1
|
Li H, Yuan S, You J, Zhao C, Cheng X, Luo L, Yan X, Shen S, Zhang J. Revealing the Oxygen Transport Challenges in Catalyst Layers in Proton Exchange Membrane Fuel Cells and Water Electrolysis. NANO-MICRO LETTERS 2025; 17:225. [PMID: 40257747 PMCID: PMC12011709 DOI: 10.1007/s40820-025-01719-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 03/04/2025] [Indexed: 04/22/2025]
Abstract
Urgent requirements of the renewable energy boost the development of stable and clean hydrogen, which could effectively displace fossil fuels in mitigating climate changes. The efficient interconversion of hydrogen and electronic is highly based on polymer electrolyte membrane fuel cells (PEMFCs) and water electrolysis (PEMWEs). However, the high cost continues to impede large-scale commercialization of both PEMFC and PEMWE technologies, with the expense primarily attributed to noble catalysts serving as a major bottleneck. The reduction of Pt loading in PEMFCs is essential but limited by the oxygen transport resistance in the cathode catalyst layers (CCLs), while the oxygen transport in anode catalyst layers (ACLs) in PEMWEs also being focused as the Ir/IrOx catalyst reduced. The pore structure and the catalyst-ionomer agglomerates play important roles in the oxygen transport process of both PEMFCs and PEMWEs due to the similarity of membrane electrode assembly (MEA). Herein, the oxygen transport mechanism of PEMFCs in pore structure and ionomer thin films in CCLs is systematically reviewed, while state-of-the-art strategies are presented for enhancing oxygen transport and performance through materials and structural design. The deeply research opens avenues for exploring similar key scientific problems in oxygen transport process of PEMWEs and their further development.
Collapse
Affiliation(s)
- Huiyuan Li
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Shu Yuan
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Jiabin You
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Congfan Zhao
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Xiaojing Cheng
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Liuxuan Luo
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Xiaohui Yan
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Shuiyun Shen
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
- MOE Key Laboratory of Power & Machinery Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | - Junliang Zhang
- Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
- MOE Key Laboratory of Power & Machinery Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
2
|
Wu X, Meharban F, Xu J, Zhao Z, Tang X, Tan L, Song Y, Hu W, Xiao Q, Lin C, Li X, Xue Y, Luo W. Anode Alchemy on Multiscale: Engineering from Intrinsic Activity to Impedance Optimization for Efficient Water Electrolysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411704. [PMID: 40042317 DOI: 10.1002/smll.202411704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/12/2025] [Indexed: 04/11/2025]
Abstract
The past decade has seen significant progress in proton exchange membrane water electrolyzers (PEMWE), but the growing demand for cost-effective electrolytic hydrogen pushes for higher efficiency at lower costs. As a complex system, the performance of PEMWE is governed by a combination of multiscale factors. This review summarizes the latest progress from quantum to macroscopic scales. At the quantum level, electron spin configurations can be optimized to enhance catalytic activity. At the nano and meso scales, advancements in atomic structure optimization, crystal phase engineering, and heterostructure design improve catalytic performance and mass transport. At the macro scale, innovative techniques in gas bubble management and internal resistance reduction drive further efficiency gains under ampere-level operating conditions. These modifications at the quantum level cascade through meso- and macro-scales, affecting charge transfer, reaction kinetics, and gas evolution management. Unlike conventional approaches that focus solely on one scale-either at the catalyst level (e.g., atomic, or crystal modifications) or at the device level (e.g., porous transport layers design)-combining multiscale optimizations unlocks greater performance improvements. Finally, a perspective on future opportunities for multiscale engineering in PEMWE anode design toward commercial viability is offered.
Collapse
Affiliation(s)
- Xiaotong Wu
- School of New Energy, Ningbo University of Technology, Ningbo, 315336, China
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Faiza Meharban
- School of New Energy, Ningbo University of Technology, Ningbo, 315336, China
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jingsan Xu
- School of Chemistry and Physics & Centre for Materials Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| | - Zian Zhao
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xiangmin Tang
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Lei Tan
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yujie Song
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Weibo Hu
- School of New Energy, Ningbo University of Technology, Ningbo, 315336, China
| | - Qi Xiao
- School of New Energy, Ningbo University of Technology, Ningbo, 315336, China
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Chao Lin
- School of New Energy, Ningbo University of Technology, Ningbo, 315336, China
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xiaopeng Li
- School of New Energy, Ningbo University of Technology, Ningbo, 315336, China
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yejian Xue
- School of New Energy, Ningbo University of Technology, Ningbo, 315336, China
| | - Wei Luo
- School of New Energy, Ningbo University of Technology, Ningbo, 315336, China
- State Key Laboratory of Advanced Fiber Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
3
|
Chen Y, Dai C, Wu Q, Li H, Xi S, Seow JZY, Luo S, Meng F, Bo Y, Xia Y, Jia Y, Fisher AC, Xu ZJ. Support-free iridium hydroxide for high-efficiency proton-exchange membrane water electrolysis. Nat Commun 2025; 16:2730. [PMID: 40108156 PMCID: PMC11923266 DOI: 10.1038/s41467-025-58019-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/11/2025] [Indexed: 03/22/2025] Open
Abstract
The large-scale implementation of proton-exchange membrane water electrolyzers relies on high-performance membrane-electrode assemblies that use minimal iridium (Ir). In this study, we present a support-free Ir catalyst developed through a metal-oxide-based molecular self-assembly strategy. The unique self-assembly of densely isolated single IrO6H8 octahedra leads to the formation of μm-sized hierarchically porous Ir hydroxide particles. The support-free Ir catalyst exhibits a high turnover frequency of 5.31 s⁻¹ at 1.52 V in the membrane-electrode assembly. In the corresponding proton-exchange membrane water electrolyzer, notable performance with a cell voltage of less than 1.75 V at 4.0 A cm⁻² (Ir loading of 0.375 mg cm⁻²) is achieved. This metal-oxide-based molecular self-assembly strategy may provide a general approach for the development of advanced support-free catalysts for high-performance membrane-electrode assemblies.
Collapse
Affiliation(s)
- Yubo Chen
- Hydrogen Energy Institute, Zhejiang University, Hangzhou, P. R. China.
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Republic of Singapore.
- The Cambridge Centre for Advanced Research and Education in Singapore, Singapore, Republic of Singapore.
- Institute of Advanced Equipment, College of Energy Engineering, Zhejiang University, Hangzhou, P. R. China.
| | - Chencheng Dai
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Republic of Singapore
- The Cambridge Centre for Advanced Research and Education in Singapore, Singapore, Republic of Singapore
| | - Qian Wu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Republic of Singapore
| | - Haiyan Li
- Hydrogen Energy Institute, Zhejiang University, Hangzhou, P. R. China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, P. R. China
| | - Shibo Xi
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Justin Zhu Yeow Seow
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Republic of Singapore
- Energy Research Institute@NTU (ERI@N), Nanyang Technological University, Singapore, Republic of Singapore
| | - Songzhu Luo
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Republic of Singapore
| | - Fanxu Meng
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Republic of Singapore
| | - Yaolong Bo
- Hydrogen Energy Institute, Zhejiang University, Hangzhou, P. R. China
- College of Electrical Engineering, Zhejiang University, Hangzhou, P. R. China
| | - Yanghong Xia
- Hydrogen Energy Institute, Zhejiang University, Hangzhou, P. R. China
- College of Electrical Engineering, Zhejiang University, Hangzhou, P. R. China
| | - Yansong Jia
- Hydrogen Energy Institute, Zhejiang University, Hangzhou, P. R. China
- Institute of Advanced Equipment, College of Energy Engineering, Zhejiang University, Hangzhou, P. R. China
| | - Adrian C Fisher
- The Cambridge Centre for Advanced Research and Education in Singapore, Singapore, Republic of Singapore
| | - Zhichuan J Xu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Republic of Singapore.
- The Cambridge Centre for Advanced Research and Education in Singapore, Singapore, Republic of Singapore.
| |
Collapse
|
4
|
Wang C, Stansberry JM, Mukundan R, Chang HMJ, Kulkarni D, Park AM, Plymill AB, Firas NM, Liu CP, Lang JT, Lee JK, Tolouei NE, Morimoto Y, Wang CH, Zhu G, Brouwer J, Atanassov P, Capuano CB, Mittelsteadt C, Peng X, Zenyuk IV. Proton Exchange Membrane (PEM) Water Electrolysis: Cell-Level Considerations for Gigawatt-Scale Deployment. Chem Rev 2025; 125:1257-1302. [PMID: 39899322 PMCID: PMC11996138 DOI: 10.1021/acs.chemrev.3c00904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 10/13/2024] [Accepted: 10/17/2024] [Indexed: 02/04/2025]
Abstract
Hydrogen produced with no greenhouse gas emissions is termed "green hydrogen" and will be essential to reaching decarbonization targets set forth by nearly every country as per the Paris Agreement. Proton exchange membrane water electrolyzers (PEMWEs) are expected to contribute substantially to the green hydrogen market. However, PEMWE market penetration is insignificant, accounting for less than a gigawatt of global capacity. Achieving substantive decarbonization via green hydrogen will require PEMWEs to reach capacities of hundreds of gigawatts by 2030. This paper serves as an overarching roadmap for cell-level improvements necessary for gigawatt-scale PEMWE deployment, with insights from three well-established hydrogen technology companies included. Analyses will be presented for economies of scale, renewable energy prices, government policies, accelerated stress tests, and component-specific improvements.
Collapse
Affiliation(s)
- Cliffton
Ray Wang
- Department
of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92617, United States
- National
Fuel Cell Research Center, University of
California, Irvine, Irvine, California 92617, United States
| | - John M. Stansberry
- National
Fuel Cell Research Center, University of
California, Irvine, Irvine, California 92617, United States
- Department
of Mechanical and Aerospace Engineering, University of California, Irvine, Irvine, California 92617, United States
| | - Rangachary Mukundan
- Energy
Technologies Area, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Hung-Ming Joseph Chang
- Department
of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92617, United States
- National
Fuel Cell Research Center, University of
California, Irvine, Irvine, California 92617, United States
| | | | - Andrew M. Park
- The
Chemours Company, Newark, Delaware 19713, United States
| | | | - Nausir Mahmoud Firas
- National
Fuel Cell Research Center, University of
California, Irvine, Irvine, California 92617, United States
- Department
of Mechanical and Aerospace Engineering, University of California, Irvine, Irvine, California 92617, United States
| | - Christopher Pantayatiwong Liu
- Department
of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92617, United States
- National
Fuel Cell Research Center, University of
California, Irvine, Irvine, California 92617, United States
| | - Jack T. Lang
- Department
of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92617, United States
- National
Fuel Cell Research Center, University of
California, Irvine, Irvine, California 92617, United States
| | - Jason Keonhag Lee
- Energy
Technologies Area, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Mechanical Engineering, University of
Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Nadia E. Tolouei
- Department
of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92617, United States
- National
Fuel Cell Research Center, University of
California, Irvine, Irvine, California 92617, United States
| | - Yu Morimoto
- Department
of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92617, United States
- National
Fuel Cell Research Center, University of
California, Irvine, Irvine, California 92617, United States
| | - CH Wang
- TreadStone
Technologies, Inc., Princeton, New Jersey 08540, United States
| | - Gaohua Zhu
- Toyota
Research Institute of North America, Ann Arbor, Michigan 48105, United States
| | - Jack Brouwer
- Department
of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92617, United States
- National
Fuel Cell Research Center, University of
California, Irvine, Irvine, California 92617, United States
- Department
of Mechanical and Aerospace Engineering, University of California, Irvine, Irvine, California 92617, United States
| | - Plamen Atanassov
- Department
of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92617, United States
- National
Fuel Cell Research Center, University of
California, Irvine, Irvine, California 92617, United States
- Department
of Materials Science and Engineering, University
of California, Irvine, Irvine, California 92617, United States
| | | | | | - Xiong Peng
- Energy
Technologies Area, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Iryna V. Zenyuk
- Department
of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92617, United States
- National
Fuel Cell Research Center, University of
California, Irvine, Irvine, California 92617, United States
- Department
of Mechanical and Aerospace Engineering, University of California, Irvine, Irvine, California 92617, United States
- Department
of Materials Science and Engineering, University
of California, Irvine, Irvine, California 92617, United States
| |
Collapse
|
5
|
Lee HJ, Jung HS, Kim JG, Kim YW, Pak C. Cost-Effective Electrode Fabrication Method Using Hydroxypropyl Methylcellulose Binder for Proton Exchange Membrane Water Electrolysis. ACS APPLIED MATERIALS & INTERFACES 2025; 17:5268-5277. [PMID: 39772430 DOI: 10.1021/acsami.4c15501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
This study explores improving proton exchange membrane water electrolysis (PEMWE) by achieving both cost-effectiveness and enhanced efficiency through the replacement of the costly and environmentally challenging Nafion ionomer with hydroxypropyl methylcellulose (HPMC) as an anode binder. HPMC, an eco-friendly and cost-effective material, was cross-linked with citric acid to form a durable hydrogel that enhances water and proton transport within the catalyst layer. Using the cross-linked HPMC binder allowed a reduction in cost to 1/54 compared to Nafion ionomer, while the performance of the cross-linked HPMC electrodes remained comparable to Nafion electrodes. After investigating with varying temperatures to determine the appropriate cross-linking temperature, it is suggested that 140 °C was the most suitable. The cross-linked HPMC demonstrated superior hydrophilicity and ionic conductivity compared to the Nafion ionomer, demonstrating its potential as a viable alternative. Initial performance in the single cell revealed that the HPMC-based anode outperformed the Nafion-based anode, with a voltage of 1.782 V vs 1.796 V at 2 A/cm2. However, despite this improved initial performance, the higher voltage decay rate of the HPMC binder (0.305 mV/h vs 0.250 mV/h) over 200 h indicates the need for further elaboration on its long-term durability. These findings suggest that the cross-linked HPMC holds promise as a cost-effective and efficient binder for PEMWE anodes, with the potential for further optimization for durability.
Collapse
Affiliation(s)
- Hyung Joo Lee
- Graduate School of Energy Convergence, Institute of Integrated Technology, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Hyeon-Seung Jung
- Graduate School of Energy Convergence, Institute of Integrated Technology, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Jong Gyeong Kim
- Graduate School of Energy Convergence, Institute of Integrated Technology, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Yong Won Kim
- Graduate School of Energy Convergence, Institute of Integrated Technology, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Chanho Pak
- Graduate School of Energy Convergence, Institute of Integrated Technology, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| |
Collapse
|
6
|
Deng G, Liao Y, Lin Y, Ding L, Wang H. Engineering Robust Triazine Crosslinked and Pyridine Capped Anion Exchange Membrane for Advanced Water Electrolysis. Angew Chem Int Ed Engl 2024; 63:e202412632. [PMID: 39140598 DOI: 10.1002/anie.202412632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 08/15/2024]
Abstract
Exploring high-performance anion exchange membranes (AEM) for water electrolyzers (AEMWEs) is significant for green hydrogen production. However, the current AEMWEs are restricted by the poor mechanical strength and low OH- conductivity of AEMs, leading to the low working stability and low current density. Here, we develop a robust AEM with polybiphenylpiperidium network by combining the crosslinking with triazine and the capping with pyridine for advanced AEMWEs. The AEM exhibits an excellent mechanical strength (79.4 MPa), low swelling ratio (19.2 %), persistent alkali stability (≈5,000 hours) and high OH- conductivity (247.2 mS cm-1) which achieves the state-of-the-art AEMs. Importantly, when applied in AEMWEs, the corresponding electrolyzer equipped with commercial nickel iron and nickel molybdenum catalysts obtained a current density of up to 3.0 A cm-2 at 2 V and could be stably operated ~430 h at a high current density of 1.6 A cm-2, which exceeds the most of AEMWEs. Our results suggest that triazine crosslinking and pyridine capping can effectively improve the overall performance of the AEMWEs.
Collapse
Affiliation(s)
- Guoxiong Deng
- Beijing Key Laboratory for Membrane Materials and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yiwen Liao
- Beijing Key Laboratory for Membrane Materials and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yakai Lin
- Beijing Key Laboratory for Membrane Materials and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Li Ding
- Beijing Key Laboratory for Membrane Materials and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Haihui Wang
- Beijing Key Laboratory for Membrane Materials and Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
7
|
Zheng Z, Xue B, Yao J, He Q, Wang Z, Yan J. Ultramicroporous crosslinked polyxanthene-poly(biphenyl piperidinium)-based anion exchange membranes for water electrolyzers operating under highly alkaline conditions. MATERIALS HORIZONS 2024; 11:6117-6125. [PMID: 39327886 DOI: 10.1039/d4mh00836g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Anion exchange membrane water electrolyzers (AEMWEs) suffer from low efficiencies and durability, due to the unavailability of appropriate anion exchange membranes (AEM). Herein, a rigid ladder-like polyxanthene crosslinker was developed for the preparation of ultramicroporous crosslinked polyxanthene-poly(biphenyl piperidinium)-based AEMs. Due to the synergetic effects of their ultramicroporous structure and microphase-separation morphology, the crosslinked membranes showed high OH- conductivity (up to 163 mS cm-1 at 80 °C). Furthermore, these AEMs also exhibited moderate water uptake, excellent dimensional stability, and remarkable alkaline stability. The single-cell AEMWE based on QPBP-PX-15% and equipped with non-noble catalysts achieved a current density of 3000 mA cm-2 at 2.03 V (compared to PiperION's 2.26 V) in 6 M KOH solution at 80 °C, which outperformed many AEMWEs that used platinum-group-metal catalysts. Thus, the crosslinked AEMs developed in this study showed significant potential for application in AEMWEs fed with concentrated alkaline solutions.
Collapse
Affiliation(s)
- Zejun Zheng
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Boxin Xue
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
| | - Jin Yao
- Ningbo Sino-Tech Hydrogen Membrane Technology Co., Ltd, Ningbo 315207, China
| | - Qingyi He
- Ningbo Sino-Tech Hydrogen Membrane Technology Co., Ltd, Ningbo 315207, China
| | - Zhen Wang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingling Yan
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Huang M, Lao K, Ma L, Tao J, Zhuang X, Hu T, Pan Y, Liu H, Wen L, Xu S, Liu X, Wu Y, Li S, Tao HB, Zheng N. A Solid Electrolyte RHE for Electrode Diagnosis of Proton Exchange Membrane Water Electrolyzers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:39408-39417. [PMID: 39037937 DOI: 10.1021/acsami.4c07472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Reference electrode is the foundation of electrochemical study; thus, most electrode materials are tested in a three-electrode mode to acquire potential-dependent kinetics. However, it is difficult to directly use conventional reference electrodes to detect potential information in solid electrolyte devices due to their compact assembly structure. Therefore, the kinetic study of an electrochemical device faces challenges in precise identification of specific problems originating from the anode or cathode. Here, focusing on proton exchange membrane water electrolysis, we design a solid electrolyte reversible hydrogen electrode (SE-RHE), which can be used for electrode diagnosis under various operating conditions. Compared to the reference electrodes reported in the literature, which are mainly based on liquid electrolyte, the SE-RHE is highly sensitive and compatible, as well as easy to assemble. The potential deviation is less than ±0.5 mV, and the cell voltage derived from the electrode potential well reproduces the value that was directly measured with a deviation less than 0.2%. The reference electrode developed in this work enables the kinetic study of a specific electrode rather than the entire cell. For instance, an interesting observation is that the cathode shows distinct stability under stable and fluctuating operations. Differing from the high stability under stable operation, the cathode degrades significantly under fluctuating operations.
Collapse
Affiliation(s)
- Meiquan Huang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| | - Kejie Lao
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| | - Ling Ma
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| | - Jiawei Tao
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| | - Xinlong Zhuang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| | - Tian Hu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| | - Yaping Pan
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| | - Han Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| | - Linrui Wen
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| | - Shuwen Xu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| | - Xinru Liu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| | - Yichun Wu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- College of Energy, Xiamen University, Xiamen, 361005, China
| | - Shuirong Li
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- College of Energy, Xiamen University, Xiamen, 361005, China
| | - Hua Bing Tao
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| | - Nanfeng Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, China
| |
Collapse
|
9
|
Daniel T, Xing L, Cai Q, Liu L, Xuan J. Potential of Progressive and Disruptive Innovation-Driven Cost Reductions of Green Hydrogen Production. ENERGY & FUELS : AN AMERICAN CHEMICAL SOCIETY JOURNAL 2024; 38:10370-10380. [PMID: 38863683 PMCID: PMC11163429 DOI: 10.1021/acs.energyfuels.4c01247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 06/13/2024]
Abstract
Green hydrogen from water electrolysis is a key driver for energy and industrial decarbonization. The prediction of the future green hydrogen cost reduction is required for investment and policy-making purposes but is complicated due to a lack of data, incomplete accounting for costs, and difficulty justifying trend predictions. A new AI-assisted data-driven prediction model is developed for an in-depth analysis of the current and future levelized costs of green hydrogen, driven by both progressive and disruptive innovations. The model uses natural language processing to gather data and generate trends for the technological development of key aspects of electrolyzer technology. Through an uncertainty analysis, green hydrogen costs have been shown to likely reach the key target of <$2.5 kg-1 by 2030 via progressive innovations, and beyond this point, disruptive technological developments are required to affect significantly further decease cost. Additionally, the global distribution of green hydrogen costs has been calculated. This work creates a comprehensive analysis of the levelized cost of green hydrogen, including the important balance of plant components, both now and as electrolyzer technology develops, and offers a likely prediction for how the costs will develop over time.
Collapse
Affiliation(s)
- Thorin Daniel
- School
of Chemistry and Chemical Engineering, University
of Surrey, Guildford GU2 7XH, U.K.
| | - Lei Xing
- School
of Chemistry and Chemical Engineering, University
of Surrey, Guildford GU2 7XH, U.K.
| | - Qiong Cai
- School
of Chemistry and Chemical Engineering, University
of Surrey, Guildford GU2 7XH, U.K.
| | - Lirong Liu
- Centre
for Environment and Sustainability, University
of Surrey, Guildford GU2 7XH, U.K.
| | - Jin Xuan
- School
of Chemistry and Chemical Engineering, University
of Surrey, Guildford GU2 7XH, U.K.
| |
Collapse
|
10
|
Wijesinghe S, Kosgallana C, Senanayake M, Mohottalalage SS, Zolnierczuk P, Stingaciu L, Grest GS, Perahia D. From ionic clusters dynamics to network constraints in ionic polymer solutions. Phys Rev E 2024; 109:034501. [PMID: 38632780 DOI: 10.1103/physreve.109.034501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/29/2024] [Indexed: 04/19/2024]
Abstract
Physical networks formed by ionizable polymers with ionic clusters as crosslinks are controlled by coupled dynamics that transcend from ionic clusters through chain motion to macroscopic response. Here, the coupled dynamics, across length scales, from the ionic clusters to the networks in toluene swollen polystyrene sulfonate networks, were directly correlated, as the electrostatic environment of the physical crosslinks was altered. The multiscale insight is attained by coupling neutron spin echo measurements with molecular dynamics simulations, carried out to times typical of relaxation of polymers in solutions. The experimental dynamic structure factor is in outstanding agreement with the one calculated from computer simulations, as the networks are perturbed by elevating the temperature and changing the electrostatic environment. In toluene, the long-lived clusters remain stable over hundreds of ns across a broad temperature range, while the polymer network remains dynamic. Though the size of the clusters changes as the dielectric constant of the solvent is modified through the addition of ethanol, they remain stable but morph, enhancing the polymer chain dynamics.
Collapse
Affiliation(s)
- Sidath Wijesinghe
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, USA
- Department of Chemistry, Appalachian State University, Boone, North Carolina 26808, USA
| | | | - Manjula Senanayake
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, USA
| | | | - Piotr Zolnierczuk
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Laura Stingaciu
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Gary S Grest
- Sandia National Laboratories, Albuquerque, New Mexico 87175, USA
| | - Dvora Perahia
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, USA
- Department of Physics, Clemson University, Clemson, South Carolina 29631, USA
| |
Collapse
|
11
|
Cheng F, Tian T, Wang R, Zhang H, Zhu L, Tang H. Structure-Performance Correlation Inspired Platinum-Assisted Anode with a Homogeneous Ionomer Layer for Proton Exchange Membrane Water Electrolysis. Polymers (Basel) 2024; 16:237. [PMID: 38257036 PMCID: PMC10820505 DOI: 10.3390/polym16020237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
PEMWE is becoming one of the most promising technologies for efficient and green hydrogen production, while the anode OER process is deeply restricted by the now commercially used iridium oxide with sluggish reaction kinetics and super high cost. Deeply exploring the essential relationship between the underlying substrate materials and the performance of PEMWE cells while simultaneously excavating new practical and convenient methods to reduce costs and increase efficiency is full of challenges. Herein, two representative kinds of iridium oxide were studied, and their performance difference in PEMWE was precisely analyzed with electrochemical techniques and physical characterization and further linked to the ionomer/catalyst compound features. A novel anode with a uniform thin ionomer coating was successfully constructed, which simultaneously optimized the ionomer/catalyst aggregates as well as electrical conductivity, resulting in significantly enhanced PEMWE performance. This rigorous qualitative analysis of the structure-performance relationship as well as effective ionomer-affinitive optimization strategies are of great significance to the development of next-generation high-performance PEM water electrolyzers.
Collapse
Affiliation(s)
- Feng Cheng
- National Energy Key Laboratory for New Hydrogen-Ammonia Energy Technologies, Foshan Xianhu Laboratory, Foshan 528200, China
- Wuhan Institute of Hydrogen and Fuel Cell Industrial Technology, 555 Cultural Avenue, Hongshan District, Wuhan 430070, China
| | - Tian Tian
- National Energy Key Laboratory for New Hydrogen-Ammonia Energy Technologies, Foshan Xianhu Laboratory, Foshan 528200, China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Rui Wang
- National Energy Key Laboratory for New Hydrogen-Ammonia Energy Technologies, Foshan Xianhu Laboratory, Foshan 528200, China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Hao Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Liyan Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Haolin Tang
- National Energy Key Laboratory for New Hydrogen-Ammonia Energy Technologies, Foshan Xianhu Laboratory, Foshan 528200, China
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
12
|
Wang G, Zhao W, Mansoor M, Liu Y, Wang X, Zhang K, Xiao C, Liu Q, Mao L, Wang M, Lv H. Recent Progress in Using Mesoporous Carbon Materials as Catalyst Support for Proton Exchange Membrane Fuel Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2818. [PMID: 37947664 PMCID: PMC10649975 DOI: 10.3390/nano13212818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
Developing durable oxygen reduction reaction (ORR) electrocatalysts is essential to step up the large-scale applications of proton exchange membrane fuel cells (PEMFCs). Traditional ORR electrocatalysts provide satisfactory activity, yet their poor durability limits the long-term applications of PEMFCs. Porous carbon used as catalyst support in Pt/C is vulnerable to oxidation under high potential conditions, leading to Pt nanoparticle dissolution and carbon corrosion. Thus, integrating Pt nanoparticles into highly graphitic mesoporous carbons could provide long-term stability. This Perspective seeks to reframe the existing approaches to employing Pt alloys and mesoporous carbon-integrated ORR electrocatalysts to improve the activity and stability of PEMFCs. The unusual porous structure of mesoporous carbons promotes oxygen transport, and graphitization provides balanced stability. Furthermore, the synergistic effect between Pt alloys and heteroatom doping in mesoporous carbons not only provides a great anchoring surface for catalyst nanoparticles but also improves the intrinsic activity. Furthermore, the addition of Pt alloys into mesoporous carbon optimizes the available surface area and creates an effective electron transfer channel, reducing the mass transport resistance. The long-term goals for fuel-cell-powered cars, especially those designed for heavy-duty use, are well aligned with the results shown when this hybrid material is used in PEMFCs to improve performance and durability.
Collapse
Affiliation(s)
- Guanxiong Wang
- Shenzhen Academy of Aerospace Technology, Shenzhen 518057, China; (G.W.); (C.X.); (Q.L.)
| | - Wei Zhao
- College of New Energy, China University of Petroleum (East China), Qingdao 266580, China; (W.Z.); (Y.L.); (X.W.); (K.Z.)
| | - Majid Mansoor
- College of Energy Soochow, Institute for Energy and Materials Innovations, Soochow University, Suzhou 215006, China;
| | - Yinan Liu
- College of New Energy, China University of Petroleum (East China), Qingdao 266580, China; (W.Z.); (Y.L.); (X.W.); (K.Z.)
| | - Xiuyue Wang
- College of New Energy, China University of Petroleum (East China), Qingdao 266580, China; (W.Z.); (Y.L.); (X.W.); (K.Z.)
| | - Kunye Zhang
- College of New Energy, China University of Petroleum (East China), Qingdao 266580, China; (W.Z.); (Y.L.); (X.W.); (K.Z.)
| | - Cailin Xiao
- Shenzhen Academy of Aerospace Technology, Shenzhen 518057, China; (G.W.); (C.X.); (Q.L.)
| | - Quansheng Liu
- Shenzhen Academy of Aerospace Technology, Shenzhen 518057, China; (G.W.); (C.X.); (Q.L.)
| | - Lingling Mao
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China;
| | - Min Wang
- College of New Energy, China University of Petroleum (East China), Qingdao 266580, China; (W.Z.); (Y.L.); (X.W.); (K.Z.)
| | - Haifeng Lv
- Shenzhen Academy of Aerospace Technology, Shenzhen 518057, China; (G.W.); (C.X.); (Q.L.)
| |
Collapse
|