1
|
Haliloğlu G, Ravenscroft G. The evolving genetic landscape of neuromuscular fetal akinesias. J Neuromuscul Dis 2025:22143602251339357. [PMID: 40356365 DOI: 10.1177/22143602251339357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Fetal akinesia is a broad term used to describe absent (or reduced, fetal hypokinesia) fetal movements, and it can be detected as early as the first trimester. Depending on the developmental age of onset, anything that interferes or limits the normal in utero movement results in a range of deformations affecting multiple organs and organ systems. Arthrogryposis, also termed arthrogryposis multiplex congenita (AMC), is a definitive terminology for multiple congenital contractures, with two major subgroups; amyoplasia and distal arthrogryposis (DA). The spectrum includes fetal akinesia deformation sequence (FADS), lethal congenital contracture syndrome (LCCS), and multiple pterygium syndrome (MPS). Variants in more than >400 genes are known to cause AMC, and it is increasingly recognized that variants in genes encoding critical components (including ventral horn cell, peripheral nerve, neuromuscular junction, skeletal muscle) of the extended motor unit underlie ∼40% of presentations. With unbiased screening approaches, including sequencing of comprehensive disease gene panels, exomes and genomes, novel genes and phenotypic expansions associated with known human disease genes have been uncovered in the setting of fetal akinesia. Autosomal-recessive titinopathy is the most frequent genetic cause of AMC. Accurate genetic diagnosis is critical to genetic counseling and informing family planning. Around 50% remain undiagnosed following comprehensive prenatal, diagnostic or research screening. Comprehensive phenotyping and periodic reanalysis with appropriate genomic tools are valuable strategies when faced with initial inconclusive results. There are likely many novel causative genes still to identify, which will inform our understanding of the molecular pathways underlying early human development and in utero movement.
Collapse
Affiliation(s)
- Göknur Haliloğlu
- Division of Pediatric Neurology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Gianina Ravenscroft
- Centre for Medical Research, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Rare Disease Genetics and Functional Genomics, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
| |
Collapse
|
2
|
Ghorbani M, Moosa S, Siddig Z, Farhad R, Naeem H, Harvey WT, Mastrorosa FK, Munson KM, Mohamad Razali R, Aliyev E, Diboun I, Abouelhassan R, Tauro M, Hassan S, Mathew R, Al Hashmi M, Mathew LS, Wang K, Salhab AR, Vempalli FR, El Khouly A, Alazwani I, Tomei S, Fakhro KA, Satti A, Benini R, Rhie A, Eichler EE, Mokrab Y. Near-complete Middle Eastern genomes refine autozygosity and enhance disease-causing and population-specific variant discovery. Nat Genet 2025; 57:1119-1131. [PMID: 40325133 DOI: 10.1038/s41588-025-02173-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 03/18/2025] [Indexed: 05/07/2025]
Abstract
Advances in long-read sequencing have enabled routine complete assembly of human genomes, but much remains to be done to represent broader populations and show impact on disease-gene discovery. Here, we report highly accurate, near-complete and phased genomes from six Middle Eastern (ME) family trios (n = 18) with neurodevelopmental conditions, representing ancestries from Sudan, Jordan, Syria, Qatar and Afghanistan. These genomes revealed 42.2 Mb of new sequence (13.8% impacting known genes), 75 new HLA/KIR alleles and strong signals of inbreeding, with ROH covering up to one-third of chromosomes 6 and 12 in one individual. Using assembly-based variant calling, we identified 23 de novo and recessive variants as strong candidates for causing previously unresolved symptoms in the probands. The ME genomes revealed unique variation relative to existing references, showing enhanced mappability and variant calling. These results underscore the value of de novo assembly for disease variant discovery and the need for sampled ME-specific references to better characterize population-relevant variation.
Collapse
Affiliation(s)
| | | | | | | | | | - William T Harvey
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Katherine M Munson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Rozaimi Mohamad Razali
- Department of Biomedical Science, College of Health Sciences, Qatar University, Doha, Qatar
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Khalid A Fakhro
- Sidra Medicine, Doha, Qatar
- Department of Genetic Medicine, Weill Cornell Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | | | - Ruba Benini
- Sidra Medicine, Doha, Qatar
- Department of Genetic Medicine, Weill Cornell Medicine, Doha, Qatar
| | - Arang Rhie
- National Human Genome Research Institute, Bethesda, MD, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Younes Mokrab
- Sidra Medicine, Doha, Qatar.
- Department of Biomedical Science, College of Health Sciences, Qatar University, Doha, Qatar.
- Department of Genetic Medicine, Weill Cornell Medicine, Doha, Qatar.
| |
Collapse
|
3
|
Betz C, Reusch B, Langmann T, Habbig S, Beck BB, Bolz HJ. Severe Joubert syndrome in family with homozygous POC1B p.Arg106Pro variant is due to a co-inherited deep-intronic mutation in the neighboring CEP290 gene. HGG ADVANCES 2025; 6:100429. [PMID: 40170356 PMCID: PMC12018183 DOI: 10.1016/j.xhgg.2025.100429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/21/2025] [Accepted: 03/27/2025] [Indexed: 04/03/2025] Open
Abstract
"En bloc" inheritance of point mutations in adjacent genes has rarely been described. We have previously reported a family with severe, mostly early-lethal Joubert syndrome (JBTS) with early-onset severe retinal dystrophy (EOSRD) and polycystic kidney disease (PKD), which at that time had been attributed to a homozygous pathogenic missense variant, p.Arg106Pro (c.317G>C), in the ciliary POC1B gene. Because this and other POC1B variants were, in subsequent studies, only reported in patients with non-syndromic childhood or early-adult-onset macular dystrophy, we have now reassessed our index patient by long-read high-fidelity (HiFi) whole-genome sequencing (LR-WGS). We identified a homozygous deep-intronic variant, c.2818-657T>G, in CEP290, a JBTS/Meckel syndrome-associated gene on chromosome 12q21, only 1.28 Mb from the N terminus of POC1B. cDNA analysis revealed aberrant splicing with the frame-shifting inclusion of 37 bp from CEP290 intron 25, predicting the loss of CEP290 function. EOSRD and PKD can fully be ascribed to this CEP290 variant, whose effect outshines the "background" non-syndromic POC1B retinopathy and co-segregates with the severe syndromic phenotype. Our novel findings in this family no longer justify POC1B as a JBTS gene. This co-inheritance of two ciliopathies, with the clinically decisive variant hidden deep in an intron, exemplifies the importance of WGS for achieving the complete diagnosis in challenging cases.
Collapse
Affiliation(s)
- Christian Betz
- Bioscientia Human Genetics, Bioscientia Institute for Medical Diagnostics, Ingelheim, Germany
| | - Björn Reusch
- Institute of Human Genetics, University Hospital Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Thomas Langmann
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany; Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Sandra Habbig
- Department of Pediatrics, Faculty of Medicine, University Hospital Cologne and University of Cologne, Cologne, Germany
| | - Bodo B Beck
- Institute of Human Genetics, University Hospital Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany; Center for Rare and Hereditary Kidney Disease, University Hospital Cologne, Cologne, Germany
| | - Hanno J Bolz
- Bioscientia Human Genetics, Bioscientia Institute for Medical Diagnostics, Ingelheim, Germany; Institute of Human Genetics, University Hospital Cologne, Faculty of Medicine, University of Cologne, Cologne, Germany.
| |
Collapse
|
4
|
Harms FL, Müller C, Kortüm F, Hempel M, Alawi M, Zaki MS, Elhossini RM, Abdel-Hamid MS, AlAbdi L, Alkuraya FS, Kurdi W, Celse T, Spodenkiewicz M, Laurens T, Dieterich K, Jagadeesh S, Salvankar S, Girisha KM, Kutsche K. Novel biallelic COL25A1 variants broaden the clinical spectrum from congenital cranial dysinnervation disorders to fetal lethal phenotypes. Eur J Hum Genet 2025:10.1038/s41431-025-01839-4. [PMID: 40158061 DOI: 10.1038/s41431-025-01839-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/27/2025] [Accepted: 03/19/2025] [Indexed: 04/01/2025] Open
Abstract
Biallelic variants in COL25A1 have been associated with isolated congenital cranial dysinnervation disorders (CCDDs) and arthrogryposis multiplex congenital (AMC) with or without CCDD. COL25A1 encodes collagen XXV that belongs to the subfamily of membrane-associated collagens with interrupted triple helices. COL25A1 contains four non-collagenous and three collagenous domains. Three alternatively spliced COL25A1 transcript variants are known. In mice, Col25a1 is required for intramuscular motor innervation and cranial motor neuron development. We report seven subjects with novel biallelic COL25A1 pathogenic variants, including three AMC-affected individuals, one of whom died in infancy, and four unrelated fetuses. We expand the associated phenotypic spectrum as fetuses showed lethal phenotypes including reduced or no movement, contractures, and hydrops in three and growth retardation and skeletal abnormalities in one. The molecular spectrum includes two microdeletions encompassing several 5' or 3' exons, two missense, one nonsense, one frameshift, and one variant affecting splicing. In fibroblasts of the subject who was compound heterozygous for the c.367G > C and c.1198G > T variants, we identified skipping of exon 3 in COL25A1 mRNAs due to the G-to-C change. These aberrantly spliced transcripts were subject to nonsense-mediated mRNA decay. Analysis of transcriptome sequencing data from primary human fibroblasts without COL25A1 pathogenic variants revealed novel COL25A1 exon-exon junctions and 13 not previously annotated alternatively spliced in-frame exons. We hypothesized that interindividual variation in the splicing of COL25A1 exons in different tissues may underlie the variable phenotypes in the affected individuals.
Collapse
Affiliation(s)
- Frederike L Harms
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Müller
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fanny Kortüm
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maja Hempel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Malik Alawi
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Rasha M Elhossini
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Mohamed S Abdel-Hamid
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Lama AlAbdi
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Wesam Kurdi
- Department of Obstetrics and Gynecology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Tristan Celse
- Service de Génétique Médicale, Centre Hospitalier Universitaire de La Réunion, Saint-Denis, France
| | - Marta Spodenkiewicz
- Service de Génétique Médicale, Centre Hospitalier Universitaire de La Réunion, Saint-Denis, France
| | - Tiphany Laurens
- Service de Génétique Médicale, Centre Hospitalier Universitaire de La Réunion, Saint-Denis, France
| | - Klaus Dieterich
- Universite Grenoble Alpes, Inserm, U1209, CHU Grenoble Alpes, Grenoble, France
- Medical Genetics, Institute of Advanced Biosciences, Grenoble, France
| | | | | | - Katta M Girisha
- Suma Genomics Private Limited, Manipal, India
- Department of Medical Genetics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
- Department of Genetics, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman
| | - Kerstin Kutsche
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- German Center for Child and Adolescent Health (DZKJ), partner site Hamburg, Hamburg, Germany.
| |
Collapse
|
5
|
AlAbdi L, Maddirevula S, Aljamal B, Hamid H, Almulhim A, Hashem MO, Algoos Y, Alqahtani M, Albaloshi S, Alghamdi M, Alduaylij M, Shamseldin HE, Nadeef S, Patel N, Abdulwahab F, Abouyousef O, Alshidi T, Jaafar A, Abouelhoda M, Alhazzani A, Alfares A, Qudair A, Alsulaiman A, Alhashem A, Khan AO, Chedrawi A, Alebdi B, AlAjlan F, Alotaibi F, Alzaidan H, Banjar H, Abdelraouf H, Alkuraya H, Abumansour I, Alfayez K, Tulbah M, Alowain M, Alqahtani M, El-Kalioby M, Shboul M, Sulaiman R, Al Tala S, Khan S, Coskun S, Mrouge S, Alenazi W, Rahbeeni Z, Alkuraya FS. Arab founder variants: Contributions to clinical genomics and precision medicine. MED 2025; 6:100528. [PMID: 39504961 DOI: 10.1016/j.medj.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/16/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024]
Abstract
BACKGROUND Founder variants are ancestral variants shared by individuals who are not closely related. The large effect size of some of these variants in the context of Mendelian disorders offers numerous precision medicine opportunities. METHODS Using one of the largest datasets on Mendelian disorders in the Middle East, we identified 2,908 medically relevant founder variants derived from 18,360 exomes and genomes and investigated their contribution to the clinical annotation of the human genome. FINDINGS Strikingly, ∼34% of Arab founder variants are absent in gnomAD. We found a strong contribution of Arab founder variants to the identification of novel gene-disease links (n = 224) and the support/dispute (n = 81 support, n = 101 dispute) of previously reported candidate gene-disease links. The powerful segregation evidence generated by Arab founder variants allowed many ClinVar and Human Gene Mutation Database variants to be reclassified. Overall, 39.5% of diagnostic reports from our clinical lab are based on founder variants, and 19.41% of tested individuals carry at least one pathogenic founder variant. The presumptive loss-of-function mechanism that typically underlies autosomal recessive diseases means that Arab founder variants also offer unique opportunities in "druggable genome" research. Arab founder variants were also informative of migration patterns in the Middle East consistent with documented historical accounts. CONCLUSIONS We highlight the contribution of founder variants from an under-represented population group to precision medicine and inform future prevention programs. Our study also sheds light on the added value of these variants in supplementing other lines of research in tracing population history. FUNDING There is no funding for this work.
Collapse
Affiliation(s)
- Lama AlAbdi
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Sateesh Maddirevula
- Department of Clinical Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Bayan Aljamal
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Halima Hamid
- Department of Zoology, College of Science, King Saud University, Riyadh 11362, Saudi Arabia
| | - Aisha Almulhim
- Department of Zoology, College of Science, King Saud University, Riyadh 11362, Saudi Arabia
| | - Mais O Hashem
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Yusra Algoos
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Mashael Alqahtani
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Shahad Albaloshi
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Mohammed Alghamdi
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Mohammed Alduaylij
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Hanan E Shamseldin
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Seba Nadeef
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Nisha Patel
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Firdous Abdulwahab
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Omar Abouyousef
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Tarfa Alshidi
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Amal Jaafar
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Mohamed Abouelhoda
- Department of Computational Science, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Adel Alhazzani
- Neuroscience Center, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Ahmed Alfares
- Department of Clinical Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Ahmad Qudair
- Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Jeddah 23433, Saudi Arabia
| | - Ahood Alsulaiman
- Department of Medical Genomics, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Amal Alhashem
- Department of Pediatrics, Prince Sultan Military Medical Center, Riyadh 12233, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; Seha Virtual Hospital, Ministry of Health, Riyadh 12382, Saudi Arabia
| | - Arif O Khan
- Eye Institute, Cleveland Clinic, Abu Dhabi, UAE; Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| | - Aziza Chedrawi
- Department of Medical Genomics, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Basel Alebdi
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Fahad AlAjlan
- Neuroscience Center, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Fawaz Alotaibi
- Neuroscience Center, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Hamad Alzaidan
- Department of Medical Genomics, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Hanaa Banjar
- Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Hanem Abdelraouf
- Department of Pediatrics, Prince Sultan Military Medical Center, Riyadh 12233, Saudi Arabia
| | - Hisham Alkuraya
- Global Eye Care, Specialized Medical Center Hospital, Riyadh 13215, Saudi Arabia
| | - Iman Abumansour
- Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Jeddah 23433, Saudi Arabia; Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - Khowlah Alfayez
- Department of Pediatrics, Prince Sultan Military Medical Center, Riyadh 12233, Saudi Arabia
| | - Maha Tulbah
- Department of Obstetrics and Gynecology, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Mohammed Alowain
- Department of Medical Genomics, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Mohammed Alqahtani
- Neuroscience Center, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Mohammed El-Kalioby
- Department of Computational Science, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Mohammad Shboul
- Department of Medical Laboratory Sciences, Faculty of Medical Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Raashda Sulaiman
- Department of Medical Genomics, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Saed Al Tala
- Department of Pediatrics, Armed Forces Hospital, Khamis Mushayt 62413, Saudi Arabia
| | - Sameena Khan
- Neuroscience Center, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Serdar Coskun
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Center and College of Medicine, Riyadh 11564, Saudi Arabia
| | - Sobaihi Mrouge
- Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Jeddah 23433, Saudi Arabia
| | - Walaa Alenazi
- Department of Computational Science, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Zuhair Rahbeeni
- Department of Medical Genomics, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia; Department of Pediatrics, Prince Sultan Military Medical Center, Riyadh 12233, Saudi Arabia.
| |
Collapse
|
6
|
Chekroun I, Shenbagam S, Almarri MA, Mokrab Y, Uddin M, Alkhnbashi OS, Zaki MS, Najmabadi H, Kahrizi K, Fakhro KA, Almontashiri NAM, Ali FR, Özbek U, Reversade B, Alkuraya FS, Alsheikh-Ali A, Abou Tayoun AN. Genomics of rare diseases in the Greater Middle East. Nat Genet 2025; 57:505-514. [PMID: 39901015 DOI: 10.1038/s41588-025-02075-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/06/2025] [Indexed: 02/05/2025]
Abstract
The Greater Middle East (GME) represents a concentrated region of unparalleled genetic diversity, characterized by an abundance of distinct alleles, founder mutations and extensive autozygosity driven by high consanguinity rates. These genetic hallmarks present a unique, yet vastly untapped resource for genomic research on Mendelian diseases. Despite this immense potential, the GME continues to face substantial challenges in comprehensive data collection and analysis. This Perspective highlights the region's unique position as a natural laboratory for genetic discovery and explores the challenges that have stifled progress thus far. Importantly, we propose strategic solutions, advocating for an all-inclusive research approach. With targeted investment and focused efforts, the latent genetic wealth in the GME can be transformed into a global hub for genomic research that will redefine and advance our understanding of the human genome.
Collapse
Affiliation(s)
- Ikram Chekroun
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, UAE
| | - Shruti Shenbagam
- Al Jalila Genomics Center of Excellence, Al Jalila Children's Specialty Hospital, Dubai, UAE
| | - Mohamed A Almarri
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, UAE
| | - Younes Mokrab
- Research Branch, Sidra Medicine, Doha, Qatar
- Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
- College of Health Sciences, Qatar University, Doha, Qatar
| | - Mohammed Uddin
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, UAE
- Center for Applied and Translational Genomics, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, UAE
| | - Omer S Alkhnbashi
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, UAE
- Center for Applied and Translational Genomics, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, UAE
| | - Maha S Zaki
- Department of Clinical Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
- Kariminejad-Najmabadi Pathology and Genetics Center, Tehran, Iran
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
- Kariminejad-Najmabadi Pathology and Genetics Center, Tehran, Iran
| | - Khalid A Fakhro
- Research Branch, Sidra Medicine, Doha, Qatar
- Department of Genetic Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Naif A M Almontashiri
- College of Applied Medical Sciences and Center for Genetics and Inherited Diseases, Taibah University, Madinah, Kingdom of Saudi Arabia
| | - Fahad R Ali
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, UAE
- Center for Genomic Discovery, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, UAE
| | - Uğur Özbek
- Rare and Undiagnosed Disease Platform, IBG-Izmir Biomedicine and Genome Center, Izmir, Türkiye
| | - Bruno Reversade
- Laboratory of Human Genetics and Therapeutics, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia
- Lifera Omics, Riyadh, Kingdom of Saudi Arabia
| | - Alawi Alsheikh-Ali
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, UAE
- Dubai Health, Dubai, UAE
| | - Ahmad N Abou Tayoun
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, UAE.
- Al Jalila Genomics Center of Excellence, Al Jalila Children's Specialty Hospital, Dubai, UAE.
- Center for Genomic Discovery, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai Health, Dubai, UAE.
| |
Collapse
|
7
|
Devadoss Gandhi G, Aliyev E, Syed N, Vempalli FR, Saad C, Mbarek H, Al-Saei O, Al-Maraghi A, Abdi M, Krishnamoorthy N, Badii R, Akil AA, Ben-Omran T, Fakhro KA. Mapping the genetic landscape of treatable inherited metabolic disorders in a large Middle Eastern biobank. Genet Med 2024; 26:101268. [PMID: 39286960 DOI: 10.1016/j.gim.2024.101268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/10/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024] Open
Abstract
PURPOSE To date, approximately 1400 inherited metabolic disorders (IMDs) have been described, some of which are treatable. It is estimated that 2% to 3% of live births worldwide are affected by treatable IMDs. Roughly 80% of IMDs are autosomal recessive, leading to a potentially higher incidence in regions with high consanguinity. METHODOLOGY The study utilized genome sequencing data from 14,060 adult Qatari participants who were recruited by the Qatar Biobank and sequenced by the Qatar Genome Program. The genome sequencing data were analyzed for 125 nuclear genes known to be associated with 115 treatable IMDs. RESULTS Our study identified 253 pathogenic/likely pathogenic single-nucleotide variations associated with 69 treatable IMDs, including 211 known and 42 novel predicted loss-of-function variants. We estimated that approximately 1 in 13 unrelated individuals (8%) carry a heterozygous pathogenic variant for at least 1 of 46 treatable IMDs. Notably, phenylketonuria/hyperphenylalaninemia and homocystinuria had among the highest carrier frequencies (1 in 68 and 1 in 85, respectively). CONCLUSION Population-based studies of treatable IMDs, particularly in globally under-studied populations, can identify high-frequency alleles segregating in the community and inform public health policies, including carrier and newborn screening.
Collapse
Affiliation(s)
| | - Elbay Aliyev
- Human Genetics Department, Sidra Medicine, Doha, Qatar
| | - Najeeb Syed
- Human Genetics Department, Sidra Medicine, Doha, Qatar
| | | | - Chadi Saad
- Qatar Genome Program, Qatar Foundation Research Development and Innovation, Doha, Qatar
| | - Hamdi Mbarek
- Qatar Genome Program, Qatar Foundation Research Development and Innovation, Doha, Qatar
| | | | | | - Mona Abdi
- Human Genetics Department, Sidra Medicine, Doha, Qatar
| | | | - Ramin Badii
- Molecular Genetics Laboratory, Hamad Medical Corporation, Doha, Qatar
| | - Ammira A Akil
- Genetics and Metabolic Clinical Research Program, Translational Medicine, Research Department, Sidra Medicine, Doha, Qatar
| | - Tawfeg Ben-Omran
- Division of Genetic & Genomics Medicine, Sidra Medicine, Doha, Qatar; Department of Medical Genetics, Hamad Medical Corporation, Doha, Qatar; Department of Pediatric, Weill Cornell Medical College, Doha, Qatar
| | - Khalid A Fakhro
- Human Genetics Department, Sidra Medicine, Doha, Qatar; College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Doha, Qatar; Department of Genetic Medicine, Weill Cornell Medicine, Qatar (WCM-Q).
| |
Collapse
|
8
|
Zhang Y, Bi C, Nadeef S, Maddirevula S, Alqahtani M, Alkuraya FS, Li M. NanoRanger enables rapid single-base-pair resolution of genomic disorders. MED 2024; 5:1307-1325.e3. [PMID: 39047733 DOI: 10.1016/j.medj.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 04/13/2024] [Accepted: 07/01/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Delineating base-resolution breakpoints of complex rearrangements is crucial for an accurate clinical understanding of pathogenic variants and for carrier screening within family networks or the broader population. However, despite advances in genetic testing using short-read sequencing (SRS), this task remains costly and challenging. METHODS This study addresses the challenges of resolving missing disease-causing breakpoints in complex genomic disorders with suspected homozygous rearrangements by employing multiple long-read sequencing (LRS) strategies, including a novel and efficient strategy named nanopore-based rapid acquisition of neighboring genomic regions (NanoRanger). NanoRanger does not require large amounts of ultrahigh-molecular-weight DNA and stands out for its ease of use and rapid acquisition of large genomic regions of interest with deep coverage. FINDINGS We describe a cohort of 16 familial cases, each harboring homozygous rearrangements that defied breakpoint determination by SRS and optical genome mapping (OGM). NanoRanger identified the breakpoints with single-base-pair resolution, enabling accurate determination of the carrier status of unaffected family members as well as the founder nature of these genomic lesions and their frequency in the local population. The resolved breakpoints revealed that repetitive DNA, gene regulatory elements, and transcription activity contribute to genome instability in these novel recessive rearrangements. CONCLUSIONS Our data suggest that NanoRanger greatly improves the success rate of resolving base-resolution breakpoints of complex genomic disorders and expands access to LRS for the benefit of patients with Mendelian disorders. FUNDING M.L. is supported by KAUST Baseline Award no. BAS/1/1080-01-01 and KAUST Research Translation Fund Award no. REI/1/4742-01.
Collapse
Affiliation(s)
- Yingzi Zhang
- Bioscience Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Chongwei Bi
- Bioscience Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Seba Nadeef
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Sateesh Maddirevula
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mashael Alqahtani
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia; Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia.
| | - Mo Li
- Bioscience Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia; Bioengineering Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
9
|
AlAbdi L, Rahbeeni Z, Maddirevula S, Helaby R, Abdulwahab F, Khan AO, Riley LG, Alhashem A, Chassaing N, Jamieson RV, Alkuraya FS. A founder variant expands the phenotype of WNT7B-related PDAC syndrome. Clin Genet 2024; 106:66-71. [PMID: 38417950 DOI: 10.1111/cge.14512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/22/2024] [Accepted: 02/15/2024] [Indexed: 03/01/2024]
Abstract
Pulmonary hypoplasia, Diaphragmatic anomalies, Anophthalmia/microphthalmia, and Cardiac defects (PDAC) syndrome is a genetically heterogeneous multiple congenital malformation syndrome. Although pathogenic variants in RARB and STRA6 are established causes of PDAC, many PDAC cases remain unsolved at the molecular level. Recently, we proposed biallelic WNT7B variants as a novel etiology based on several families with typical features of PDAC syndrome albeit with variable expressivity. Here, we report three patients from two families that share a novel founder variant in WNT7B (c.739C > T; Arg247Trp). The phenotypic expression of this variant ranges from typical PDAC features to isolated genitourinary anomalies. Similar to previously reported PDAC-associated WNT7B variants, this variant was found to significantly impair WNT7B signaling activity further corroborating its proposed pathogenicity. This report adds further evidence to WNT7B-related PDAC and expands its variable expressivity.
Collapse
Affiliation(s)
- Lama AlAbdi
- Department of Zoology, Collage of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Zuhair Rahbeeni
- Department of Medical Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Sateesh Maddirevula
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Rana Helaby
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Firdous Abdulwahab
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Arif O Khan
- Eye Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio, USA
| | - Lisa G Riley
- Rare Diseases Functional Genomics, Kids Research, The Children's Hospital at Westmead and The Children's Medical Research Institute, Sydney, New South Wales, Australia
- Specialty of Child & Adolescent Health, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Amal Alhashem
- Division of Clinical Genetic and Metabolic Medicine, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Genetic and Metabolic, Sehha Virtual Hospital, Ministry of Health, Riyadh, Saudi Arabia
| | - Nicolas Chassaing
- Centre de Référence des Affections Rares en Génétique Ophtalmologique CARGO, Site Constitutif, Purpan University Hospital, Toulouse, Midi-Pyrénées, France
- Department of Medical Genetics, Purpan University Hospital, Toulouse, Midi-Pyrénées, France
| | - Robyn V Jamieson
- Eye Genetics Research Unit, Children's Medical Research Institute, University of Sydney; The Children's Hospital at Westmead, Sydney Children's Hospitals Network; and Save Sight Institute, Sydney, New South Wales, Australia
- Specialty of Genomic Medicine, Faculty of Medicine and Health and Child and Adolescent Health, University of Sydney, Sydney, New South Wales, Australia
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- Division of Clinical Genetic and Metabolic Medicine, Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
10
|
AlAbdi L, Neuhann T, Prott EC, Schön U, Abdulwahab F, Faqeih E, Alkuraya FS. Human ABL1 deficiency syndrome (HADS) is a recognizable syndrome distinct from ABL1-related congenital heart defects and skeletal malformations syndrome. Hum Genet 2024; 143:739-745. [PMID: 38743093 DOI: 10.1007/s00439-024-02677-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/04/2024] [Indexed: 05/16/2024]
Abstract
Germline gain of function variants in the oncogene ABL1 cause congenital heart defects and skeletal malformations (CHDSKM) syndrome. Whether a corresponding ABL1 deficiency disorder exists in humans remains unknown although developmental defects in mice deficient for Abl1 support this notion. Here, we describe two multiplex consanguineous families, each segregating a different homozygous likely loss of function variant in ABL1. The associated phenotype is multiple congenital malformations and distinctive facial dysmorphism that are opposite in many ways to CHDSKM. We suggest that a tight balance of ABL1 activity is required during embryonic development and that both germline gain of function and loss of function variants result in distinctively different allelic congenital malformation disorders.
Collapse
Affiliation(s)
- Lama AlAbdi
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | | | | | - Ulrike Schön
- MGZ Medizinisch Genetisches Zentrum, Munich, Germany
| | - Firdous Abdulwahab
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Eissa Faqeih
- Section of Medical Genetics, King Fahad Medical City, Children's Specialist Hospital, Riyadh, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
| |
Collapse
|
11
|
You M, Shamseldin HE, Fogle HM, Rushing BR, AlMalki RH, Jaafar A, Hashem M, Abdulwahab F, Rahman AMA, Krupenko NI, Alkuraya FS, Krupenko SA. Further delineation of the phenotypic and metabolomic profile of ALDH1L2-related neurodevelopmental disorder. Clin Genet 2024; 105:488-498. [PMID: 38193334 PMCID: PMC10990829 DOI: 10.1111/cge.14479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/10/2024]
Abstract
ALDH1L2, a mitochondrial enzyme in folate metabolism, converts 10-formyl-THF (10-formyltetrahydrofolate) to THF (tetrahydrofolate) and CO2. At the cellular level, deficiency of this NADP+-dependent reaction results in marked reduction in NADPH/NADP+ ratio and reduced mitochondrial ATP. Thus far, a single patient with biallelic ALDH1L2 variants and the phenotype of a neurodevelopmental disorder has been reported. Here, we describe another patient with a neurodevelopmental disorder associated with a novel homozygous missense variant in ALDH1L2, Pro133His. The variant caused marked reduction in the ALDH1L2 enzyme activity in skin fibroblasts derived from the patient as probed by 10-FDDF, a stable synthetic analog of 10-formyl-THF. Additional associated abnormalities in these fibroblasts include reduced NADPH/NADP+ ratio and pool of mitochondrial ATP, upregulated autophagy and dramatically altered metabolomic profile. Overall, our study further supports a link between ALDH1L2 deficiency and abnormal neurodevelopment in humans.
Collapse
Affiliation(s)
- Mikyoung You
- UNC Nutrition Research Institute, Kannapolis, NC, USA
| | - Hanan E. Shamseldin
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center (KFSHRC), Riyadh, Saudi Arabia
| | - Halle M. Fogle
- UNC Nutrition Research Institute, Kannapolis, NC, USA
- Department of Nutrition, University of North Carolina-Chapel Hill, NC, USA
| | - Blake R. Rushing
- UNC Nutrition Research Institute, Kannapolis, NC, USA
- Department of Nutrition, University of North Carolina-Chapel Hill, NC, USA
| | - Reem H. AlMalki
- Metabolomics Section, Department of Clinical Genomics, Center for Genome Medicine, King Faisal Specialist Hospital and Research Center (KFSHRC), Riyadh, Saudi Arabia
| | - Amal Jaafar
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center (KFSHRC), Riyadh, Saudi Arabia
| | - Mais Hashem
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center (KFSHRC), Riyadh, Saudi Arabia
| | - Firdous Abdulwahab
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center (KFSHRC), Riyadh, Saudi Arabia
| | - Anas M. Abdel Rahman
- Metabolomics Section, Department of Clinical Genomics, Center for Genome Medicine, King Faisal Specialist Hospital and Research Center (KFSHRC), Riyadh, Saudi Arabia
- Department of Biochemistry and Molecular Medicine, College of Medicine, Al Faisal University, Riyadh, Saudi Arabia
| | - Natalia I. Krupenko
- UNC Nutrition Research Institute, Kannapolis, NC, USA
- Department of Nutrition, University of North Carolina-Chapel Hill, NC, USA
| | - Fowzan S. Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center (KFSHRC), Riyadh, Saudi Arabia
| | - Sergey A. Krupenko
- UNC Nutrition Research Institute, Kannapolis, NC, USA
- Department of Nutrition, University of North Carolina-Chapel Hill, NC, USA
| |
Collapse
|
12
|
AlAbdi L, Shamseldin HE, Khouj E, Helaby R, Aljamal B, Alqahtani M, Almulhim A, Hamid H, Hashem MO, Abdulwahab F, Abouyousef O, Jaafar A, Alshidi T, Al-Owain M, Alhashem A, Al Tala S, Khan AO, Mardawi E, Alkuraya H, Faqeih E, Afqi M, Alkhalifi S, Rahbeeni Z, Hagos ST, Al-Ahmadi W, Nadeef S, Maddirevula S, Khabar KSA, Putra A, Angelov A, Park C, Reyes-Ramos AM, Umer H, Ullah I, Driguez P, Fukasawa Y, Cheung MS, Gallouzi IE, Alkuraya FS. Beyond the exome: utility of long-read whole genome sequencing in exome-negative autosomal recessive diseases. Genome Med 2023; 15:114. [PMID: 38098057 PMCID: PMC10720148 DOI: 10.1186/s13073-023-01270-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/05/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Long-read whole genome sequencing (lrWGS) has the potential to address the technical limitations of exome sequencing in ways not possible by short-read WGS. However, its utility in autosomal recessive Mendelian diseases is largely unknown. METHODS In a cohort of 34 families in which the suspected autosomal recessive diseases remained undiagnosed by exome sequencing, lrWGS was performed on the Pacific Bioscience Sequel IIe platform. RESULTS Likely causal variants were identified in 13 (38%) of the cohort. These include (1) a homozygous splicing SV in TYMS as a novel candidate gene for lethal neonatal lactic acidosis, (2) a homozygous non-coding SV that we propose impacts STK25 expression and causes a novel neurodevelopmental disorder, (3) a compound heterozygous SV in RP1L1 with complex inheritance pattern in a family with inherited retinal disease, (4) homozygous deep intronic variants in LEMD2 and SNAP91 as novel candidate genes for neurodevelopmental disorders in two families, and (5) a promoter SNV in SLC4A4 causing non-syndromic band keratopathy. Surprisingly, we also encountered causal variants that could have been identified by short-read exome sequencing in 7 families. The latter highlight scenarios that are especially challenging at the interpretation level. CONCLUSIONS Our data highlight the continued need to address the interpretation challenges in parallel with efforts to improve the sequencing technology itself. We propose a path forward for the implementation of lrWGS sequencing in the setting of autosomal recessive diseases in a way that maximizes its utility.
Collapse
Affiliation(s)
- Lama AlAbdi
- Department of Zoology, Collage of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Hanan E Shamseldin
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Ebtissal Khouj
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Rana Helaby
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Bayan Aljamal
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mashael Alqahtani
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Aisha Almulhim
- Department of Zoology, Collage of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Halima Hamid
- Department of Zoology, Collage of Science, King Saud University, Riyadh, Saudi Arabia
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mais O Hashem
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Firdous Abdulwahab
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Omar Abouyousef
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Amal Jaafar
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Tarfa Alshidi
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mohammed Al-Owain
- Department of Medical Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- Collage of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Amal Alhashem
- Collage of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Pediatric Department, Division of Genetic and Metabolic Medicine, Prince Sultan Medical Military City, Riyadh, Saudi Arabia
| | - Saeed Al Tala
- Pediatric Department, Neonatal Unit, Armed Forces Hospital, Khamis Mushayt, Saudi Arabia
| | - Arif O Khan
- Eye Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, USA
| | - Elham Mardawi
- Maternal Fetal Medicine, Security Forces Hospital Program, Riyadh, Saudi Arabia
| | - Hisham Alkuraya
- Vitreoretinal Surgery and Ocular Genetics, Global Eye Care/Specialized Medical Center Hospital, Riyadh, Saudi Arabia
| | - Eissa Faqeih
- Section of Medical Genetics, King Fahad Medical City, Children's Specialist Hospital, Riyadh, Saudi Arabia
| | - Manal Afqi
- Metabolic and Genetic Center, King Salman Bin Abdulaziz Medical City, Almadinah Almunwarah, Saudi Arabia
| | - Salwa Alkhalifi
- Newborn Screening, Ministry of Health, Eastern Province, Saudi Arabia
| | - Zuhair Rahbeeni
- Department of Medical Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Samya T Hagos
- Department of Clinical Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Wijdan Al-Ahmadi
- Department of Molecular Biomedicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Seba Nadeef
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Sateesh Maddirevula
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Khalid S A Khabar
- Department of Molecular Biomedicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Alexander Putra
- King Abdullah University of Science and Technology (KAUST), Core Labs, Thuwal, Saudi Arabia
| | - Angel Angelov
- King Abdullah University of Science and Technology (KAUST), Core Labs, Thuwal, Saudi Arabia
| | - Changsook Park
- King Abdullah University of Science and Technology (KAUST), Core Labs, Thuwal, Saudi Arabia
| | - Ana M Reyes-Ramos
- King Abdullah University of Science and Technology (KAUST), Core Labs, Thuwal, Saudi Arabia
| | - Husen Umer
- King Abdullah University of Science and Technology (KAUST), Core Labs, Thuwal, Saudi Arabia
| | - Ikram Ullah
- King Abdullah University of Science and Technology (KAUST), Core Labs, Thuwal, Saudi Arabia
| | - Patrick Driguez
- King Abdullah University of Science and Technology (KAUST), Core Labs, Thuwal, Saudi Arabia
| | - Yoshinori Fukasawa
- King Abdullah University of Science and Technology (KAUST), Core Labs, Thuwal, Saudi Arabia
| | - Ming Sin Cheung
- King Abdullah University of Science and Technology (KAUST), Core Labs, Thuwal, Saudi Arabia
| | - Imed Eddine Gallouzi
- KAUST Smart-Health Initiative King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
- KAUST Smart-Health Initiative King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
13
|
Lin SJ, Vona B, Lau T, Huang K, Zaki MS, Aldeen HS, Karimiani EG, Rocca C, Noureldeen MM, Saad AK, Petree C, Bartolomaeus T, Abou Jamra R, Zifarelli G, Gotkhindikar A, Wentzensen IM, Liao M, Cork EE, Varshney P, Hashemi N, Mohammadi MH, Rad A, Neira J, Toosi MB, Knopp C, Kurth I, Challman TD, Smith R, Abdalla A, Haaf T, Suri M, Joshi M, Chung WK, Moreno-De-Luca A, Houlden H, Maroofian R, Varshney GK. Evaluating the association of biallelic OGDHL variants with significant phenotypic heterogeneity. Genome Med 2023; 15:102. [PMID: 38031187 PMCID: PMC10688095 DOI: 10.1186/s13073-023-01258-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Biallelic variants in OGDHL, encoding part of the α-ketoglutarate dehydrogenase complex, have been associated with highly heterogeneous neurological and neurodevelopmental disorders. However, the validity of this association remains to be confirmed. A second OGDHL patient cohort was recruited to carefully assess the gene-disease relationship. METHODS Using an unbiased genotype-first approach, we screened large, multiethnic aggregated sequencing datasets worldwide for biallelic OGDHL variants. We used CRISPR/Cas9 to generate zebrafish knockouts of ogdhl, ogdh paralogs, and dhtkd1 to investigate functional relationships and impact during development. Functional complementation with patient variant transcripts was conducted to systematically assess protein functionality as a readout for pathogenicity. RESULTS A cohort of 14 individuals from 12 unrelated families exhibited highly variable clinical phenotypes, with the majority of them presenting at least one additional variant, potentially accounting for a blended phenotype and complicating phenotypic understanding. We also uncovered extreme clinical heterogeneity and high allele frequencies, occasionally incompatible with a fully penetrant recessive disorder. Human cDNA of previously described and new variants were tested in an ogdhl zebrafish knockout model, adding functional evidence for variant reclassification. We disclosed evidence of hypomorphic alleles as well as a loss-of-function variant without deleterious effects in zebrafish variant testing also showing discordant familial segregation, challenging the relationship of OGDHL as a conventional Mendelian gene. Going further, we uncovered evidence for a complex compensatory relationship among OGDH, OGDHL, and DHTKD1 isoenzymes that are associated with neurodevelopmental disorders and exhibit complex transcriptional compensation patterns with partial functional redundancy. CONCLUSIONS Based on the results of genetic, clinical, and functional studies, we formed three hypotheses in which to frame observations: biallelic OGDHL variants lead to a highly variable monogenic disorder, variants in OGDHL are following a complex pattern of inheritance, or they may not be causative at all. Our study further highlights the continuing challenges of assessing the validity of reported disease-gene associations and effects of variants identified in these genes. This is particularly more complicated in making genetic diagnoses based on identification of variants in genes presenting a highly heterogenous phenotype such as "OGDHL-related disorders".
Collapse
Affiliation(s)
- Sheng-Jia Lin
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Barbara Vona
- Institute of Human Genetics, Julius Maximilians University Würzburg, Würzburg, Germany
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Department of Otolaryngology-Head and Neck Surgery, Tübingen Hearing Research Center, Eberhard Karls University, Tübingen, 72076, Germany
| | - Tracy Lau
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - Kevin Huang
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Huda Shujaa Aldeen
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - Ehsan Ghayoor Karimiani
- Molecular and Clinical Sciences Institute, St. George's, University of London, Cranmer Terrace London, London, UK
| | - Clarissa Rocca
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - Mahmoud M Noureldeen
- Department of Pediatrics, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Ahmed K Saad
- Medical Molecular Genetics Department, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt
| | - Cassidy Petree
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Tobias Bartolomaeus
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | | | | | | | | | - Emalyn Elise Cork
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pratishtha Varshney
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Narges Hashemi
- Department of Pediatrics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Aboulfazl Rad
- Department of Otolaryngology-Head and Neck Surgery, Tübingen Hearing Research Center, Eberhard Karls University, Tübingen, 72076, Germany
| | - Juanita Neira
- Department of Human Genetics, Emory University, Atlanta, GA, 30322, USA
| | - Mehran Beiraghi Toosi
- Department of Pediatrics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Cordula Knopp
- Institute for Human Genetics and Genomic Medicine, RWTH Aachen University, Pauwelsstr. 30, Aachen, 52074, Germany
| | - Ingo Kurth
- Institute for Human Genetics and Genomic Medicine, RWTH Aachen University, Pauwelsstr. 30, Aachen, 52074, Germany
| | - Thomas D Challman
- Autism & Developmental Medicine Institute, Geisinger, Lewisburg, PA, USA
| | - Rebecca Smith
- Autism & Developmental Medicine Institute, Geisinger, Lewisburg, PA, USA
| | - Asmahan Abdalla
- Department of Pediatric Endocrinology, Gaafar Ibn Auf Children's Tertiary Hospital, Khartoum, Sudan
| | - Thomas Haaf
- Institute of Human Genetics, Julius Maximilians University Würzburg, Würzburg, Germany
| | - Mohnish Suri
- Nottingham Clinical Genetics Service, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Manali Joshi
- Bioinformatics Centre, S. P. Pune University, Pune, India
| | - Wendy K Chung
- Department of Pediatrics, Boston Children's Hospitaland, Harvard Medical School , Boston, MA, USA
| | - Andres Moreno-De-Luca
- Department of Diagnostic Radiology, Kingston Health Sciences Centre, Queen's University, Kingston, ON, Canada
| | - Henry Houlden
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - Reza Maroofian
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK.
| | - Gaurav K Varshney
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA.
| |
Collapse
|