1
|
Black GS, Huang X, Qiao Y, Moos P, Sampath D, Stephens DM, Woyach JA, Marth GT. Long-read single-cell RNA sequencing enables the study of cancer subclone-specific genotypes and phenotypes in chronic lymphocytic leukemia. Genome Res 2025; 35:686-697. [PMID: 39965935 DOI: 10.1101/gr.279049.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 01/30/2025] [Indexed: 02/20/2025]
Abstract
Bruton tyrosine kinase (BTK) inhibitors are effective for the treatment of chronic lymphocytic leukemia (CLL) due to BTK's role in B cell survival and proliferation. Treatment resistance is most commonly caused by the emergence of the hallmark BTK C481S mutation that inhibits drug binding. In this study, we aimed to investigate cancer subclones harboring a BTK C481S mutation and identify cells with co-occurring CLL driver mutations. In addition, we sought to determine whether BTK-mutated subclones exhibit distinct transcriptomic behavior when compared to other cancer subclones. To achieve these goals, we use scBayes, which integrates bulk DNA sequencing and single-cell RNA sequencing (scRNA-seq) data to genotype individual cells for subclone-defining mutations. Although the most common approach for scRNA-seq includes short-read sequencing, transcript coverage is limited due to the vast majority of the reads being concentrated at the priming end of the transcript. Here, we utilized MAS-seq, a long-read scRNA-seq technology, to substantially increase transcript coverage and expand the set of informative mutations to link cells to cancer subclones in six CLL patients who acquired BTK C481S mutations during BTK inhibitor treatment. In two patients who developed two independent BTK-mutated subclones, we find that most BTK-mutated cells have an additional CLL driver gene mutation. When examining subclone-specific gene expression, we find that in one patient, BTK-mutated subclones are transcriptionally distinct from the rest of the malignant B cell population with an overexpression of CLL-relevant genes.
Collapse
Affiliation(s)
- Gage S Black
- Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112, USA
| | - Xiaomeng Huang
- Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112, USA
| | - Yi Qiao
- Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112, USA
| | - Philip Moos
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah 84112, USA
| | - Deepa Sampath
- Department of Hematopoietic Biology and Malignancy, The University of Texas MD Anderson Cancer Center, Houston, Texas 77054, USA
| | - Deborah M Stephens
- Division of Hematology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Jennifer A Woyach
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| | - Gabor T Marth
- Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112, USA;
| |
Collapse
|
2
|
Pouncey L, Mok GF. Unravelling early hematoendothelial development through the chick model: Insights and future perspectives. Dev Biol 2025; 523:20-31. [PMID: 40228783 DOI: 10.1016/j.ydbio.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 03/31/2025] [Accepted: 04/10/2025] [Indexed: 04/16/2025]
Abstract
The chicken embryo has been an important model in advancing our understanding of early hematoendothelial development, particularly in the formation of hematopoietic stem cells (HSCs) and the endothelial-to-hematopoietic transition (EHT). The accessibility and ease of manipulation of chicken embryos have made them an invaluable tool for researching development of blood and endothelial cells. Early research using this model provided pivotal insights, demonstrating that intra-embryonic regions, such as the dorsal aorta (DA), are primary sources of HSCs, rather than the yolk sac (YS), as previously believed. The identification of intra-aortic hematopoietic clusters (IAHCs) and the process of EHT in the chicken embryo laid the foundation for similar discoveries in other vertebrate species, including mice and zebrafish. Recent advances in genetic tools, such as transgenic chickens expressing fluorescent proteins, have further enhanced the precision of cell lineage tracing and real-time imaging of dynamic cellular processes. This review highlights both historical contributions and contemporary advancements facilitated by the chicken model, underscoring its continued relevance in developmental biology. By examining key findings and methodological innovations, we aim to demonstrate the importance of the chicken embryo as a model system for understanding hematoendothelial development and its potential for informing therapeutic applications in regenerative medicine and blood disorders. Finally, we will underscore potential applications of the chicken model for comparative and omics-level studies in conjunction with other model systems and what future directions lie ahead.
Collapse
Affiliation(s)
- Lydia Pouncey
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norfolk, NR4 7TJ, United Kingdom
| | - Gi Fay Mok
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norfolk, NR4 7TJ, United Kingdom.
| |
Collapse
|
3
|
Wang W, Zhang Y, Zhai Y, Yang W, Xing Y. Alternative splicing dynamics during gastrulation in mouse embryo. Sci Rep 2025; 15:10948. [PMID: 40159515 PMCID: PMC11955514 DOI: 10.1038/s41598-025-96148-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025] Open
Abstract
Alternative splicing (AS) plays an essential role in development, differentiation and carcinogenesis. However, the mechanisms underlying splicing regulation during mouse embryo gastrulation remain unclear. Based on spatial-temporal transcriptome and epigenome data, we detected the dynamics of AS and revealed its regulatory mechanisms across primary germ layers during mouse gastrulation, spanning developmental stages from E6.5 to E7.5. Subsequently, the dynamic expression of splicing factors (SFs) during gastrulation was characterized, while the expression patterns and functions of germ layer-specific SFs were identified. The results indicate that AS and differential alternative splicing events (DASEs) exhibit dynamic changes and are significantly abundant during the late stage of gastrulation. Similarly, SFs demonstrate stage-specific expression, with elevated levels observed during the middle and late stages of gastrulation. Epigenetic signals associated with SFs and AS sites demonstrate significant enrichment and undergo dynamic changes throughout gastrulation. Overall, this study offers a systematic analysis of AS during mouse gastrulation, identifies primary germ layer-specific AS events, and characterizes the expression patterns of SFs and the associated epigenetic signals. These findings enhance the understanding of the mechanisms underlying the formation of the three germ layers during mammalian gastrulation, with a focus on pre-mRNA AS.
Collapse
Affiliation(s)
- Wei Wang
- Inner Mongolia Key Laboratory of Life Health and Bioinformatics, School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China
| | - Yu Zhang
- Inner Mongolia Key Laboratory of Life Health and Bioinformatics, School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China
| | - Yuanyuan Zhai
- Inner Mongolia Key Laboratory of Life Health and Bioinformatics, School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China
| | - Wuritu Yang
- Computer Department, Hohhot Vocational College, Hohhot, China.
| | - Yongqiang Xing
- Inner Mongolia Key Laboratory of Life Health and Bioinformatics, School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China.
| |
Collapse
|
4
|
Dishuck PC, Munson KM, Lewis AP, Dougherty ML, Underwood JG, Harvey WT, Hsieh P, Pastinen T, Eichler EE. Structural variation, selection, and diversification of the NPIP gene family from the human pangenome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.04.636496. [PMID: 39975192 PMCID: PMC11838601 DOI: 10.1101/2025.02.04.636496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The NPIP (nuclear pore interacting protein) gene family has expanded to high copy number in humans and African apes where it has been subject to an excess of amino acid replacement consistent with positive selection (1). Due to the limitations of short-read sequencing, NPIP human genetic diversity has been poorly understood. Using highly accurate assemblies generated from long-read sequencing as part of the human pangenome, we completely characterize 169 human haplotypes (4,665 NPIP paralogs and alleles). Of the 28 NPIP paralogs, just three (NPIPB2, B11, and B14) are fixed at a single copy, and only a single locus, B2, shows no structural variation. Four NPIP paralogs map to large segmental duplication blocks that mediate polymorphic inversions (355 kbp-1.6 Mbp) corresponding to microdeletions associated with developmental delay and autism. Haplotype-based tests of positive selection and selective sweeps identify two paralogs, B9 and B15, within the top percentile for both tests. Using full-length cDNA data from 101 tissue/cell types, we construct paralog-specific gene models and show that 56% (31/55 most abundant isoforms) have not been previously described in RefSeq. We define six distinct translation start sites and other protein structural features that distinguish paralogs, including a variable number tandem repeat that encodes a beta helix of variable size that emerged ~3.1 million years ago in human evolution. Among the 28 NPIP paralogs, we identify distinct tissue and developmental patterns of expression with only a few maintaining the ancestral testis-enriched expression. A subset of paralogs (NPIPA1, A5, A6-9, B3-5, and B12/B13) show increased brain expression. Our results suggest ongoing positive selection in the human population and rapid diversification of NPIP gene models.
Collapse
Affiliation(s)
- Philip C. Dishuck
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Katherine M. Munson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Alexandra P. Lewis
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Max L. Dougherty
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Present address: Tisch Cancer Institute, Division of Hematology and Medical Oncology, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jason G. Underwood
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Pacific Biosciences (PacBio) of California, Incorporated, Menlo Park, CA, USA
| | - William T. Harvey
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - PingHsun Hsieh
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Department of Genetics, Cell Biology, and Development, Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA
| | - Tomi Pastinen
- Genomic Medicine Center, Department of Pediatrics, Children’s Mercy Kansas City, Kansas City, KS, USA
- UMKC School of Medicine, University of Missouri, Kansas City, Kansas City, KS, USA
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| |
Collapse
|
5
|
Chen Z, Jiang L, Su M, Zeng Q, Luo P, Chu L. NLRP7 maintains the genomic stability during early human embryogenesis via mediating alternative splicing. Commun Biol 2025; 8:125. [PMID: 39865169 PMCID: PMC11770114 DOI: 10.1038/s42003-025-07571-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 01/17/2025] [Indexed: 01/28/2025] Open
Abstract
Genomic instability is the main cause of abnormal embryo development and abortion. NLRP7 dysfunctions affect embryonic development and lead to Hydatidiform Moles, but the underlying mechanisms remain largely elusive. Here, we show that NLRP7 knockout affects the genetic stability, resulting in increased DNA damage in both human embryonic stem cells and blastoids, making embryonic cells in blastoids more susceptible to apoptosis. Mechanistically, NLRP7 can interact with factors related to alternative splicing and DNA damage response, including DDX39B, PRPF8, THRAP3 and PARP1. Moreover, NLRP7 dysfunction leads to abnormal alternative splicing of genes involved in homologous recombination in human embryonic stem cells, Such as Brca1 and Rad51. These results indicate that NLRP7-mediated Alternative splicing is potentially required for the maintenance of genome integrity during early human embryogenesis. Together, this study uncovers that NLRP7 plays an essential role in the maintenance of genetic stability during early human embryonic development by regulating alternative splicing of homologous recombination-related genes.
Collapse
Affiliation(s)
- Zhongliang Chen
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Guizhou Province Key Laboratory of Regenerative Medicine, Guizhou Medical University, Guiyang, China
- Tissue Engineering and Stem Cell Experiment Center, Guizhou Medical University, Guiyang, China
| | - Liangxia Jiang
- Department of Pathophysiology, School of Basic Medicine, Guizhou Medical University, Guiyang, China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, China
| | - Min Su
- Guizhou Province Key Laboratory of Regenerative Medicine, Guizhou Medical University, Guiyang, China
- Tissue Engineering and Stem Cell Experiment Center, Guizhou Medical University, Guiyang, China
- Key Laboratory for Research on Autoimmune Diseases of Higher Education schools in Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Qibing Zeng
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, China
| | - Peng Luo
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, China.
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guizhou Medical University, Guiyang, China.
| | - Liangzhao Chu
- Department of Neurosurgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| |
Collapse
|
6
|
Belchikov N, Hsu J, Li XJ, Jarroux J, Hu W, Joglekar A, Tilgner HU. Understanding isoform expression by pairing long-read sequencing with single-cell and spatial transcriptomics. Genome Res 2024; 34:1735-1746. [PMID: 39567235 DOI: 10.1101/gr.279640.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
RNA isoform diversity, produced via alternative splicing, and alternative usage of transcription start and poly(A) sites, results in varied transcripts being derived from the same gene. Distinct isoforms can play important biological roles, including by changing the sequences or expression levels of protein products. The first single-cell approaches to RNA sequencing-and later, spatial approaches-which are now widely used for the identification of differentially expressed genes, rely on short reads and offer the ability to transcriptomically compare different cell types but are limited in their ability to measure differential isoform expression. More recently, long-read sequencing methods have been combined with single-cell and spatial technologies in order to characterize isoform expression. In this review, we provide an overview of the emergence of single-cell and spatial long-read sequencing and discuss the challenges associated with the implementation of these technologies and interpretation of these data. We discuss the opportunities they offer for understanding the relationships between the distinct variable elements of transcript molecules and highlight some of the ways in which they have been used to characterize isoforms' roles in development and pathology. Single-nucleus long-read sequencing, a special case of the single-cell approach, is also discussed. We attempt to cover both the limitations of these technologies and their significant potential for expanding our still-limited understanding of the biological roles of RNA isoforms.
Collapse
Affiliation(s)
- Natan Belchikov
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, New York 10021, USA
- Physiology, Biophysics, and Systems Biology Program, Weill Cornell Medicine, New York, New York 10065, USA
| | - Justine Hsu
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, New York 10021, USA
| | - Xiang Jennie Li
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, New York 10021, USA
- Computational Biology Master's Program, Weill Cornell Medicine, New York, New York 10065, USA
| | - Julien Jarroux
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, New York 10021, USA
| | - Wen Hu
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065, USA
- Center for Neurogenetics, Weill Cornell Medicine, New York, New York 10021, USA
| | - Anoushka Joglekar
- New York Genome Center, New York, New York 10013, USA
- Department of Biomedical Informatics, Columbia University, New York, New York 10032, USA
| | - Hagen U Tilgner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065, USA;
- Center for Neurogenetics, Weill Cornell Medicine, New York, New York 10021, USA
| |
Collapse
|
7
|
Schettini GP, Morozyuk M, Biase FH. Identification of novel cattle (Bos taurus) genes and biological insights of their function in pre-implantation embryo development. BMC Genomics 2024; 25:775. [PMID: 39118001 PMCID: PMC11313146 DOI: 10.1186/s12864-024-10685-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Appropriate regulation of genes expressed in oocytes and embryos is essential for acquisition of developmental competence in mammals. Here, we hypothesized that several genes expressed in oocytes and pre-implantation embryos remain unknown. Our goal was to reconstruct the transcriptome of oocytes (germinal vesicle and metaphase II) and pre-implantation cattle embryos (blastocysts) using short-read and long-read sequences to identify putative new genes. RESULTS We identified 274,342 transcript sequences and 3,033 of those loci do not match a gene present in official annotations and thus are potential new genes. Notably, 63.67% (1,931/3,033) of potential novel genes exhibited coding potential. Also noteworthy, 97.92% of the putative novel genes overlapped annotation with transposable elements. Comparative analysis of transcript abundance identified that 1,840 novel genes (recently added to the annotation) or potential new genes were differentially expressed between developmental stages (FDR < 0.01). We also determined that 522 novel or potential new genes (448 and 34, respectively) were upregulated at eight-cell embryos compared to oocytes (FDR < 0.01). In eight-cell embryos, 102 novel or putative new genes were co-expressed (|r|> 0.85, P < 1 × 10-8) with several genes annotated with gene ontology biological processes related to pluripotency maintenance and embryo development. CRISPR-Cas9 genome editing confirmed that the disruption of one of the novel genes highly expressed in eight-cell embryos reduced blastocyst development (ENSBTAG00000068261, P = 1.55 × 10-7). CONCLUSIONS Our results revealed several putative new genes that need careful annotation. Many of the putative new genes have dynamic regulation during pre-implantation development and are important components of gene regulatory networks involved in pluripotency and blastocyst formation.
Collapse
Affiliation(s)
- Gustavo P Schettini
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Michael Morozyuk
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Fernando H Biase
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
8
|
Cummins M, Watson C, Edwards RJ, Mattick JS. The Evolution of Ultraconserved Elements in Vertebrates. Mol Biol Evol 2024; 41:msae146. [PMID: 39058500 PMCID: PMC11276968 DOI: 10.1093/molbev/msae146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/29/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024] Open
Abstract
Ultraconserved elements were discovered two decades ago, arbitrarily defined as sequences that are identical over a length ≥ 200 bp in the human, mouse, and rat genomes. The definition was subsequently extended to sequences ≥ 100 bp identical in at least three of five mammalian genomes (including dog and cow), and shown to have undergone rapid expansion from ancestors in fish and strong negative selection in birds and mammals. Since then, many more genomes have become available, allowing better definition and more thorough examination of ultraconserved element distribution and evolutionary history. We developed a fast and flexible analytical pipeline for identifying ultraconserved elements in multiple genomes, dedUCE, which allows manipulation of minimum length, sequence identity, and number of species with a detectable ultraconserved element according to specified parameters. We suggest an updated definition of ultraconserved elements as sequences ≥ 100 bp and ≥97% sequence identity in ≥50% of placental mammal orders (12,813 ultraconserved elements). By mapping ultraconserved elements to ∼200 species, we find that placental ultraconserved elements appeared early in vertebrate evolution, well before land colonization, suggesting that the evolutionary pressures driving ultraconserved element selection were present in aquatic environments in the Cambrian-Devonian periods. Most (>90%) ultraconserved elements likely appeared after the divergence of gnathostomes from jawless predecessors, were largely established in sequence identity by early Sarcopterygii evolution-before the divergence of lobe-finned fishes from tetrapods-and became near fixed in the amniotes. Ultraconserved elements are mainly located in the introns of protein-coding and noncoding genes involved in neurological and skeletomuscular development, enriched in regulatory elements, and dynamically expressed throughout embryonic development.
Collapse
Affiliation(s)
- Mitchell Cummins
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Cadel Watson
- School of Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Richard J Edwards
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - John S Mattick
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
9
|
Li F, Karimi N, Wang S, Pan T, Dong J, Wang X, Ma S, Shan Q, Liu C, Zhang Y, Li W, Feng G. mRNA isoform switches during mouse zygotic genome activation. Cell Prolif 2024; 57:e13655. [PMID: 38764347 PMCID: PMC11216927 DOI: 10.1111/cpr.13655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/21/2024] Open
Affiliation(s)
- Fan Li
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Najmeh Karimi
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Siqi Wang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| | - Tianshi Pan
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of SciencesBeijingChina
- College of Life SciencesNortheast Agricultural UniversityHarbinChina
| | - Jingxi Dong
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of SciencesBeijingChina
| | - Xin Wang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Medical SchoolUniversity of Chinese Academy of SciencesBeijingChina
| | - Sinan Ma
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of SciencesBeijingChina
- College of Life SciencesNortheast Agricultural UniversityHarbinChina
| | - Qingtong Shan
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of SciencesBeijingChina
- College of Life SciencesNortheast Agricultural UniversityHarbinChina
| | - Chao Liu
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| | - Ying Zhang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| | - Guihai Feng
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute of Zoology, Chinese Academy of SciencesBeijingChina
- Key Laboratory of Organ Regeneration and ReconstructionChinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| |
Collapse
|
10
|
Zhao Y, Chen Z, Hu M, Liu H, Zhao H, Huang Y, Jiang M, Li S, Li G, Zhu C, Hu W, Luo D. Integrating Iso-seq and RNA-seq data for the reannotation of the greater amberjack genome. Sci Data 2024; 11:675. [PMID: 38909036 PMCID: PMC11193819 DOI: 10.1038/s41597-024-03495-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/07/2024] [Indexed: 06/24/2024] Open
Abstract
The greater amberjack is a very important fishery species with high commercial value, and it is distributed worldwide. Transcriptome-based studies on S. dumerili have been limited by an inadequate reference genome and a lack of well-annotated full-length transcripts. In this study, a total of 12 tissues from juvenile and adult fish both sexes were collected for next-generation RNA sequencing (RNA-seq) and full-length isoform sequencing (Iso-seq). For Iso-seq, a total of 163,218, 149,716, and 189,169 high-quality unique transcript sequences were obtained, with an N50 of 5,441, 5,255, and 5,939, from juvenile, adult male and adult female S. dumerili, respectively. We integrated the Iso-seq and RNA-seq data to construct a comprehensive gene annotation and systematically profiled the dynamics of gene expression across the 12 tissues. Our gene models had greater detail and accuracy than those from NCBI and Ensembl, with more precise polyA locations. These resources serve as a foundation for functional genomic studies and provide valuable insights into the molecular mechanisms underlying the development, reproduction and commercial traits of amberjack.
Collapse
Affiliation(s)
- Yuanli Zhao
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Guangdong Laboratory for Lingnan Modern Agriculture, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Zonggui Chen
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Guangdong Laboratory for Lingnan Modern Agriculture, Chinese Academy of Sciences, Wuhan, 430072, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Meidi Hu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Guangdong Laboratory for Lingnan Modern Agriculture, Chinese Academy of Sciences, Wuhan, 430072, China
- Fisheries College, Ocean University of China, Qingdao, 266001, China
| | - Hairong Liu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Guangdong Laboratory for Lingnan Modern Agriculture, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Haiping Zhao
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Guangdong Laboratory for Lingnan Modern Agriculture, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yang Huang
- China Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, 524025, China
- Fisheries College of Guangdong Ocean University, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, 524088, China
| | - Mouyan Jiang
- Fisheries College of Guangdong Ocean University, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, 524088, China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China
| | - Guangli Li
- Fisheries College of Guangdong Ocean University, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, 524088, China
| | - Chunhua Zhu
- China Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, 524025, China.
- Fisheries College of Guangdong Ocean University, Guangdong Research Center on Reproductive Control and Breeding Technology of Indigenous Valuable Fish Species, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, 524088, China.
| | - Wei Hu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Guangdong Laboratory for Lingnan Modern Agriculture, Chinese Academy of Sciences, Wuhan, 430072, China.
| | - Daji Luo
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, The Innovative Academy of Seed Design, Hubei Hongshan Laboratory, Guangdong Laboratory for Lingnan Modern Agriculture, Chinese Academy of Sciences, Wuhan, 430072, China.
- Fisheries College, Ocean University of China, Qingdao, 266001, China.
| |
Collapse
|
11
|
Jones EF, Howton TC, Flanary VL, Clark AD, Lasseigne BN. Long-read RNA sequencing identifies region- and sex-specific C57BL/6J mouse brain mRNA isoform expression and usage. Mol Brain 2024; 17:40. [PMID: 38902764 PMCID: PMC11188239 DOI: 10.1186/s13041-024-01112-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/08/2024] [Indexed: 06/22/2024] Open
Abstract
Alternative splicing (AS) contributes to the biological heterogeneity between species, sexes, tissues, and cell types. Many diseases are either caused by alterations in AS or by alterations to AS. Therefore, measuring AS accurately and efficiently is critical for assessing molecular phenotypes, including those associated with disease. Long-read sequencing enables more accurate quantification of differentially spliced isoform expression than short-read sequencing approaches, and third-generation platforms facilitate high-throughput experiments. To assess differences in AS across the cerebellum, cortex, hippocampus, and striatum by sex, we generated and analyzed Oxford Nanopore Technologies (ONT) long-read RNA sequencing (lrRNA-Seq) C57BL/6J mouse brain cDNA libraries. From > 85 million reads that passed quality control metrics, we calculated differential gene expression (DGE), differential transcript expression (DTE), and differential transcript usage (DTU) across brain regions and by sex. We found significant DGE, DTE, and DTU across brain regions and that the cerebellum had the most differences compared to the other three regions. Additionally, we found region-specific differential splicing between sexes, with the most sex differences in DTU in the cortex and no DTU in the hippocampus. We also report on two distinct patterns of sex DTU we observed, sex-divergent and sex-specific, that could potentially help explain sex differences in the prevalence and prognosis of various neurological and psychiatric disorders in future studies. Finally, we built a Shiny web application for researchers to explore the data further. Our study provides a resource for the community; it underscores the importance of AS in biological heterogeneity and the utility of long-read sequencing to better understand AS in the brain.
Collapse
Affiliation(s)
- Emma F Jones
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Timothy C Howton
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Victoria L Flanary
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Amanda D Clark
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Brittany N Lasseigne
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States of America.
| |
Collapse
|
12
|
Zhang H, Wang Y, Hu Z, Wu Y, Chen N, Zhu Y, Yu Y, Fan H, Wang H. Zygotic Splicing Activation of the Transcriptome is a Crucial Aspect of Maternal-to-Zygotic Transition and Required for the Conversion from Totipotency to Pluripotency. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308496. [PMID: 38308190 PMCID: PMC11005748 DOI: 10.1002/advs.202308496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/27/2023] [Indexed: 02/04/2024]
Abstract
During maternal-to-zygotic transition (MZT) in the embryo, mRNA undergoes complex post-transcriptional regulatory processes. However, it is unclear whether and how alternative splicing plays a functional role in MZT. By analyzing transcriptome changes in mouse and human early embryos, dynamic changes in alternative splicing during MZT are observed and a previously unnoticed process of zygotic splicing activation (ZSA) following embryonic transcriptional activation is described. As the underlying mechanism of RNA splicing, splicing factors undergo dramatic maternal-to-zygotic conversion. This conversion relies on the key maternal factors BTG4 and PABPN1L and is zygotic-transcription-dependent. CDK11-dependent phosphorylation of the key splicing factor, SF3B1, and its aggregation with SRSF2 in the subnuclear domains of 2-cell embryos are prerequisites for ZSA. Isoforms generated by erroneous splicing, such as full-length Dppa4, hinder normal embryonic development. Moreover, alternative splicing regulates the conversion of early embryonic blastomeres from totipotency to pluripotency, thereby affecting embryonic lineage differentiation. ZSA is an essential post-transcriptional process of MZT and has physiological significance in generating new life. In addition to transcriptional activation, appropriate expression of transcript isoforms is also necessary for preimplantation embryonic development.
Collapse
Affiliation(s)
- Hua Zhang
- MOA Key Laboratory of Animal VirologyCenter for Veterinary SciencesZhejiang UniversityHangzhou310058China
- Department of Veterinary MedicineCollege of Animal SciencesZhejiang UniversityHangzhou310058China
| | - Yang Wang
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Zhe‐Wei Hu
- MOA Key Laboratory of Animal VirologyCenter for Veterinary SciencesZhejiang UniversityHangzhou310058China
| | - Yun‐Wen Wu
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Nuo Chen
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Yi‐Min Zhu
- Department of Reproductive EndocrinologyWomen's HospitalSchool of MedicineZhejiang UniversityHangzhouZhejiang310002China
| | - Yuan‐Song Yu
- Savaid Stomatology SchoolHangzhou Medical CollegeHangzhou310053China
| | - Heng‐Yu Fan
- MOE Key Laboratory for Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
- Assisted Reproduction UnitDepartment of Obstetrics and GynecologySir Run Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhou310016China
- Center for Biomedical ResearchShaoxing InstituteZhejiang UniversityShaoxing312000China
| | - Hua‐Nan Wang
- MOA Key Laboratory of Animal VirologyCenter for Veterinary SciencesZhejiang UniversityHangzhou310058China
- Department of Veterinary MedicineCollege of Animal SciencesZhejiang UniversityHangzhou310058China
| |
Collapse
|
13
|
Black GS, Huang X, Qiao Y, Moos P, Sampath D, Stephens DM, Woyach JA, Marth GT. Long-read single-cell RNA sequencing enables the study of cancer subclone-specific genotype and phenotype in chronic lymphocytic leukemia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.585298. [PMID: 38559060 PMCID: PMC10979946 DOI: 10.1101/2024.03.15.585298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Bruton's tyrosine kinase (BTK) inhibitors are effective for the treatment of chronic lymphocytic leukemia (CLL) due to BTK's role in B cell survival and proliferation. Treatment resistance is most commonly caused by the emergence of the hallmark BTKC481S mutation that inhibits drug binding. In this study, we aimed to investigate whether the presence of additional CLL driver mutations in cancer subclones harboring a BTKC481S mutation accelerates subclone expansion. In addition, we sought to determine whether BTK-mutated subclones exhibit distinct transcriptomic behavior when compared to other cancer subclones. To achieve these goals, we employ our recently published method (Qiao et al. 2024) that combines bulk DNA sequencing and single-cell RNA sequencing (scRNA-seq) data to genotype individual cells for the presence or absence of subclone-defining mutations. While the most common approach for scRNA-seq includes short-read sequencing, transcript coverage is limited due to the vast majority of the reads being concentrated at the priming end of the transcript. Here, we utilized MAS-seq, a long-read scRNAseq technology, to substantially increase transcript coverage across the entire length of the transcripts and expand the set of informative mutations to link cells to cancer subclones in six CLL patients who acquired BTKC481S mutations during BTK inhibitor treatment. We found that BTK-mutated subclones often acquire additional mutations in CLL driver genes, leading to faster subclone proliferation. When examining subclone-specific gene expression, we found that in one patient, BTK-mutated subclones are transcriptionally distinct from the rest of the malignant B cell population with an overexpression of CLL-relevant genes.
Collapse
Affiliation(s)
- Gage S Black
- Department of Human Genetics, University of Utah, Salt Lake City, UT
| | - Xiaomeng Huang
- Department of Human Genetics, University of Utah, Salt Lake City, UT
| | - Yi Qiao
- Department of Human Genetics, University of Utah, Salt Lake City, UT
| | - Philip Moos
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT
| | - Deepa Sampath
- Department of Hematopoietic Biology and Malignancy, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | | - Gabor T Marth
- Department of Human Genetics, University of Utah, Salt Lake City, UT
| |
Collapse
|
14
|
Zhang P, Xue B, Yang H, Zhang L. Transcriptome Responses to Different Salinity Conditions in Litoditis marina, Revealed by Long-Read Sequencing. Genes (Basel) 2024; 15:317. [PMID: 38540376 PMCID: PMC10970011 DOI: 10.3390/genes15030317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 06/14/2024] Open
Abstract
The marine nematode Litoditis marina is widely distributed in intertidal zones around the globe, yet the mechanisms underlying its broad adaptation to salinity remain elusive. In this study, we applied ONT long-read sequencing technology to unravel the transcriptome responses to different salinity conditions in L. marina. Through ONT sequencing under 3‱, 30‱ and 60‱ salinity environments, we obtained 131.78 G clean data and 26,647 non-redundant long-read transcripts, including 6464 novel transcripts. The DEGs obtained from the current ONT lrRNA-seq were highly correlated with those identified in our previously reported Illumina short-read RNA sequencing data. When we compared the 30‱ to the 3‱ salinity condition, we found that GO terms such as oxidoreductase activity, cation transmembrane transport and ion transmembrane transport were shared between the ONT lrRNA-seq and Illumina data. Similarly, GO terms including extracellular space, structural constituents of cuticle, substrate-specific channel activity, ion transport and substrate-specific transmembrane transporter activity were shared between the ONT and Illumina data under 60‱ compared to 30‱ salinity. In addition, we found that 79 genes significantly increased, while 119 genes significantly decreased, as the salinity increased. Furthermore, through the GO enrichment analysis of 214 genes containing DAS, in 30‱ compared to 3‱ salinity, we found that GO terms such as cellular component assembly and coenzyme biosynthetic process were enriched. Additionally, we observed that GO terms such as cellular component assembly and coenzyme biosynthetic process were also enriched in 60‱ compared to 30‱ salinity. Moreover, we found that 86, 125, and 81 genes that contained DAS were also DEGs, in comparisons between 30‱ and 3‱, 60‱ and 30‱, and 60‱ and 3‱ salinity, respectively. In addition, we demonstrated the landscape of alternative polyadenylation in marine nematode under different salinity conditions This report provides several novel insights for the further study of the mechanisms by which euryhalinity formed and evolved, and it might also contribute to the investigation of salinity dynamics induced by global climate change.
Collapse
Affiliation(s)
- Pengchi Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (P.Z.); (B.X.); (H.Y.)
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Beining Xue
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (P.Z.); (B.X.); (H.Y.)
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hanwen Yang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (P.Z.); (B.X.); (H.Y.)
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Liusuo Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (P.Z.); (B.X.); (H.Y.)
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| |
Collapse
|
15
|
Jones EF, Howton TC, Flanary VL, Clark AD, Lasseigne BN. Long-read RNA sequencing identifies region- and sex-specific C57BL/6J mouse brain mRNA isoform expression and usage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.11.575219. [PMID: 38260631 PMCID: PMC10802568 DOI: 10.1101/2024.01.11.575219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Alternative splicing (AS) contributes to the biological heterogeneity between species, sexes, tissues, and cell types. Many diseases are either caused by alterations in AS or by alterations to AS. Therefore, measuring AS accurately and efficiently is critical for assessing molecular phenotypes, including those associated with disease. Long-read sequencing enables more accurate quantification of differentially spliced isoform expression than short-read sequencing approaches, and third-generation platforms facilitate high-throughput experiments. To assess differences in AS across the cerebellum, cortex, hippocampus, and striatum by sex, we generated and analyzed Oxford Nanopore Technologies (ONT) long-read RNA sequencing (lrRNA-Seq) C57BL/6J mouse brain cDNA libraries. From >85 million reads that passed quality control metrics, we calculated differential gene expression (DGE), differential transcript expression (DTE), and differential transcript usage (DTU) across brain regions and by sex. We found significant DGE, DTE, and DTU across brain regions and that the cerebellum had the most differences compared to the other three regions. Additionally, we found region-specific differential splicing between sexes, with the most sex differences in DTU in the cortex and no DTU in the hippocampus. We also report on two distinct patterns of sex DTU we observed, sex-divergent and sex-specific, that could potentially help explain sex differences in the prevalence and prognosis of various neurological and psychiatric disorders in future studies. Finally, we built a Shiny web application for researchers to explore the data further. Our study provides a resource for the community; it underscores the importance of AS in biological heterogeneity and the utility of long-read sequencing to better understand AS in the brain.
Collapse
Affiliation(s)
- Emma F. Jones
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Timothy C. Howton
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Victoria L. Flanary
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Amanda D. Clark
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Brittany N. Lasseigne
- Department of Cell, Developmental and Integrative Biology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|