1
|
Wang S, Li C, Qi Y, Zhang J, Wang N, Liu M, Zhang B, Cai X, Zhang H, Wei SH, Ma G, Yang J, Chen S, Zhang F. Etched BiVO 4 photocatalyst with charge separation efficiency exceeding 90. Nat Commun 2025; 16:3776. [PMID: 40263345 PMCID: PMC12015588 DOI: 10.1038/s41467-025-59076-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 04/10/2025] [Indexed: 04/24/2025] Open
Abstract
Charge separation of particulate photocatalysts has been considered as the rate-determining step in artificial photocatalysis since the finding of Honda-Fujishima effect, whose efficiency is generally much lower than that of natural photosynthesis. To approach its upper limit, it requires the photoexcited electrons and holes be efficiently transferred to the spatially separated redox reaction sites over a single photocatalyst particle. Herein, it is demonstrated the spatial charge separation among facets of BiVO4:Mo can be notably promoted by creating an electron transfer layer. It not only favors electrons to transfer to its surface, but also promotes the built-in electric field intensity of the inter-facet junction by over 10 times. Consequently, the charge separation efficiency of the modified BiVO4:Mo with loading of CoFeOx oxidation cocatalyst exceeds 90% at 420 nm, comparable to that of the natural photosynthesis system, over which notably enhanced photocatalytic activities are achieved. Our findings demonstrate the effectiveness of electron transfer layer in intensifying charge separation of particulate photocatalysts.
Collapse
Affiliation(s)
- Shuo Wang
- School of Materials Science and Engineering, Nankai University, Tianjin, China
| | - Chenyang Li
- School of Materials Science and Engineering, Nankai University, Tianjin, China
| | - Yu Qi
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Jiaming Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ningning Wang
- School of Materials Science and Engineering, Nankai University, Tianjin, China
| | - Meng Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Boyang Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xuefen Cai
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Hongbo Zhang
- School of Materials Science and Engineering, Nankai University, Tianjin, China
| | - Su-Huai Wei
- Eastern Institute of Technology, Ningbo, China
| | - Guijun Ma
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Jingxiu Yang
- Key Laboratory for Comprehensive Energy Saving of Cold Regions Architecture of Ministry of Education, School of Materials Science and Engineering, Jilin Jianzhu University, Changchun, China.
| | - Shanshan Chen
- School of Materials Science and Engineering, Nankai University, Tianjin, China.
| | - Fuxiang Zhang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| |
Collapse
|
2
|
Cai L, Liu H, Yan X. Boosting Visible-Light-Driven Hydrogen Evolution Enabled by Iodine-Linked Magnetically Curved Graphene with Mobius-like Electronic Paths. Molecules 2025; 30:1302. [PMID: 40142076 PMCID: PMC11946169 DOI: 10.3390/molecules30061302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/04/2025] [Accepted: 03/07/2025] [Indexed: 03/28/2025] Open
Abstract
Materials with high electron transfer performance remain a key focus in photocatalytic research, as they can effectively promote the separation of photogenerated carriers and enhance the utilization efficiency of photogenerated electrons. To enhance the effective utilization of photogenerated electrons, the MSIG material was prepared by incorporating the iodine clusters and magnetic Fe3O4 into the as-synthesized crumpled graphene oxide (CGO) to construct Möbius-like electronic transmission pathways. The introduction of magnetic groups optimized the spin orientation of electrons, facilitating directional electron transport and thereby enhancing the photocatalytic efficiency of the material. Experimental results reveal that, in visible light-driven hydrogen production reactions, the eosin Y (EY)-sensitized Pt-Fe3O4-MSIG catalyst exhibits outstanding catalytic performance, with a hydrogen production rate of 1.48 mL/h, which is 15 times higher than that of the Pt-Fe3O4 catalyst. Photoelectrochemical analyses show a significant increase in the catalyst's fluorescence lifetime, attributed to the Möbius strip-like electron transport channels within the material. Theoretical calculations further support this by demonstrating that the bandgap widening of the CGO reduces the recombination probability of photogenerated carriers, thereby improving their average lifetime. This study offers a novel approach for the design of visible-light-driven photocatalytic materials.
Collapse
Affiliation(s)
- Liangjun Cai
- Jiangxi Province Key Laboratory of Environmental Pollution Prevention and Control in Mining and Metallurgy, Jiangxi University of Science and Technology, Ganzhou 341000, China;
| | - Hongxia Liu
- Jiangxi Province Key Laboratory of Environmental Pollution Prevention and Control in Mining and Metallurgy, Jiangxi University of Science and Technology, Ganzhou 341000, China;
| | - Xiaoxiao Yan
- Key Laboratory for Green Chemistry of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
3
|
Li H, Li H, Du M, Zhou E, Leow WR, Liu M. A perspective on field-effect in energy and environmental catalysis. Chem Sci 2025; 16:1506-1527. [PMID: 39759941 PMCID: PMC11694487 DOI: 10.1039/d4sc07740g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 12/17/2024] [Indexed: 01/07/2025] Open
Abstract
The development of catalytic technologies for sustainable energy conversion is a critical step toward addressing fossil fuel depletion and associated environmental challenges. High-efficiency catalysts are fundamental to advancing these technologies. Recently, field-effect facilitated catalytic processes have emerged as a promising approach in energy and environmental applications, including water splitting, CO2 reduction, nitrogen reduction, organic electrosynthesis, and biomass recycling. Field-effect catalysis offers multiple advantages, such as enhancing localized reactant concentration, facilitating mass transfer, improving reactant adsorption, modifying electronic excitation and work functions, and enabling efficient charge transfer and separation. This review begins by defining and classifying field effects in catalysis, followed by an in-depth discussion on their roles and potential to guide further exploration of field-effect catalysis. To elucidate the theory-structure-activity relationship, we explore corresponding reaction mechanisms, modification strategies, and catalytic properties, highlighting their relevance to sustainable energy and environmental catalysis applications. Lastly, we offer perspectives on potential challenges that field-effect catalysis may face, aiming to provide a comprehensive understanding and future direction for this emerging area.
Collapse
Affiliation(s)
- HuangJingWei Li
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University Changsha 410083 P. R. China
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR) Singapore 627833 Singapore
| | - Hongmei Li
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University Changsha 410083 P. R. China
| | - Mengzhen Du
- College of Biological, Chemical Sciences and Engineering, Jiaxing University Jiaxing Zhejiang 314001 P. R. China
- College of Chemical and Materials Engineering, Xuchang University Xuchang Henan 461000 P. R. China
| | - Erjun Zhou
- College of Biological, Chemical Sciences and Engineering, Jiaxing University Jiaxing Zhejiang 314001 P. R. China
| | - Wan Ru Leow
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR) Singapore 627833 Singapore
| | - Min Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University Changsha 410083 P. R. China
| |
Collapse
|
4
|
Liu H, Wang Y, Xue X, Liu Y, Chen P, Wang P, Yin SF. Local weak hydrogen bonds induced dipole-dipole interactions in polymer for enhancing photocatalytic oxidation. J Colloid Interface Sci 2024; 669:393-401. [PMID: 38718592 DOI: 10.1016/j.jcis.2024.04.221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/27/2024]
Abstract
Functionalizing organic polymers is an effective strategy for enhancing their photocatalytic performance. However, this approach is currently limited by specific motifs, complex preparation methods, and an unclear electron transfer mechanism. Here, we present a meticulously designed structure of perylene diimide connected with poly (barbituric acid trimer) through self-assembled hydrogen bonding. In particular, the local chemical environment of the two components is adjusted by hydrogen bond-induced dipole-dipole interactions, leading to the emergence of a significant inherent electric field. Additionally, the formation of hydrogen bonds provides electronic pathways that facilitate charge transfer from perylene to adjacent units. Moreover, the distinctive electronic structure enhances polarity transfer and improves activation and adsorption capabilities for reactive molecules. Ultimately, B-PDI exhibits outstanding oxidation rates for benzylamine to N-benzylidene-benzylamine (10.03 mmol g-1h-1) and selectivity (>99.99 %). Our work offers a widely popular approach for enhancing the photocatalytic activity of organic semiconductor materials by constructing hydrogen bonds in heterogeneous molecules.
Collapse
Affiliation(s)
- Hongyan Liu
- Provincial Guizhou Key Laboratory of Green Chemical and Clean Energy Technology, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, Guizhou, China
| | - Yi Wang
- Provincial Guizhou Key Laboratory of Green Chemical and Clean Energy Technology, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, Guizhou, China
| | - Xiao Xue
- Provincial Guizhou Key Laboratory of Green Chemical and Clean Energy Technology, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, Guizhou, China
| | - Yuhui Liu
- Provincial Guizhou Key Laboratory of Green Chemical and Clean Energy Technology, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, Guizhou, China
| | - Peng Chen
- Provincial Guizhou Key Laboratory of Green Chemical and Clean Energy Technology, School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, Guizhou, China.
| | - Peng Wang
- Department of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang 455000, China.
| | - Shuang-Feng Yin
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha 410004, P.R. China; Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P R China.
| |
Collapse
|
5
|
Zhao J, Miao P, Zhang X, Wang P, Li Z, Wu LZ, Shi R, Zhang T. Photothermal Mineralization of Polyolefin Microplastics via TiO 2 Hierarchical Porous Layer-Based Semiwetting Air-Plastic-Solid Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400681. [PMID: 38555504 DOI: 10.1002/adma.202400681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Photo-mineralization of microplastics under mild conditions has emerged as a promising solution to plastic waste disposal. However, the inadequate contact between oxygen, water-insoluble polyolefin microplastics, and photocatalysts remains a critical issue. In this study, a TiO2 hierarchical porous layer (TiO2-HPL) photocatalyst is presented to establish air-plastic-solid triphase interfaces for the photothermal mineralization of polyolefins. The wettability of the TiO2-HPL-based triphase interface is finely controlled from plastophobic to plastophilic. High-resolution imaging and finite element simulation demonstrate the significance of a semiwetting state in achieving multidirectional oxygen diffusion through the hierarchical pore structure while maintaining sufficient contact between the plastic phase and photocatalysts. For low-density polyethylene, the TiO2-HPL achieves a photothermal mineralization rate of 5.63 mmol g-1 h-1 and a conversion of 26.3% after 20 h of continuous irradiation. Additionally, the triphase photocatalytic system with semiwetting gas-plastic-solid interfaces shows good universality for various polyolefin reagents and products, illustrating its potential in achieving efficient photothermal mineralization of non-degradable microplastics.
Collapse
Affiliation(s)
- Jiaqi Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Peng Miao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xuerui Zhang
- Petrochemical Research Institute, China National Petroleum Corporation, Beijing, 112206, China
| | - Pu Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhenhua Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Run Shi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Tierui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|