1
|
Luo P, Tong K, Gan Y, Tang M, Niu Y, Liu K, Ni S, Wu S, Jiang X, Jiang H, Xiao F, Chen S, Lv W, Li X, Yuan F, Guo F. Amino Acid-Sensing Neurons in the Anterior Piriform Cortex Control Brown Adipose Tissue Thermogenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2502421. [PMID: 40305738 DOI: 10.1002/advs.202502421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 04/11/2025] [Indexed: 05/02/2025]
Abstract
Amino acid sensing in the central nervous system plays a key role in regulating energy homeostasis. The anterior piriform cortex (APC) has been implicated in sensing amino acid deficiency and rapidly inducing an aversive response. However, the precise types of neurons involved and whether they possess additional metabolic regulatory functions remain to be elucidated. The study reveals that corticotropin-releasing hormone (CRH) neurons in the APC (APCCRH neurons) are activated by a leucine-deficient diet to modulate brown adipose tissue thermogenesis and that they regulate body temperature in response to leucine deprivation. The findings reveal that APCCRH neurons are sensitive to leucine-deprivation signaling, with general control nonderepressive-2 playing an essential role in enhancing their intrinsic excitability. Furthermore, APCCRH neurons project into the known hypothalamic thermoregulatory region of the lateral hypothalamus, and APCCRH-lateral hypothalamus circuits mediate leucine deprivation-induced thermogenesis. Additionally, it is observed that thermogenic regulation by APCCRH neurons contributes to the maintenance of body temperature under cold exposure. Collectively, the findings identify a population of leucine-sensing APCCRH neurons, and reveal the signals and circuits involved in their regulation of brown adipose tissue thermogenesis and their subsequent contribution to body temperature regulation and energy homeostasis.
Collapse
Affiliation(s)
- Peixiang Luo
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Kexin Tong
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Yeting Gan
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Min Tang
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Yuguo Niu
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Kan Liu
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shihong Ni
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Shangming Wu
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoxue Jiang
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Haizhou Jiang
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Fei Xiao
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Shanghai Chen
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Wei Lv
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoying Li
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Feixiang Yuan
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Feifan Guo
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Francois M, Kaiser L, He Y, Xu Y, Salbaum JM, Yu S, Morrison CD, Berthoud HR, Münzberg H. Leptin receptor neurons in the dorsomedial hypothalamus require distinct neuronal subsets for thermogenesis and weight loss. Metabolism 2025; 163:156100. [PMID: 39672257 PMCID: PMC11700787 DOI: 10.1016/j.metabol.2024.156100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/04/2024] [Accepted: 12/07/2024] [Indexed: 12/15/2024]
Abstract
The dorsomedial hypothalamus (DMH) receives inputs from the preoptic area (POA), where ambient temperature mediates physiological adaptations of energy expenditure and food intake. Warm-activated POA neurons suppress energy expenditure via brown adipose tissue (BAT) projecting neurons in the dorsomedial hypothalamus/dorsal hypothalamic area (dDMH/DHA). Our earlier work identified leptin receptor (Lepr)-expressing, BAT-projecting dDMH/DHA neurons that mediate metabolic leptin effects. Yet, the neurotransmitter (glutamate or GABA) used by dDMH/DHALepr neurons remains unexplored and was investigated in this study using mice. We report that dDMH/DHALepr neurons represent equally glutamatergic and GABAergic neurons. Surprisingly, chemogenetic activation of glutamatergic and/or GABAergic dDMH/DHA neurons were capable to increase energy expenditure and locomotion, but neither reproduced the beneficial metabolic effects observed after chemogenetic activation of dDMH/DHALepr neurons. We clarify that BAT-projecting dDMH/DHA neurons that innervate the raphe pallidus (RPa) are exclusively glutamatergic Lepr neurons. In contrast, projections of GABAergic or dDMH/DHALepr neurons overlapped in the ventromedial arcuate nucleus (vmARC), suggesting distinct energy expenditure pathways. Brain slice patch clamp recordings further demonstrate a considerable proportion of leptin-inhibited dDMH/DHALepr neurons, while removal of pre-synaptic (indirect) effects with synaptic blocker increased the proportion of leptin-activated dDMH/DHALepr neurons, suggesting that pre-synaptic Lepr neurons inhibit dDMH/DHALepr neurons. We conclude that stimulation of BAT-related, GABA- and glutamatergic dDMH/DHALepr neurons in combination mediate the beneficial metabolic effects. Our data support the idea that dDMH/DHALepr neurons integrate upstream Lepr neurons (e.g., originating from POA and ARC). We speculate that these neurons manage dynamic adaptations to a variety of environmental changes including ambient temperature and energy state. SIGNIFICANCE STATEMENT: Our earlier work identified leptin receptor expressing neurons in the dDMH/DHA as an important thermoregulatory site. Dorsomedial hypothalamus (DMH) Lepr neurons participate in processing and integration of environmental exteroceptive signals like ambient temperature and circadian rhythm, as well as interoceptive signals including leptin and the gut hormone glucagon-like-peptide-1 (GLP1). The present work further characterizes dDMH/DHALepr neurons as a mixed glutamatergic and GABAergic population, but with distinct axonal projection sites. Surprisingly, select activation of glutamatergic and/or GABAergic populations are all able to increase energy expenditure, but are unable to replicate the beneficial metabolic effects observed by Lepr activation. These findings highlighting dDMH/DHA Lepr neurons as a distinct subgroup of glutamatergic and GABAergic neurons that are under indirect and direct influence of the interoceptive hormone leptin and if stimulated are uniquely capable to mediate beneficial metabolic effects. Our work significantly expands our knowledge of thermoregulatory circuits and puts a spotlight onto DMH-Lepr neurons for the integration into whole body energy and body weight homeostasis.
Collapse
Affiliation(s)
- Marie Francois
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center (PBRC), LSU system, Baton Rouge, LA, USA
| | - Laura Kaiser
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center (PBRC), LSU system, Baton Rouge, LA, USA
| | - Yanlin He
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center (PBRC), LSU system, Baton Rouge, LA, USA; Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Yong Xu
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - J Michael Salbaum
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center (PBRC), LSU system, Baton Rouge, LA, USA
| | - Sangho Yu
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center (PBRC), LSU system, Baton Rouge, LA, USA
| | - Christopher D Morrison
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center (PBRC), LSU system, Baton Rouge, LA, USA
| | - Hans-Rudolf Berthoud
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center (PBRC), LSU system, Baton Rouge, LA, USA
| | - Heike Münzberg
- Neurobiology of Nutrition and Metabolism Department, Pennington Biomedical Research Center (PBRC), LSU system, Baton Rouge, LA, USA.
| |
Collapse
|
3
|
Stark R. The olfactory bulb: A neuroendocrine spotlight on feeding and metabolism. J Neuroendocrinol 2024; 36:e13382. [PMID: 38468186 DOI: 10.1111/jne.13382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/13/2024]
Abstract
Olfaction is the most ancient sense and is needed for food-seeking, danger protection, mating and survival. It is often the first sensory modality to perceive changes in the external environment, before sight, taste or sound. Odour molecules activate olfactory sensory neurons that reside on the olfactory epithelium in the nasal cavity, which transmits this odour-specific information to the olfactory bulb (OB), where it is relayed to higher brain regions involved in olfactory perception and behaviour. Besides odour processing, recent studies suggest that the OB extends its function into the regulation of food intake and energy balance. Furthermore, numerous hormone receptors associated with appetite and metabolism are expressed within the OB, suggesting a neuroendocrine role outside the hypothalamus. Olfactory cues are important to promote food preparatory behaviours and consumption, such as enhancing appetite and salivation. In addition, altered metabolism or energy state (fasting, satiety and overnutrition) can change olfactory processing and perception. Similarly, various animal models and human pathologies indicate a strong link between olfactory impairment and metabolic dysfunction. Therefore, understanding the nature of this reciprocal relationship is critical to understand how olfactory or metabolic disorders arise. This present review elaborates on the connection between olfaction, feeding behaviour and metabolism and will shed light on the neuroendocrine role of the OB as an interface between the external and internal environments. Elucidating the specific mechanisms by which olfactory signals are integrated and translated into metabolic responses holds promise for the development of targeted therapeutic strategies and interventions aimed at modulating appetite and promoting metabolic health.
Collapse
Affiliation(s)
- Romana Stark
- Monash Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
4
|
Riera CE. Wiring the Brain for Wellness: Sensory Integration in Feeding and Thermogenesis: A Report on Research Supported by Pathway to Stop Diabetes. Diabetes 2024; 73:338-347. [PMID: 38377445 PMCID: PMC10882152 DOI: 10.2337/db23-0706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/06/2023] [Indexed: 02/22/2024]
Abstract
The recognition of sensory signals from within the body (interoceptive) and from the external environment (exteroceptive), along with the integration of these cues by the central nervous system, plays a crucial role in maintaining metabolic balance. This orchestration is vital for regulating processes related to both food intake and energy expenditure. Animal model studies indicate that manipulating specific populations of neurons in the central nervous system which influence these processes can effectively modify energy balance. This body of work presents an opportunity for the development of innovative weight loss therapies for the treatment of obesity and type 2 diabetes. In this overview, we delve into the sensory cues and the neuronal populations responsible for their integration, exploring their potential in the development of weight loss treatments for obesity and type 2 diabetes. This article is the first in a series of Perspectives that report on research funded by the American Diabetes Association Pathway to Stop Diabetes program. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Céline E. Riera
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA
| |
Collapse
|
5
|
Junaid M, Choe HK, Kondoh K, Lee EJ, Lim SB. Unveiling Hypothalamic Molecular Signatures via Retrograde Viral Tracing and Single-Cell Transcriptomics. Sci Data 2023; 10:861. [PMID: 38049462 PMCID: PMC10696032 DOI: 10.1038/s41597-023-02789-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 11/24/2023] [Indexed: 12/06/2023] Open
Abstract
Despite the importance of hypothalamic neurocircuits in regulating homeostatic and survival-related behaviors, our understanding of the intrinsic molecular identities of neural components involved in these complex multi-synaptic interactions remains limited. In this study, we constructed a Cre recombinase-dependent pseudorabies virus (PRVs) capable of crossing synapses, coupled with transcriptome analysis of single upstream neurons post-infection. By utilizing this retrograde nuclear Connect-seq (nuConnect-seq) approach, we generated a single nuclei RNA-seq (snRNA-seq) dataset of 1,533 cells derived from the hypothalamus of CRH-IRES-Cre (CRH-Cre) mice. To ensure the technical validity of our nuConnect-seq dataset, we employed a label transfer technique against an integrated reference dataset of postnatal mouse hypothalamus comprising 152,524 QC-passed cells. The uniqueness of our approach lies in the integration of diverse datasets for validation, providing a more nuanced diversity of hypothalamic cell types. The presented validated dataset may deepen our understanding of hypothalamic neurocircuits and underscore the essential role of comprehensive integrated transcriptomic data for technical validity.
Collapse
Affiliation(s)
- Muhammad Junaid
- Department of Biochemistry & Molecular Biology, Ajou University School of Medicine, Suwon, 16499, Korea
| | - Han Kyoung Choe
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Korea
| | - Kunio Kondoh
- Division of Endocrinology and Metabolism, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8585, Japan
| | - Eun Jeong Lee
- Department of Brain Science, Ajou University School of Medicine, Suwon, 16499, Korea.
| | - Su Bin Lim
- Department of Biochemistry & Molecular Biology, Ajou University School of Medicine, Suwon, 16499, Korea.
| |
Collapse
|