1
|
Chen R, Chen T, Li X, Yu J, Lin M, Wen S, Zhang M, Chen J, Yi B, Zhong H, Li Z. SREBP2 as a central player in cancer progression: potential for targeted therapeutics. Front Pharmacol 2025; 16:1535691. [PMID: 40308757 PMCID: PMC12041066 DOI: 10.3389/fphar.2025.1535691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/31/2025] [Indexed: 05/02/2025] Open
Abstract
Recent studies have identified the reprogramming of lipid metabolism as a critical hallmark of malignancy. Enhanced cholesterol uptake and increased cholesterol biosynthesis significantly contribute to the rapid growth of tumors, with cholesterol also playing essential roles in cellular signaling pathways. Targeting cholesterol metabolism has emerged as a promising therapeutic strategy in oncology. The sterol regulatory element-binding protein-2 (SREBP2) serves as a primary transcriptional regulator of genes involved in cholesterol biosynthesis and is crucial for maintaining cholesterol homeostasis. Numerous studies have reported the upregulation of SREBP2 across various cancers, facilitating tumor progression. This review aims to provide a comprehensive overview of the structure, biological functions, and regulatory mechanisms of SREBP2. Furthermore, we summarize that SREBP2 plays a crucial role in various cancers and tumor microenvironment primarily by regulating cholesterol, as well as through several non-cholesterol pathways. We also particularly emphasize therapeutic agents targeting SREBP2 that are currently under investigation. This review seeks to enhance our understanding of SREBP2's involvement in cancer and provide theoretical references for cancer therapies that target SREBP2.
Collapse
Affiliation(s)
- Ruiqi Chen
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Tianyu Chen
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xiang Li
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Junfeng Yu
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Min Lin
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Siqi Wen
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Man Zhang
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jinchi Chen
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Bei Yi
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Huage Zhong
- Division of Colorectal and Anal Surgery, Department of Gastrointestinal Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
- Guangxi Clinical Research Center for Colorectal Cancer, Nanning, China
| | - Zhao Li
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
2
|
Li L, Hammerlindl H, Shen SQ, Bao F, Hammerlindl S, Altschuler SJ, Wu LF. A phenopushing platform to identify compounds that alleviate acute hypoxic stress by fast-tracking cellular adaptation. Nat Commun 2025; 16:2684. [PMID: 40102413 PMCID: PMC11920246 DOI: 10.1038/s41467-025-57754-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 03/03/2025] [Indexed: 03/20/2025] Open
Abstract
Severe acute hypoxic stress is a major contributor to the pathology of human diseases, including ischemic disorders. Current treatments focus on managing consequences of hypoxia, with few addressing cellular adaptation to low-oxygen environments. Here, we investigate whether accelerating hypoxia adaptation could provide a strategy to alleviate acute hypoxic stress. We develop a high-content phenotypic screening platform to identify compounds that fast-track adaptation to hypoxic stress. Our platform captures a high-dimensional phenotypic hypoxia response trajectory consisting of normoxic, acutely stressed, and chronically adapted cell states. Leveraging this trajectory, we identify compounds that phenotypically shift cells from the acutely stressed state towards the adapted state, revealing mTOR/PI3K or BET inhibition as strategies to induce this phenotypic shift. Importantly, our compound hits promote the survival of liver cells exposed to ischemia-like stress, and rescue cardiomyocytes from hypoxic stress. Our "phenopushing" platform offers a general, target-agnostic approach to identify compounds and targets that accelerate cellular adaptation, applicable across various stress conditions.
Collapse
Affiliation(s)
- Li Li
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Heinz Hammerlindl
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Susan Q Shen
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Feng Bao
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Sabrina Hammerlindl
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Steven J Altschuler
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA.
| | - Lani F Wu
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
3
|
Iriondo O, Mecenas D, Li Y, Chin CR, Thomas A, Moriarty A, Marker R, Wang YJ, Hendrick H, Amzaleg Y, Ortiz V, MacKay M, Dickerson A, Lee G, Harotoonian S, Benayoun BA, Smith A, Mason CE, Torres ETR, Klotz R, Yu M. Hypoxic Memory Mediates Prolonged Tumor-Intrinsic Type I Interferon Suppression to Promote Breast Cancer Progression. Cancer Res 2024; 84:3141-3157. [PMID: 38990731 PMCID: PMC11444891 DOI: 10.1158/0008-5472.can-23-2028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 05/03/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Abstract
Hypoxia is a common feature of many solid tumors due to aberrant proliferation and angiogenesis that is associated with tumor progression and metastasis. Most of the well-known hypoxia effects are mediated through hypoxia-inducible factors (HIF). Identification of the long-lasting effects of hypoxia beyond the immediate HIF-induced alterations could provide a better understanding of hypoxia-driven metastasis and potential strategies to circumvent it. Here, we uncovered a hypoxia-induced mechanism that exerts a prolonged effect to promote metastasis. In breast cancer patient-derived circulating tumor cell lines and common breast cancer cell lines, hypoxia downregulated tumor-intrinsic type I IFN signaling and its downstream antigen presentation (AP) machinery in luminal breast cancer cells, via both HIF-dependent and HIF-independent mechanisms. Hypoxia induced durable IFN/AP suppression in certain cell types that was sustained after returning to normoxic conditions, presenting a "hypoxic memory" phenotype. Hypoxic memory of IFN/AP downregulation was established by specific hypoxic priming, and cells with hypoxic memory had an enhanced ability for tumorigenesis and metastasis. Overexpression of IRF3 enhanced IFN signaling and reduced tumor growth in normoxic, but not hypoxic, conditions. The histone deacetylase inhibitor entinostat upregulated IFN targets and erased the hypoxic memory. These results point to a mechanism by which hypoxia facilitates tumor progression through a long-lasting memory that provides advantages for circulating tumor cells during the metastatic cascade. Significance: Long-term cellular memory of hypoxia leads to sustained suppression of tumor-intrinsic type I IFN signaling and the antigen presentation pathway that facilitates tumorigenesis and metastasis. See related commentary by Purdy and Ford, p. 3125.
Collapse
Affiliation(s)
- Oihana Iriondo
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
- USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
- Center for Cooperative Research (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio 48160, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Desirea Mecenas
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
- USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Yilin Li
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
- USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Christopher R. Chin
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA
| | - Amal Thomas
- Department of Molecular and Computational Biology, USC Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Aidan Moriarty
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Rebecca Marker
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yiru Jess Wang
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Haley Hendrick
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yonatan Amzaleg
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
- USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry of the University of Southern California, Los Angeles, CA 90033, USA
| | - Veronica Ortiz
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
- USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Matthew MacKay
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Amber Dickerson
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
- USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Grace Lee
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
- USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Sevana Harotoonian
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Bérénice A. Benayoun
- USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Andrew Smith
- Department of Molecular and Computational Biology, USC Dana and David Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Christopher E. Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, USA
| | - Evanthia T. Roussos Torres
- USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
- Department of Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
| | - Remi Klotz
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
- USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Min Yu
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
- USC Norris Comprehensive Cancer Center, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum NCI Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
5
|
Ariyeloye S, Kämmerer S, Klapproth E, Wielockx B, El-Armouche A. Intertwined regulators: hypoxia pathway proteins, microRNAs, and phosphodiesterases in the control of steroidogenesis. Pflugers Arch 2024; 476:1383-1398. [PMID: 38355819 PMCID: PMC11310285 DOI: 10.1007/s00424-024-02921-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/25/2024] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
Oxygen sensing is of paramount importance for maintaining cellular and systemic homeostasis. In response to diminished oxygen levels, the hypoxia-inducible factors (HIFs) orchestrate various biological processes. These pivotal transcription factors have been identified as key regulators of several biological events. Notably, extensive research from our group and others has demonstrated that HIF1α exerts an inverse regulatory effect on steroidogenesis, leading to the suppression of crucial steroidogenic enzyme expression and a subsequent decrease in steroid levels. These steroid hormones occupy pivotal roles in governing a myriad of physiological processes. Substantial or prolonged fluctuations in steroid levels carry detrimental consequences across multiple organ systems and underlie various pathological conditions, including metabolic and immune disorders. MicroRNAs serve as potent mediators of multifaceted gene regulatory mechanisms, acting as influential epigenetic regulators that modulate a broad spectrum of gene expressions. Concomitantly, phosphodiesterases (PDEs) play a crucial role in governing signal transduction. PDEs meticulously manage intracellular levels of both cAMP and cGMP, along with their respective signaling pathways and downstream targets. Intriguingly, an intricate interplay seems to exist between hypoxia signaling, microRNAs, and PDEs in the regulation of steroidogenesis. This review highlights recent advances in our understanding of the role of microRNAs during hypoxia-driven processes, including steroidogenesis, as well as the possibilities that exist in the application of HIF prolyl hydroxylase (PHD) inhibitors for the modulation of steroidogenesis.
Collapse
Affiliation(s)
- Stephen Ariyeloye
- Institute of Clinical Chemistry and Laboratory Medicine, Medical Faculty, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Susanne Kämmerer
- Department of Pharmacology and Toxicology, Medical Faculty, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Erik Klapproth
- Department of Pharmacology and Toxicology, Medical Faculty, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Ben Wielockx
- Institute of Clinical Chemistry and Laboratory Medicine, Medical Faculty, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
| | - Ali El-Armouche
- Department of Pharmacology and Toxicology, Medical Faculty, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
| |
Collapse
|
6
|
Fenton NM, Qian L, Scott NA, Paine EG, Sharpe LJ, Brown AJ. SC5D is the sixth enzyme in cholesterol biosynthesis targeted by the E3 ubiquitin ligase MARCHF6. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159482. [PMID: 38508300 DOI: 10.1016/j.bbalip.2024.159482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Affiliation(s)
- Nicole M Fenton
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Lydia Qian
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Nicola A Scott
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Eloise G Paine
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Laura J Sharpe
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
7
|
Patel VJ, Joharapurkar A, Jain MR. The Perspective of Using Flow Cytometry for Unpuzzling Hypoxia-Inducible Factors Signalling. Drug Res (Stuttg) 2024; 74:113-122. [PMID: 38350634 DOI: 10.1055/a-2248-9180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Hypoxia-inducible factors (HIFs) are transcription factors that are responsible for adapting to the changes in oxygen levels in the cellular environment. HIF activity determines the expression of cellular proteins that control the development and physiology of the cells and pathophysiology of a disease. Understanding the role of specific HIF (HIF-1-3) in cellular function is essential for development of the HIF-targeted therapies. In this review, we have discussed the use of flow cytometry in analysing HIF function in cells. Proper understanding of HIF-signalling will help to design pharmacological interventions HIF-mediated therapy. We have discussed the role of HIF-signalling in various diseases such as cancer, renal and liver diseases, ulcerative colitis, arthritis, diabetes and diabetic complications, psoriasis, and wound healing. We have also discussed protocols that help to decipher the role of HIFs in these diseases that would eventually help to design promising therapies.
Collapse
Affiliation(s)
- Vishal J Patel
- Department of Pharmacology and Toxicology, Zydus Research Centre, Zydus Lifesciences Limited, Moraiya, Ahmedabad, India
| | - Amit Joharapurkar
- Department of Pharmacology and Toxicology, Zydus Research Centre, Zydus Lifesciences Limited, Moraiya, Ahmedabad, India
| | - Mukul R Jain
- Department of Pharmacology and Toxicology, Zydus Research Centre, Zydus Lifesciences Limited, Moraiya, Ahmedabad, India
| |
Collapse
|