1
|
Ye X, Yang Y, Fang Q, Ye G. Genomics of insect natural enemies in agroecosystems. CURRENT OPINION IN INSECT SCIENCE 2025; 68:101298. [PMID: 39547440 DOI: 10.1016/j.cois.2024.101298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 09/26/2024] [Accepted: 11/10/2024] [Indexed: 11/17/2024]
Abstract
Currently, a wealth of genomic data are now accessible for numerous insect natural enemies, serving as valuable resources that deepen our understanding of the genetic basis of biocontrol traits in these organisms. We summarize the current state of genome sequencing and highlight candidate genes related to biocontrol traits that hold promise for genetic improvement. We also review the recent population genomic studies in biological control and the discovery of potential insecticidal genes in parasitoid wasps. Collectively, current genomic works have shown the powerful ability to identify candidate genes responsible for desirable traits or promising effectors. However, further functional study is necessary to gain a mechanistic understanding of these genes, and future efforts are also needed to develop suitable approaches to translate genomic insights into field applications.
Collapse
Affiliation(s)
- Xinhai Ye
- College of Advanced Agriculture Science, Zhejiang A&F University, Hangzhou 311300, China; Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Zhejiang A&F University, Hangzhou 311300, China.
| | - Yi Yang
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qi Fang
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Gongyin Ye
- State Key Laboratory of Rice Biology and Breeding & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Zhou T, Feng H, Zhang J, Tang Y, Dong X, Kang K. Selection of Sclerodermus pupariae Reference Genes for Quantitative Real-Time PCR. INSECTS 2025; 16:268. [PMID: 40266757 PMCID: PMC11943240 DOI: 10.3390/insects16030268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/25/2025] [Accepted: 02/28/2025] [Indexed: 04/25/2025]
Abstract
S. pupariae is a newly discovered species of parasitoid wasps. Research into its development, behavioral genetics, and molecular mechanisms provides valuable insights for improving integrated pest management strategies. Quantitative real-time PCR (qRT-PCR) is the most commonly used method for analyzing gene expression. This method requires the identification of stable reference genes to accurately evaluate transcriptional level variations. In this study, eight candidate reference genes (TUB, TBP, RPS18, GAPDH, 18S rRNA, RPL32, Actin, and EF1-α) were identified and evaluated for their suitability as reference genes. Gene expression levels across different developmental stages were analyzed using three software tools, GeNorm, NormFinder, and BestKeeper, and the online tool RefFinder. The overall ranking of reference gene stability was as follows: RPS18 > 18S rRNA > RPL32 > GAPDH > Actin > TUB > TPB > EF1-α. Ultimately, RPS18 was determined to be the most stable reference gene.
Collapse
Affiliation(s)
- Ting Zhou
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou 434025, China; (T.Z.); (H.F.)
| | - Huahua Feng
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou 434025, China; (T.Z.); (H.F.)
| | - Jie Zhang
- College of Biology and Agriculture, Zunyi Normal University, Zunyi 563006, China; (J.Z.); (Y.T.)
| | - Yanlong Tang
- College of Biology and Agriculture, Zunyi Normal University, Zunyi 563006, China; (J.Z.); (Y.T.)
| | - Xiaoling Dong
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-Construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou 434025, China; (T.Z.); (H.F.)
| | - Kui Kang
- College of Biology and Agriculture, Zunyi Normal University, Zunyi 563006, China; (J.Z.); (Y.T.)
- Biomedical Research Institute, Hubei University of Medicine, Shiyan 442000, China
| |
Collapse
|
3
|
Peng Y, Mao K, Li H, Ping J, Zhu J, Liu X, Zhang Z, Jin M, Wu C, Wang N, Yesaya A, Wilson K, Xiao Y. Extreme genetic signatures of local adaptation in a notorious rice pest, Chilo suppressalis. Natl Sci Rev 2025; 12:nwae221. [PMID: 39949366 PMCID: PMC11823119 DOI: 10.1093/nsr/nwae221] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/13/2024] [Accepted: 05/23/2024] [Indexed: 02/16/2025] Open
Abstract
Climatic variation stands as a significant driving force behind genetic differentiation and the evolution of adaptive traits. Chilo (C.) suppressalis, commonly known as the rice stem borer, is a highly destructive pest that crucially harms rice production. The lack of natural population genomics data has hindered a more thorough understanding of its climate adaptation, particularly the genetic basis underlying adaptive traits. To overcome this obstacle, our study employed completely resequenced genomes of 384 individuals to explore the population structure, demographic history, and gene flow of C. suppressalis in China. This study observed that its gene flow occurred asymmetrically, moving from central populations to peripheral populations. Using genome-wide selection scans and genotype-environment association studies, we identified potential loci that may be associated with climatic adaptation. The most robust signal was found to be associated with cold tolerance, linked to a homeobox gene, goosecoid (GSC), whose expression level was significantly different in low and high latitudes. Moreover, downregulating the expression of this gene by RNAi enhances its cold tolerance phenotypes. Our findings have uncovered and delved into the genetic foundation of the ability of C. suppressalis to adapt to its environment. This is essential in ensuring the continued effectiveness and sustainability of novel control techniques.
Collapse
Affiliation(s)
- Yan Peng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Kaikai Mao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Hongran Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Junfen Ping
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- School of Life Sciences, Henan University, Kaifeng 475004, China
- Shenzhen Research Institute of Henan University, Shenzhen 518000, China
| | - Jingyun Zhu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xinye Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Zhuting Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Minghui Jin
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Chao Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Nan Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Alexander Yesaya
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Kenneth Wilson
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YW, UK
| | - Yutao Xiao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
4
|
Zheng C, Ma L, Song F, Tian L, Cai W, Li H, Duan Y. Comparative genomic analyses reveal evidence for adaptive A-to-I RNA editing in insect Adar gene. Epigenetics 2024; 19:2333665. [PMID: 38525798 DOI: 10.1080/15592294.2024.2333665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/17/2024] [Indexed: 03/26/2024] Open
Abstract
Although A-to-I RNA editing leads to similar effects to A-to-G DNA mutation, nonsynonymous RNA editing (recoding) is believed to confer its adaptiveness by 'epigenetically' regulating proteomic diversity in a temporospatial manner, avoiding the pleiotropic effect of genomic mutations. Recent discoveries on the evolutionary trajectory of Ser>Gly auto-editing site in insect Adar gene demonstrated a selective advantage to having an editable codon compared to uneditable ones. However, apart from pure observations, quantitative approaches for justifying the adaptiveness of individual RNA editing sites are still lacking. We performed a comparative genomic analysis on 113 Diptera species, focusing on the Adar Ser>Gly auto-recoding site in Drosophila. We only found one species having a derived Gly at the corresponding site, and this occurrence was significantly lower than genome-wide random expectation. This suggests that the Adar Ser>Gly site is unlikely to be genomically replaced with G during evolution, and thus indicating the advantage of editable status over hardwired genomic alleles. Similar trends were observed for the conserved Ile>Met recoding in gene Syt1. In the light of evolution, we established a comparative genomic approach for quantitatively justifying the adaptiveness of individual editing sites. Priority should be given to such adaptive editing sites in future functional studies.
Collapse
Affiliation(s)
- Caiqing Zheng
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Ling Ma
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Fan Song
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Li Tian
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Wanzhi Cai
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Hu Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yuange Duan
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Duan Y, Ma L, Zhao T, Liu J, Zheng C, Song F, Tian L, Cai W, Li H. Conserved A-to-I RNA editing with non-conserved recoding expands the candidates of functional editing sites. Fly (Austin) 2024; 18:2367359. [PMID: 38889318 PMCID: PMC11188811 DOI: 10.1080/19336934.2024.2367359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024] Open
Abstract
Adenosine-to-inosine (A-to-I) RNA editing recodes the genome and confers flexibility for the organisms to adapt to the environment. It is believed that RNA recoding sites are well suited for facilitating adaptive evolution by increasing the proteomic diversity in a temporal-spatial manner. The function and essentiality of a few conserved recoding sites are recognized. However, the experimentally discovered functional sites only make up a small corner of the total sites, and there is still the need to expand the repertoire of such functional sites with bioinformatic approaches. In this study, we define a new category of RNA editing sites termed 'conserved editing with non-conserved recoding' and systematically identify such sites in Drosophila editomes, figuring out their selection pressure and signals of adaptation at inter-species and intra-species levels. Surprisingly, conserved editing sites with non-conserved recoding are not suppressed and are even slightly overrepresented in Drosophila. DNA mutations leading to such cases are also favoured during evolution, suggesting that the function of those recoding events in different species might be diverged, specialized, and maintained. Finally, structural prediction suggests that such recoding in potassium channel Shab might increase ion permeability and compensate the effect of low temperature. In conclusion, conserved editing with non-conserved recoding might be functional as well. Our study provides novel aspects in considering the adaptive evolution of RNA editing sites and meanwhile expands the candidates of functional recoding sites for future validation.
Collapse
Affiliation(s)
| | | | | | - Jiyao Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Caiqing Zheng
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Fan Song
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Li Tian
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Wanzhi Cai
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Hu Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
6
|
Zhang W, Shao ZQ, Wang ZX, Ye YF, Li SF, Wang YJ. Advances in aldo-keto reductases immobilization for biocatalytic synthesis of chiral alcohols. Int J Biol Macromol 2024; 274:133264. [PMID: 38901517 DOI: 10.1016/j.ijbiomac.2024.133264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Chiral alcohols are essential building blocks of numerous pharmaceuticals and fine chemicals. Aldo-keto reductases (AKRs) constitute a superfamily of oxidoreductases that catalyze the reduction of aldehydes and ketones to their corresponding alcohols using NAD(P)H as a coenzyme. Knowledge about the crucial roles of AKRs immobilization in the biocatalytic synthesis of chiral alcohols is expanding. Herein, we reviewed the characteristics of various AKRs immobilization approaches, the applications of different immobilization materials, and the prospects of continuous flow bioreactor construction by employing these immobilized biocatalysts for synthesizing chiral alcohols. Finally, the opportunities and ongoing challenges for AKR immobilization are discussed and the outlook for this emerging area is analyzed.
Collapse
Affiliation(s)
- Wen Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zi-Qing Shao
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zhi-Xiu Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yuan-Fan Ye
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Shu-Fang Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Ya-Jun Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|