJapan
| | - Kenta Iijima
- Division of Cancer BiologyNagoya University Graduate School of MedicineNagoyaAichiJapan
| | - Nobuhiro Nishiyama
- Department of Life Science and Technology, School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaKanagawaJapan
- Innovation Center of Nanomedicine (iCONM)Kawasaki Institute of Industrial PromotionKawasakiKanagawaJapan
| | - Kanjiro Miyata
- Department of Materials Engineering, Graduate School of EngineeringThe University of TokyoTokyoJapan
| | - Kazunori Kataoka
- Innovation Center of Nanomedicine (iCONM)Kawasaki Institute of Industrial PromotionKawasakiKanagawaJapan
| | - Hiroaki Kajiyama
- Department of Obstetrics and GynecologyNagoya University Graduate School of MedicineNagoyaAichiJapan
| | - Yutaka Kondo
- Division of Cancer BiologyNagoya University Graduate School of MedicineNagoyaAichiJapan
- Institute for Glyco‐core Research (iGCORE), Nagoya UniversityNagoyaAichiJapan
- Center for One Medicine Innovative Translational Research (COMIT)Nagoya UniversityNagoyaAichiJapan
| |
Collapse
|