1
|
Le TT, Tran SH, Lee S, Kang SW, Kim JH, Park K, Kim CS, Kim M, Kang K, Jung SH. Furan Acids from Nutmeg and Their Neuroprotective and Anti-neuroinflammatory Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:11080-11093. [PMID: 40278862 DOI: 10.1021/acs.jafc.5c02528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Nutmeg (Myristica fragrans) has been traditionally valued for its culinary and medicinal properties. In our ongoing efforts to discover pharmacologically active compounds from this spice, five new furan acids (2-6, jusahos B-F), one new neolignan (7, jusaho G), and six known compounds (1 and 8-12) were isolated from its nutmegs. The chemical structures of the compounds were elucidated using NMR spectroscopy and HRESIMS. Among them, compound 3 (jusaho C) demonstrated promising antineuroinflammatory and neuroprotective effects in BV2 and HT22 cells by modulating the MAPK/NF-κB signaling pathway, which was explored through network pharmacology, molecular docking, and experimental verification. Compound 3 also showed the improvement of locomotor activity in Caenorhabditis elegans model infected with Pseudomonas aeruginosa. These findings expand the phytochemical profile of M. fragrans, where only one furan acid was previously reported, and highlight nutmeg-derived compounds, particularly jusaho C, as potential functional food ingredients or nutraceuticals for managing neuroinflammatory conditions.
Collapse
Affiliation(s)
- Tam Thi Le
- Center for Natural Product Efficacy Optimization, Gangneung Institute of Natural Products, Korea Institute of Science and Technology, Gangwon-do 25451, Republic of Korea
| | - Son Hung Tran
- Center for Natural Product Systems Biology, Gangneung Institute of Natural Products, Korea Institute of Science and Technology, Gangwon-do 25451, Republic of Korea
- Natural Product Applied Science, KIST School, University of Science and Technology (UST), Gangneung, Gangwon-do 25451, Republic of Korea
| | - Sohyun Lee
- Center for Natural Product Systems Biology, Gangneung Institute of Natural Products, Korea Institute of Science and Technology, Gangwon-do 25451, Republic of Korea
- Natural Product Applied Science, KIST School, University of Science and Technology (UST), Gangneung, Gangwon-do 25451, Republic of Korea
| | - Suk Woo Kang
- Center for Natural Product Efficacy Optimization, Gangneung Institute of Natural Products, Korea Institute of Science and Technology, Gangwon-do 25451, Republic of Korea
| | - Ji Hoon Kim
- Center for Natural Product Efficacy Optimization, Gangneung Institute of Natural Products, Korea Institute of Science and Technology, Gangwon-do 25451, Republic of Korea
| | - Keunwan Park
- Center for Natural Product Systems Biology, Gangneung Institute of Natural Products, Korea Institute of Science and Technology, Gangwon-do 25451, Republic of Korea
| | - Chung Sub Kim
- Department of Biopharmaceutical Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Myungsuk Kim
- Center for Natural Product Efficacy Optimization, Gangneung Institute of Natural Products, Korea Institute of Science and Technology, Gangwon-do 25451, Republic of Korea
- Natural Product Applied Science, KIST School, University of Science and Technology (UST), Gangneung, Gangwon-do 25451, Republic of Korea
| | - Kyungsu Kang
- Center for Natural Product Systems Biology, Gangneung Institute of Natural Products, Korea Institute of Science and Technology, Gangwon-do 25451, Republic of Korea
- Natural Product Applied Science, KIST School, University of Science and Technology (UST), Gangneung, Gangwon-do 25451, Republic of Korea
| | - Sang Hoon Jung
- Center for Natural Product Efficacy Optimization, Gangneung Institute of Natural Products, Korea Institute of Science and Technology, Gangwon-do 25451, Republic of Korea
- Natural Product Applied Science, KIST School, University of Science and Technology (UST), Gangneung, Gangwon-do 25451, Republic of Korea
| |
Collapse
|
2
|
Wei S, Yang D, Shou Z, Zhang Y, Zheng S, Zan X, Li L, Zhang C. Proanthocyanidin capsules remodel the ROS microenvironment via regulating MAPK signaling for accelerating diabetic wound healing. Mater Today Bio 2025; 31:101467. [PMID: 39896292 PMCID: PMC11786704 DOI: 10.1016/j.mtbio.2025.101467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 02/04/2025] Open
Abstract
Defective diabetic wound healing is a major clinical challenge, where hyperglycemia at the wound site induces excessive reactive oxygen species (ROS) which activate the MAPK pathway (particularly p38 MAPK), resulting in sustained release of inflammatory factors and cellular damage/apoptosis. Polyphenols are efficient ROS scavengers which reduce the level of inflammation at the wound site and promote wound healing, but the low bioavailability limits their biomedical application. This study developed a simple and highly efficient method for preparing proanthocyanidin (PC) capsules through hydrogen bonding and hydrophobic interactions among PC molecules. PC capsules can continuously scavenge free radicals and release proanthocyanidins, significantly enhancing their bioavailability. A single dose of PC capsules accelerates wound healing in diabetic mice by regulating the p38 MAPK signaling cascade, reducing inflammatory mediator concentration, inhibiting cell apoptosis, and remodeling the wound microenvironment. This research makes an important contribution to the field of enhancing polyphenol bioavailability for wound healing and reveals the potential of modulating the MAPK pathway for treating other inflammation and oxidative stress-related diseases.
Collapse
Affiliation(s)
- Shaoyin Wei
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, Zhejiang, China
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, China
| | - Dong Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, Zhejiang, China
| | - Zeyu Shou
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Yipiao Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, No. 18, Chaowang Road, Gongshu District, Zhejiang University of Technology, Hangzhou, Zhejiang, 310014, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, 313200, China
| | - Shengwu Zheng
- Wenzhou Celecare Medical Instruments Co. Ltd, Wenzhou, 325000, China
| | - Xingjie Zan
- School of Ophthalmology and Optometry, Eye Hospital, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325035, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, Zhejiang, China
| | - Lianxin Li
- Department of Orthopaedics Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan City, Shandong Province, 250021, China
| | - Chunwu Zhang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, Zhejiang, China
| |
Collapse
|
3
|
Yang C, Yao L, Chen D, Chen C, Li W, Tong H, Cheng Z, Yan Y, Lin L, Zhang J, Shi A. Endosomal catabolism of phosphatidylinositol 4,5-bisphosphate is fundamental in building resilience against pathogens. Protein Cell 2025; 16:161-187. [PMID: 39087719 PMCID: PMC11891140 DOI: 10.1093/procel/pwae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/05/2024] [Indexed: 08/02/2024] Open
Abstract
Endosomes are characterized by the presence of various phosphoinositides that are essential for defining the membrane properties. However, the interplay between endosomal phosphoinositides metabolism and innate immunity is yet to be fully understood. Here, our findings highlight the evolutionary continuity of RAB-10/Rab10's involvement in regulating innate immunity. Upon infection of Caenorhabditis elegans with Pseudomonas aeruginosa, an increase in RAB-10 activity was observed in the intestine. Conversely, when RAB-10 was absent, the intestinal diacylglycerols (DAGs) decreased, and the animal's response to the pathogen was impaired. Further research revealed that UNC-16/JIP3 acts as an RAB-10 effector, facilitating the recruitment of phospholipase EGL-8 to endosomes. This leads to a decrease in endosomal phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and an elevation of DAGs, as well as the activation of the PMK-1/p38 MAPK innate immune pathway. It is noteworthy that the dimerization of UNC-16 is a prerequisite for its interaction with RAB-10(GTP) and the recruitment of EGL-8. Moreover, we ascertained that the rise in RAB-10 activity, due to infection, was attributed to the augmented expression of LET-413/Erbin, and the nuclear receptor NHR-25/NR5A1/2 was determined to be indispensable for this increase. Hence, this study illuminates the significance of endosomal PI(4,5)P2 catabolism in boosting innate immunity and outlines an NHR-25-mediated mechanism for pathogen detection in intestinal epithelia.
Collapse
Affiliation(s)
- Chao Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Longfeng Yao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Dan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Changling Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wenbo Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hua Tong
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zihang Cheng
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yanling Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Long Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jing Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Anbing Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan 430030, China
- Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
4
|
Li B, Ming H, Qin S, Nice EC, Dong J, Du Z, Huang C. Redox regulation: mechanisms, biology and therapeutic targets in diseases. Signal Transduct Target Ther 2025; 10:72. [PMID: 40050273 PMCID: PMC11885647 DOI: 10.1038/s41392-024-02095-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/09/2024] [Accepted: 11/21/2024] [Indexed: 03/09/2025] Open
Abstract
Redox signaling acts as a critical mediator in the dynamic interactions between organisms and their external environment, profoundly influencing both the onset and progression of various diseases. Under physiological conditions, oxidative free radicals generated by the mitochondrial oxidative respiratory chain, endoplasmic reticulum, and NADPH oxidases can be effectively neutralized by NRF2-mediated antioxidant responses. These responses elevate the synthesis of superoxide dismutase (SOD), catalase, as well as key molecules like nicotinamide adenine dinucleotide phosphate (NADPH) and glutathione (GSH), thereby maintaining cellular redox homeostasis. Disruption of this finely tuned equilibrium is closely linked to the pathogenesis of a wide range of diseases. Recent advances have broadened our understanding of the molecular mechanisms underpinning this dysregulation, highlighting the pivotal roles of genomic instability, epigenetic modifications, protein degradation, and metabolic reprogramming. These findings provide a foundation for exploring redox regulation as a mechanistic basis for improving therapeutic strategies. While antioxidant-based therapies have shown early promise in conditions where oxidative stress plays a primary pathological role, their efficacy in diseases characterized by complex, multifactorial etiologies remains controversial. A deeper, context-specific understanding of redox signaling, particularly the roles of redox-sensitive proteins, is critical for designing targeted therapies aimed at re-establishing redox balance. Emerging small molecule inhibitors that target specific cysteine residues in redox-sensitive proteins have demonstrated promising preclinical outcomes, setting the stage for forthcoming clinical trials. In this review, we summarize our current understanding of the intricate relationship between oxidative stress and disease pathogenesis and also discuss how these insights can be leveraged to optimize therapeutic strategies in clinical practice.
Collapse
Affiliation(s)
- Bowen Li
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China
| | - Hui Ming
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China
| | - Siyuan Qin
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, PR China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Jingsi Dong
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Zhongyan Du
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
- Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, Hangzhou, China.
| | - Canhua Huang
- Department of Biotherapy, Institute of Oxidative Stress Medicine, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, PR China.
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, PR China.
| |
Collapse
|
5
|
Sviercovich A, Mei X, Xie G, Conboy MJ, Conboy IM. The dominance of old blood, and age-related increase in protein production and noise. Ageing Res Rev 2025; 104:102641. [PMID: 39672207 DOI: 10.1016/j.arr.2024.102641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/24/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
This concise review provides new perspectives on systemic reduction of tissue aging by comparing different strategies, such as heterochronic parabiosis, injections of young blood plasma, neutral blood exchange (NBE) and therapeutic plasma exchange (TPE). Unlike previous literature that primarily discusses the need for young blood factors, we emphasize the potential of diluting age-elevated proteins as the way to re-calibrate systemic proteome to its younger state without donor blood. Furthermore, we introduce modulation of proteome noise, as an important part of understanding tissue aging and as a critical mechanism for tissue rejuvenation. We discuss studies on the dominance of aged systemic milieu in promoting progeric phenotypes in young cells, in vitro, and in multiple tissues of young animals, in vivo. We support our arguments with evidence showing a significant age-related increase in protein synthesis, in noise of newly synthesized proteomes, and in the rapid induction of these aging phenotypes in young muscle by exposure to aged tissue. We summarize the significance of these findings for future research on aging and longevity.
Collapse
Affiliation(s)
- Alexandra Sviercovich
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Xiaoyue Mei
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Grace Xie
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Michael J Conboy
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Irina M Conboy
- Department of Bioengineering and QB3 Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
6
|
Xiang Y, Tanwar V, Singh P, Follette LL, Narayan V, Kapahi P. Early menarche and childbirth accelerate aging-related outcomes and age-related diseases: Evidence for antagonistic pleiotropy in humans. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2024.09.23.24314197. [PMID: 39398990 PMCID: PMC11469407 DOI: 10.1101/2024.09.23.24314197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Aging can be understood as a consequence of the declining force of natural selection with age. Consistent with this, the antagonistic pleiotropy theory of aging proposes that aging arises from trade-offs that favor early growth and reproduction. However, evidence supporting antagonistic pleiotropy in humans remains limited. Using Mendelian Randomization (MR), we demonstrated that later ages of menarche or first childbirth were genetically associated with longer parental lifespan, decreased frailty index, slower epigenetic aging, later menopause, and reduced facial aging. Moreover, later menarche or first childbirth were also genetically associated with a lower risk of several age-related diseases, including late-onset Alzheimer's disease (LOAD), type 2 diabetes, heart disease, essential hypertension, and chronic obstructive pulmonary disease (COPD). We validated the associations between the age of menarche, childbirth, and the number of childbirths with several age-related outcomes in the UK Biobank by conducting regression analysis of nearly 200,000 subjects. Our results demonstrated that menarche before the age 11 and childbirth before 21 significantly accelerated the risk of several diseases, and almost doubled the risk for diabetes, heart failure, and quadrupled the risk of obesity, supporting the antagonistic pleiotropy theory. We identified 126 significant single nucleotide polymorphisms (SNPs) that influenced age-related outcomes, some of which were involved in known longevity pathways, including IGF1, growth hormone, AMPK, and mTOR signaling. Our study also identified higher BMI as a mediating factor in causing the increased risk of certain diseases, such as type 2 diabetes and heart failure, in women with early menarche or early pregnancy, emphasizing the importance of the thrifty gene hypothesis in explaining in part the mechanisms behind antagonistic pleiotropy. Our study highlights the complex relationship between genetic legacies and modern diseases, emphasizing the need for gender-sensitive healthcare strategies that consider the unique connections between female reproductive health and aging.
Collapse
Affiliation(s)
- Yifan Xiang
- The Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945
| | - Vineeta Tanwar
- The Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945
| | - Parminder Singh
- The Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945
| | | | - Vikram Narayan
- The Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945
| | - Pankaj Kapahi
- The Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945
- Department of Urology, University of California, San Francisco, 400 Parnassus Avenue, San Francisco, CA 94143
| |
Collapse
|
7
|
Zhang H, Zhu Z, Wei W, Liu Z, Zhou H, Gong Y, Yan X, Du J, Li H, Chen L, Sheng L. Aronia melanocarpa extract extends the lifespan and health-span of Caenorhabditis elegans via mitogen-activated protein kinase 1. Food Funct 2024; 15:11020-11035. [PMID: 39450574 DOI: 10.1039/d4fo02479f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Aging is a highly complex process and one of the largest risk factors for many chronic diseases. Aronia melanocarpa (AM) is rich in bioactive phytochemicals with antioxidant, anti-inflammatory, and anticancer properties. However, little is known about its effects on aging. The objective of this study was to evaluate the effects of AM extract on lifespan and health-span using Caenorhabditis elegans as a representative model. The mechanisms of its effects were explored using transcriptomics and untargeted metabolomics. Results showed that the lifespan of C. elegans was significantly extended by 22.2% after high-dose AM treatment. AM improved the behavior and physiological functions of C. elegans by increasing the pharyngeal pumping rate, decreasing lipofuscin accumulation and the reactive oxygen species level, enhancing resistance to oxidative stress, and increasing the activities of superoxide dismutase and catalase. Transcriptome analysis showed that the pmk-1 gene (mitogen-activated protein kinase 1), which is involved in the MAPK signaling pathway, was the gene with the largest fold change after AM intervention. However, in the C. elegans pmk-1(km25) mutant, the beneficial effect of AM in improving nematode senescence disappeared. An untargeted metabolomics study showed that the levels of 4-hydroxyproline, rhamnose, and cysteine were increased after AM supplementation, and their extending effect on the lifespan and health-span of C. elegans were partly dependent on the pmk-1 gene. In conclusion, our results revealed that AM can promote the lifespan and health-span of C. elegans via the PMK-1 pathway, highlighting the potential of AM as a dietary supplement to delay aging.
Collapse
Affiliation(s)
- Huan Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Zhigang Zhu
- Nutrilite Health Institute, Amway (Shanghai) Innovation & Science Co., Ltd, Shanghai 201203, China.
| | - Wenjing Wei
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Zekun Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Huiji Zhou
- Nutrilite Health Institute, Amway (Shanghai) Innovation & Science Co., Ltd, Shanghai 201203, China.
| | - Yueling Gong
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Xinlei Yan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Jun Du
- Nutrilite Health Institute, Amway (Shanghai) Innovation & Science Co., Ltd, Shanghai 201203, China.
| | - Houkai Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Liang Chen
- Nutrilite Health Institute, Amway (Shanghai) Innovation & Science Co., Ltd, Shanghai 201203, China.
| | - Lili Sheng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
8
|
Shi JW, Lai ZZ, Zhou WJ, Yang HL, Zhang T, Sun JS, Zhao JY, Li MQ. TNFSF14 + natural killer cells prevent spontaneous abortion by restricting leucine-mediated decidual stromal cell senescence. EMBO J 2024; 43:5018-5036. [PMID: 39261664 PMCID: PMC11535022 DOI: 10.1038/s44318-024-00220-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/31/2024] [Accepted: 08/04/2024] [Indexed: 09/13/2024] Open
Abstract
In preparation for a potential pregnancy, the endometrium of the uterus changes into a temporary structure called the decidua. Senescent decidual stromal cells (DSCs) are enriched in the decidua during decidualization, but the underlying mechanisms of this process remain unclear. Here, we performed single-cell RNA transcriptomics on ESCs and DSCs and found that cell senescence during decidualization is accompanied by increased levels of the branched-chain amino acid (BCAA) transporter SLC3A2. Depletion of leucine, one of the branched-chain amino acids, from cultured media decreased senescence, while high leucine diet resulted in increased senescence and high rates of embryo loss in mice. BCAAs induced senescence in DSCs via the p38 MAPK pathway. In contrast, TNFSF14+ decidual natural killer (dNK) cells were found to inhibit DSC senescence by interacting with its ligand TNFRSF14. As in mice fed high-leucine diets, both mice with NK cell depletion and Tnfrsf14-deficient mice with excessive uterine senescence experienced adverse pregnancy outcomes. Further, we found excessive uterine senescence, SLC3A2-mediated BCAA intake, and insufficient TNFRSF14 expression in the decidua of patients with recurrent spontaneous abortion. In summary, this study suggests that dNK cells maintain senescence homeostasis of DSCs via TNFSF14/TNFRSF14, providing a potential therapeutic strategy to prevent DSC senescence-associated spontaneous abortion.
Collapse
Affiliation(s)
- Jia-Wei Shi
- Department of Reproductive Immunology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, 200080, People's Republic of China
- Department of Obstetrics and Gynecology, The first affiliated Hospital of Ningbo University, Ningbo, 315021, People's Republic of China
| | - Zhen-Zhen Lai
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, 200080, People's Republic of China
| | - Wen-Jie Zhou
- Reproductive Medical Center, Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Hui-Li Yang
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, 200080, People's Republic of China
| | - Tao Zhang
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynecology, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Jian-Song Sun
- School of Life Science and Health Engineering, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Jian-Yuan Zhao
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, People's Republic of China.
| | - Ming-Qing Li
- Department of Reproductive Immunology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China.
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai, 200080, People's Republic of China.
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, 200030, People's Republic of China.
| |
Collapse
|
9
|
Wei H, Weaver YM, Weaver BP. Xeroderma pigmentosum protein XPD controls caspase-mediated stress responses. Nat Commun 2024; 15:9344. [PMID: 39472562 PMCID: PMC11522282 DOI: 10.1038/s41467-024-53755-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024] Open
Abstract
Caspases regulate and execute a spectrum of functions including cell deaths, non-apoptotic developmental functions, and stress responses. Despite these disparate roles, the same core cell-death machinery is required to enzymatically activate caspase proteolytic activities. Thus, it remains enigmatic how distinct caspase functions are differentially regulated. In this study, we show that Xeroderma pigmentosum protein XPD has a conserved function in activating the expression of stress-responsive caspases in C. elegans and human cells without triggering cell death. Using C. elegans, we show XPD-1-dependent activation of CED-3 caspase promotes survival upon genotoxic UV irradiation and inversely suppresses responses to non-genotoxic insults such as ER and osmotic stressors. Unlike the TFDP ortholog DPL-1 which is required for developmental apoptosis in C. elegans, XPD-1 only activates stress-responsive functions of caspase. This tradeoff balancing responses to genotoxic and non-genotoxic stress may explain the seemingly contradictory nature of caspase-mediated stress resilience versus sensitivity under different stressors.
Collapse
Affiliation(s)
- Hai Wei
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yi M Weaver
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Benjamin P Weaver
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
10
|
Calva Moreno JF, Jose G, Weaver YM, Weaver BP. UBR-5 and UBE2D mediate timely exit from stem fate via destabilization of poly(A)-binding protein PABP-2 in cell state transition. Proc Natl Acad Sci U S A 2024; 121:e2407561121. [PMID: 39405353 PMCID: PMC11513905 DOI: 10.1073/pnas.2407561121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/10/2024] [Indexed: 10/25/2024] Open
Abstract
UBR5 E3 ligase has been associated with cancer susceptibility and neuronal integrity, with functions in chromatin regulation and proteostasis. However, the functions of ubr5 within animals remain unclear due to lethality in both mammals and flies when disrupted. Using Caenorhabditis elegans, we show that UBR-5 E3 ligase is required for timely exit of stem fate and complete transition into multiple cell type descendants in an ectodermal blast lineage. Animals lacking intact UBR-5 function simultaneously exhibit both stem fate and differentiated fate in the same descendant cells. A functional screen of UBR-5 physical interactors allowed us to identify the UBE2D2/3 E2 conjugase LET-70 working with UBR-5 to exit stem fate. Strikingly, we revealed that another UBR-5 physical interactor, namely the nuclear poly(A)-binding protein PABPN1 ortholog PABP-2, worked antagonistically to UBR-5 and LET-70. Lowering pabp-2 levels restored normal transition of cell state out of stemness and promoted normal cell fusion when either ubr-5 or let-70 UBE2D function was compromised. The UBR-5-LET-70 and PABP-2 switch works independently of the stem pool size determined by pluripotency factors like lin-28. UBR-5 limits PABP-2 protein and reverses the PABP-2-dependent gene expression program including developmental, proteostasis, and innate immunity genes. Loss of ubr-5 rescues the developmental stall when pabp-2 is compromised. Disruption of ubr-5 elevates PABP-2 levels and prolongs expression of ectodermal and muscle stem markers at the transition to adulthood. Additionally, ubr-5 mutants exhibit an extended period of motility during aging and suppress pabp-2-dependent early onset of immobility.
Collapse
Affiliation(s)
| | - George Jose
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Yi M. Weaver
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Benjamin P. Weaver
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX75390
| |
Collapse
|
11
|
Yin F, Zhou Y, Xie D, Liang Y, Luo X. Evaluating the adverse effects and mechanisms of nanomaterial exposure on longevity of C. elegans: A literature meta-analysis and bioinformatics analysis of multi-transcriptome data. ENVIRONMENTAL RESEARCH 2024; 247:118106. [PMID: 38224941 DOI: 10.1016/j.envres.2024.118106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/17/2024]
Abstract
Exposure to large-size particulate air pollution (PM2.5 or PM10) has been reported to increase risks of aging-related diseases and human death, indicating the potential pro-aging effects of airborne nanomaterials with ultra-fine particle size (which have been widely applied in various fields). However, this hypothesis remains inconclusive. Here, a meta-analysis of 99 published literatures collected from electronic databases (PubMed, EMBASE and Cochrane Library; from inception to June 2023) was performed to confirm the effects of nanomaterial exposure on aging-related indicators and molecular mechanisms in model animal C. elegans. The pooled analysis by Stata software showed that compared with the control, nanomaterial exposure significantly shortened the mean lifespan [standardized mean difference (SMD) = -2.30], reduced the survival rate (SMD = -4.57) and increased the death risk (hazard ratio = 1.36) accompanied by upregulation of ced-3, ced-4 and cep-1, while downregulation of ctl-2, ape-1, aak-2 and pmk-1. Furthermore, multi-transcriptome data associated with nanomaterial exposure were retrieved from Gene Expression Omnibus (GSE32521, GSE41486, GSE24847, GSE59470, GSE70509, GSE14932, GSE93187, GSE114881, and GSE122728) and bioinformatics analyses showed that pseudogene prg-2, mRNAs of abu, car-1, gipc-1, gsp-3, kat-1, pod-2, acdh-8, hsp-60 and egrh-2 were downregulated, while R04A9.7 was upregulated after exposure to at least two types of nanomaterials. Resveratrol (abu, hsp-60, pod-2, egrh-2, acdh-8, gsp-3, car-1, kat-1, gipc-1), naringenin (kat-1, egrh-2), coumestrol (egrh-2) or swainsonine/niacin/ferulic acid (R04A9.7) exerted therapeutic effects by reversing the expression levels of target genes. In conclusion, our study demonstrates the necessity to use phytomedicines that target hub genes to delay aging for populations with nanomaterial exposure.
Collapse
Affiliation(s)
- Fei Yin
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou, 215123, China
| | - Yang Zhou
- School of Textile Science and Engineering/National Engineering Laboratory for Advanced Yarn and Clean Production, Wuhan Textile University, Wuhan, 430200, China.
| | - Dongli Xie
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou, 215123, China
| | - Yunxia Liang
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou, 215123, China.
| | - Xiaogang Luo
- College of Textile and Clothing Engineering, Soochow University, 199 Ren-Ai Road, Suzhou, 215123, China.
| |
Collapse
|
12
|
Dhakal A, Salim C, Skelly M, Amichan Y, Lamm AT, Hundley HA. ADARs regulate cuticle collagen expression and promote survival to pathogen infection. BMC Biol 2024; 22:37. [PMID: 38360623 PMCID: PMC10870475 DOI: 10.1186/s12915-024-01840-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 02/02/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND In all organisms, the innate immune system defends against pathogens through basal expression of molecules that provide critical barriers to invasion and inducible expression of effectors that combat infection. The adenosine deaminase that act on RNA (ADAR) family of RNA-binding proteins has been reported to influence innate immunity in metazoans. However, studies on the susceptibility of ADAR mutant animals to infection are largely lacking. RESULTS Here, by analyzing adr-1 and adr-2 null mutants in well-established slow-killing assays, we find that both Caenorhabditis elegans ADARs are important for organismal survival to gram-negative and gram-positive bacteria, all of which are pathogenic to humans. Furthermore, our high-throughput sequencing and genetic analysis reveal that ADR-1 and ADR-2 function in the same pathway to regulate collagen expression. Consistent with this finding, our scanning electron microscopy studies indicate adr-1;adr-2 mutant animals also have altered cuticle morphology prior to pathogen exposure. CONCLUSIONS Our data uncover a critical role of the C. elegans ADAR family of RNA-binding proteins in promoting cuticular collagen expression, which represents a new post-transcriptional regulatory node that influences the extracellular matrix. In addition, we provide the first evidence that ADAR mutant animals have altered susceptibility to infection with several opportunistic human pathogens, suggesting a broader role of ADARs in altering physical barriers to infection to influence innate immunity.
Collapse
Affiliation(s)
- Alfa Dhakal
- Cell, Molecular and Cancer Biology Graduate Program, Indiana University School of Medicine-Bloomington, Bloomington, IN, 47405, USA
| | - Chinnu Salim
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Mary Skelly
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
| | - Yarden Amichan
- Faculty of Biology, Technion Institute of Technology, Haifa, Israel
| | - Ayelet T Lamm
- Faculty of Biology, Technion Institute of Technology, Haifa, Israel
| | - Heather A Hundley
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA.
| |
Collapse
|
13
|
Baena-Lopez LA, Wang L, Wendler F. Cellular stress management by caspases. Curr Opin Cell Biol 2024; 86:102314. [PMID: 38215516 DOI: 10.1016/j.ceb.2023.102314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/14/2024]
Abstract
Cellular stress plays a pivotal role in the onset of numerous human diseases. Consequently, the removal of dysfunctional cells, which undergo excessive stress-induced damage via various cell death pathways, including apoptosis, is essential for maintaining organ integrity and function. The evolutionarily conserved family of cysteine-aspartic-proteases, known as caspases, has been a key player in orchestrating apoptosis. However, recent research has unveiled the capability of these enzymes to govern fundamental cellular processes without triggering cell death. Remarkably, some of these non-lethal functions of caspases may contribute to restoring cellular equilibrium in stressed cells. This manuscript discusses how caspases can function as cellular stress managers and their potential impact on human health and disease. Additionally, it sheds light on the limitations of caspase-based therapies, given our still incomplete understanding of the biology of these enzymes, particularly in non-apoptotic contexts.
Collapse
Affiliation(s)
| | - Li Wang
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX13RE, UK
| | - Franz Wendler
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX13RE, UK. https://twitter.com/wendlerfranz
| |
Collapse
|
14
|
Wei H, Weaver YM, Yang C, Zhang Y, Hu G, Karner CM, Sieber M, DeBerardinis RJ, Weaver BP. Proteolytic activation of fatty acid synthase signals pan-stress resolution. Nat Metab 2024; 6:113-126. [PMID: 38167727 PMCID: PMC10822777 DOI: 10.1038/s42255-023-00939-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 11/06/2023] [Indexed: 01/05/2024]
Abstract
Chronic stress and inflammation are both outcomes and major drivers of many human diseases. Sustained responsiveness despite mitigation suggests a failure to sense resolution of the stressor. Here we show that a proteolytic cleavage event of fatty acid synthase (FASN) activates a global cue for stress resolution in Caenorhabditis elegans. FASN is well established for biosynthesis of the fatty acid palmitate. Our results demonstrate FASN promoting an anti-inflammatory profile apart from palmitate synthesis. Redox-dependent proteolysis of limited amounts of FASN by caspase activates a C-terminal fragment sufficient to downregulate multiple aspects of stress responsiveness, including gene expression, metabolic programs and lipid droplets. The FASN C-terminal fragment signals stress resolution in a cell non-autonomous manner. Consistent with these findings, FASN processing is also seen in well-fed but not fasted male mouse liver. As downregulation of stress responses is critical to health, our findings provide a potential pathway to control diverse aspects of stress responses.
Collapse
Affiliation(s)
- Hai Wei
- Department of Pharmacology, UT Southwestern, Dallas, TX, USA
| | - Yi M Weaver
- Department of Pharmacology, UT Southwestern, Dallas, TX, USA
| | - Chendong Yang
- Children's Medical Center Research Institute, UT Southwestern, Dallas, TX, USA
| | - Yuan Zhang
- Department of Pharmacology, UT Southwestern, Dallas, TX, USA
| | - Guoli Hu
- Department of Internal Medicine, UT Southwestern, Dallas, TX, USA
| | | | - Matthew Sieber
- Department of Physiology, UT Southwestern, Dallas, TX, USA
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, UT Southwestern, Dallas, TX, USA
- Howard Hughes Medical Institute, UT Southwestern, Dallas, TX, USA
| | | |
Collapse
|