1
|
Løkhammer S, Tesfaye M, Cabrera-Mendoza B, Sandås K, Pathak GA, Friligkou E, Le Hellard S, Polimanti R. Integration of Metabolomic and Brain Imaging Data Highlights Pleiotropy Among Posttraumatic Stress Disorder, Glycoprotein Acetyls, and Pallidum Structure. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2025; 5:100482. [PMID: 40270839 PMCID: PMC12013147 DOI: 10.1016/j.bpsgos.2025.100482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/16/2025] [Accepted: 03/01/2025] [Indexed: 04/25/2025] Open
Abstract
Background The development of posttraumatic stress disorder (PTSD) is attributable to the interplay between exposure to severe traumatic events, environmental factors, and biological characteristics. Blood and brain imaging markers have been associated with PTSD. However, to our knowledge, no study has systematically investigated the genetic relationship between PTSD, metabolic biomarkers, and brainwide imaging. Methods We integrated genome-wide data informative of PTSD, 233 metabolic biomarkers, and 3935 brain imaging-derived phenotypes (IDPs). Pleiotropy was assessed by applying global and local genetic correlation, colocalization, and genetically inferred causality. Results We observed significant genetic overlap between PTSD and glycoprotein acetyls (GlycA) (a stable inflammatory biomarker) in 2 independent cohorts (discovery r g = 0.26, p = 1.00 × 10-4; replication r g = 0.23, p = 5.99 × 10-19). Interestingly, there was no genetic correlation between anxiety and GlycA (p = .33). PTSD and GlycA were both genetically correlated with median T2∗ in the left pallidum (IDP-1444: r g = 0.14, p = 1.39 × 10-5; r g = -0.38, p = 2.50 × 10-3, respectively). Local genetic correlation between PTSD and GlycA was observed in 7 genetic regions (p < 2.0 × 10-5), mapping genes related to immune and stress response, inflammation, and metabolic processes. Furthermore, we identified 1 variant, rs12048743, with evidence of horizontal pleiotropy linking GlycA and IDP-1444 (z IDP-1444 = 17.14, z GlycA = -6.07, theta p = 2.06 × 10-8). Regional colocalization was observed among GlycA, IDP-1444, and tissue-specific transcriptomic regulation for brain frontal cortex and testis (rs12048743-chr1q32.1; posterior probability > 0.8). While we also tested causality between PTSD, metabolomic biomarkers, and brain IDPs, these were not consistent across different genetically informed causal inference methods. Conclusions Our findings highlight a new putative pleiotropic mechanism that links systemic inflammation and pallidum structure to PTSD.
Collapse
Affiliation(s)
- Solveig Løkhammer
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Markos Tesfaye
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Center for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Brenda Cabrera-Mendoza
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
- Veterans Affairs Connecticut Healthcare Center, West Haven, Connecticut
| | - Kristoffer Sandås
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
- School of Bioscience, University of Skövde, Skövde, Sweden
| | - Gita A. Pathak
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
- Veterans Affairs Connecticut Healthcare Center, West Haven, Connecticut
| | - Eleni Friligkou
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
- Veterans Affairs Connecticut Healthcare Center, West Haven, Connecticut
| | - Stéphanie Le Hellard
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Dr. Einar Martens Research Group for Biological Psychiatry, Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
- Bergen Center for Brain Plasticity, Haukeland University Hospital, Bergen, Norway
| | - Renato Polimanti
- Department of Psychiatry, Yale School of Medicine, New Haven, Connecticut
- Veterans Affairs Connecticut Healthcare Center, West Haven, Connecticut
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, Connecticut
- Department of Biomedical Informatics and Data Science, Yale School of Medicine, New Haven, Connecticut
- Wu Tsai Institute, Yale University, New Haven, Connecticut
| |
Collapse
|
2
|
Stankevičius V, Gasiulė L, Vilkaitis G, Klimašauskas S. Selective chemical tracking of DNA methylomes in live cells. Epigenomics 2025:1-3. [PMID: 40327528 DOI: 10.1080/17501911.2025.2500914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 04/28/2025] [Indexed: 05/08/2025] Open
Affiliation(s)
- Vaidotas Stankevičius
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Liepa Gasiulė
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Giedrius Vilkaitis
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Saulius Klimašauskas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
3
|
Li X, Fan D, Li Y, Yuan J, Sun W, Zhu Q, Qi L, Wu X, Cai J, Gong T, Zhao N, Su J, Liu Z, Chen H. NKX2-5/LHX1 and UHRF1 Establishing a Positive Feedback Regulatory Circuitry Drives Esophageal Squamous Cell Carcinoma through Epigenetic Dysregulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413508. [PMID: 40307990 PMCID: PMC12120717 DOI: 10.1002/advs.202413508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 04/06/2025] [Indexed: 05/02/2025]
Abstract
DNA methylation regulators play critical roles in modulating oncogenic driver genes in cancers. However, the precise mechanisms through which these DNA methylation regulators influence oncogenesis and clinical therapy have yet to be fully elucidated. This study reveals that hypermethylation of under-methylated regions (UMRs) within gene bodies is involved in the activation of oncogenic homeobox genes, particularly NKX2-5 and LHX1, in esophageal squamous cell carcinoma (ESCC). Mechanistically, NKX2-5 and LHX1 synergistically bind to the promoter region of UHRF1, thereby augmenting its transcription. In turn, UHRF1 orchestrates the recruitment of DNMT1/DNMT3A, alongside NKX2-5 and LHX1, to the UMRs of these genes, thereby increasing DNA methylation levels and their expression. This intricate interplay forms a positive transcriptional feedback loop between NKX2-5/LHX1 and UHRF1, thus promoting the overexpression of all three genes and ultimately facilitating tumor growth. Notably, concurrent inhibition of UHRF1 and DNMTs impedes tumor growth by suppressing NKX2-5 and LHX1 expression. Overall, this study identifies a positive feedback regulatory circuitry underlying the UMR hypermethylation-mediated activation of oncogenic drivers in ESCC and proposes a promising therapeutic strategy for ESCC patients.
Collapse
Affiliation(s)
- Xukun Li
- The State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
- Shenzhen Key Laboratory of Epigenetics and Precision Medicine for CancersNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen HospitalChinese Academic of Medical Sciences and Peking Union Medical CollegeShenzhen518116P. R. China
- Central LaboratoryNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen HospitalChinese Academic of Medical Sciences and Peking Union Medical CollegeShenzhen518116P. R. China
| | - Dandan Fan
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Eye HospitalWenzhou Medical UniversityWenzhouZhejiang325101P. R. China
| | - Yong Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Jian Yuan
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Eye HospitalWenzhou Medical UniversityWenzhouZhejiang325101P. R. China
| | - Wanyuan Sun
- The State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Qinghao Zhu
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Eye HospitalWenzhou Medical UniversityWenzhouZhejiang325101P. R. China
| | - Ling Qi
- Department of Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Xueling Wu
- The State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Jiahui Cai
- The State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Tongyang Gong
- The State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Ning Zhao
- The State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Jianzhong Su
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Eye HospitalWenzhou Medical UniversityWenzhouZhejiang325101P. R. China
| | - Zhihua Liu
- The State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| | - Hongyan Chen
- The State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021P. R. China
| |
Collapse
|
4
|
Huang Y, Luo L, Xu Y, Li J, Wu Z, Zhao C, Wen J, Jiang P, Zhu H, Wang L, Chen Y, Yang T, Hu J. UHRF1-mediated epigenetic reprogramming regulates glycolysis to promote progression of B-cell acute lymphoblastic leukemia. Cell Death Dis 2025; 16:351. [PMID: 40301374 PMCID: PMC12041315 DOI: 10.1038/s41419-025-07532-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 02/18/2025] [Accepted: 03/12/2025] [Indexed: 05/01/2025]
Abstract
The prognosis for adult B-cell acute lymphoblastic leukemia remains unfavorable, especially in the context of relapsed and refractory disease. Exploring the molecular mechanisms underlying disease progression holds significant promise for improving clinical outcomes. In this investigation, utilizing single-cell transcriptome sequencing technology, we discerned a correlation between Ubiquitin-like containing PHD and RING finger domain 1 (UHRF1) and the progression of B-cell acute lymphoblastic leukemia. Our findings reveal a significant upregulation of UHRF1 in cases of relapsed and refractory B-cell acute lymphoblastic leukemia, thereby serving as a prognostic indicator for poor outcomes. Both deletion of UHRF1 or overexpression of its downstream target secreted frizzled-related protein 5 (SFRP5) resulted in the inhibition of leukemia cell proliferation, promoting cellular apoptosis and induction of cell cycle arrest. Our results showed that UHRF1 employs methylation modifications to repress the expression of SFRP5, consequently inducing the WNT5A-P38 MAPK-HK2 signaling axis, resulting in the augmentation of lactate, the critical metabolic product of aerobic glycolysis. Furthermore, we identified UM164 as a targeted inhibitor of UHRF1 that substantially inhibits P38 protein phosphorylation, downregulates HK2 expression, and reduces lactate production. UM164 also demonstrated antileukemic activity both in vitro and in vivo. In summary, our investigation revealed the molecular mechanisms of epigenetic and metabolic reprogramming in relapsed and refractory B-cell acute lymphoblastic leukemia and provides potential targeted therapeutic strategies to improve its inadequate prognosis. The schematic model showed the regulator network of UHRF1-SFRP5-WNT5A-P38 MAPK-HK2 in B-ALL.
Collapse
Affiliation(s)
- Yan Huang
- Fujian Medical University Union Hospital, Fuzhou, Fujian, P.R. China
| | - Luting Luo
- Fujian Medical University Union Hospital, Fuzhou, Fujian, P.R. China
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, P.R. China
- Institute of Precision Medicine, Fujian Medical University, Fuzhou, Fujian, P.R. China
| | - Yangqi Xu
- Fujian Medical University Union Hospital, Fuzhou, Fujian, P.R. China
| | - Jiazheng Li
- Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, P.R. China
| | - Zhengjun Wu
- Fujian Medical University Union Hospital, Fuzhou, Fujian, P.R. China
| | - Chenxing Zhao
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, P.R. China
| | - Jingjing Wen
- Department of Lymphoma, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, Fujian, P.R. China
| | - Peifang Jiang
- Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian, P.R. China
| | - Haojie Zhu
- The Second Department of Hematology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, P.R. China
| | - Lingyan Wang
- Fujian Medical University Union Hospital, Fuzhou, Fujian, P.R. China
| | - Yanxin Chen
- Fujian Medical University Union Hospital, Fuzhou, Fujian, P.R. China.
| | - Ting Yang
- The Second Department of Hematology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, P.R. China.
| | - Jianda Hu
- Fujian Medical University Union Hospital, Fuzhou, Fujian, P.R. China.
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, P.R. China.
- Institute of Precision Medicine, Fujian Medical University, Fuzhou, Fujian, P.R. China.
| |
Collapse
|
5
|
Abe K, Sasano T, Soejima Y, Fukayama H, Maeda S, Furukawa T. Hypermethylation of Hif3a and Ifltd1 is associated with atrial remodeling in pressure-overload murine model. Sci Rep 2025; 15:2699. [PMID: 39837857 PMCID: PMC11751168 DOI: 10.1038/s41598-025-85382-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 01/02/2025] [Indexed: 01/23/2025] Open
Abstract
Atrial remodeling is a major pathophysiological mechanism of atrial fibrillation (AF). Atrial remodeling progresses with aging and background diseases, including hypertension, heart failure, and AF itself. However, its mechanism of action and reversibility have not been completely elucidated. In this study, we investigated the involvement of DNA methylation in atrial remodeling. Mice underwent transverse aortic constriction (TAC) to generate a pressure overload model. After 14 days, the TAC-operated mice showed a significant increase in the atrium/body weight ratio and deposition of collagen fibers in the atria. A comprehensive analysis using RNA-sequencing (RNA-Seq) and methyl-CpG-binding domain sequencing (MBD-Seq) in the left atrial tissue identified Hif3a and Ifltd1 as showing increased DNA methylation in their promoter regions and decreased RNA expression. In addition, we created a transient pressure overload model by removing the aortic constriction 3 or 7 days after the initial TAC procedure (R3 or R7 groups). A reduction in RNA expression was achieved at R3 for Hif3a and at R7 for Ifltd1. Heterozygous Dnmt1 gene-targeting mice (Dnmt1mut) showed disappearance of the reduction in RNA expression and an increase in the atrium/body weight ratio. Altogether, DNA methylation contributed to at least part of atrial remodeling in the pressure overload mouse model.
Collapse
Affiliation(s)
- Keiko Abe
- Department of Dental Anesthesiology and Orofacial Pain Management, Institute of Science Tokyo, Tokyo, Japan
- Department of Cardiovascular Medicine, Institute of Science Tokyo, 1-5-45, Yushima, Bunkyo-ku, Tokyo, Japan
| | - Tetsuo Sasano
- Department of Cardiovascular Medicine, Institute of Science Tokyo, 1-5-45, Yushima, Bunkyo-ku, Tokyo, Japan.
| | - Yurie Soejima
- Department of Pathology and Anatomical Sciences, Institute of Science Tokyo, Tokyo, Japan
| | - Haruhisa Fukayama
- Department of Dental Anesthesiology and Orofacial Pain Management, Institute of Science Tokyo, Tokyo, Japan
| | - Shigeru Maeda
- Department of Dental Anesthesiology and Orofacial Pain Management, Institute of Science Tokyo, Tokyo, Japan
| | | |
Collapse
|
6
|
Uguen M, Liu T, James LI, Frye SV. Tudor-Containing Methyl-Lysine and Methyl-Arginine Reader Proteins: Disease Implications and Chemical Tool Development. ACS Chem Biol 2025; 20:33-47. [PMID: 39718819 DOI: 10.1021/acschembio.4c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Tudor domains are histone readers that can recognize various methylation marks on lysine and arginine. This recognition event plays a key role in the recruitment of other epigenetic effectors and the control of gene accessibility. The Tudor-containing protein family contains 42 members, many of which are involved in the development and progression of various diseases, especially cancer. The development of chemical tools for this family will not only lead to a deeper understanding of the biological functions of Tudor domains but also lay the foundation for therapeutic discoveries. In this review, we discuss the role of several Tudor domain-containing proteins in a range of relevant diseases and progress toward the development of chemical tools such as peptides, peptidomimetics, or small-molecules that bind Tudor domains. Overall, we highlight how Tudor domains are promising targets for therapeutic development and would benefit from the development of novel chemical tools.
Collapse
Affiliation(s)
- Mélanie Uguen
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Tongkun Liu
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Lindsey I James
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Stephen V Frye
- UNC Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
7
|
Magnani E, Macchi F, Randic T, Chen C, Madakashira B, Ranjan S, Eski SE, Singh SP, Sadler KC. Epigenetic Disordering Drives Stemness, Senescence Escape and Tumor Heterogeneity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.29.629346. [PMID: 39763773 PMCID: PMC11703240 DOI: 10.1101/2024.12.29.629346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Tumor heterogeneity is the substrate for tumor evolution and the linchpin of treatment resistance. Cancer cell heterogeneity is largely attributed to distinct genetic changes within each cell population. However, the widespread epigenome repatterning that characterizes most cancers is also highly heterogenous within tumors and could generate cells with diverse identities and malignant features. We show that high levels of the epigenetic regulator and oncogene, UHRF1, in zebrafish hepatocytes rapidly induced methylome disordering, loss of heterochromatin, and DNA damage, resulting in cell cycle arrest, senescence, and acquisition of stemness. Reducing UHRF1 expression transitions these cells from senescent to proliferation-competent. The expansion of these damaged cells results in hepatocellular carcinomas (HCC) that have immature cancer cells intermingled with fibroblasts, immune and senescent cells expressing high UHRF1 levels, which serve as reservoirs for new cancer cells. This defines a distinct and heterogenous HCC subtype resulting from epigenetic changes, stemness and senescence escape.
Collapse
Affiliation(s)
- Elena Magnani
- Program in Biology, NYU Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Filippo Macchi
- Program in Biology, NYU Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Tijana Randic
- Program in Biology, NYU Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Charlene Chen
- Program in Biology, NYU Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Bhavani Madakashira
- Program in Biology, NYU Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Shashi Ranjan
- Program in Biology, NYU Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Sema Elif Eski
- Laboratory of Regeneration and Stress Biology, Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM-Jacques E. Dumont), Université libre de Bruxelles, 1070 Brussels, Belgium
| | - Sumeet P. Singh
- Laboratory of Regeneration and Stress Biology, Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM-Jacques E. Dumont), Université libre de Bruxelles, 1070 Brussels, Belgium
| | - Kirsten C. Sadler
- Program in Biology, NYU Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
- Center for Genomics and Systems Biology, NYU Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| |
Collapse
|
8
|
Monge C, Francés R, Marchio A, Pineau P, Desterke C, Mata-Garrido J. Characterization of an Activated Metabolic Transcriptional Program in Hepatoblastoma Tumor Cells Using scRNA-seq. Int J Mol Sci 2024; 25:13044. [PMID: 39684755 DOI: 10.3390/ijms252313044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Hepatoblastoma is the most common primary liver malignancy in children, with metabolic reprogramming playing a critical role in its progression due to the liver's intrinsic metabolic functions. Enhanced glycolysis, glutaminolysis, and fatty acid synthesis have been implicated in hepatoblastoma cell proliferation and survival. In this study, we screened for altered overexpression of metabolic enzymes in hepatoblastoma tumors at tissue and single-cell levels, establishing and validating a hepatoblastoma tumor expression metabolic score using machine learning. Starting from the Mammalian Metabolic Enzyme Database, bulk RNA sequencing data from GSE104766 and GSE131329 datasets were analyzed using supervised methods to compare tumors versus adjacent liver tissue. Differential expression analysis identified 287 significantly regulated enzymes, 59 of which were overexpressed in tumors. Functional enrichment in the KEGG metabolic database highlighted a network enriched in amino acid metabolism, as well as carbohydrate, steroid, one-carbon, purine, and glycosaminoglycan metabolism pathways. A metabolic score based on these enzymes was validated in an independent cohort (GSE131329) and applied to single-cell transcriptomic data (GSE180665), predicting tumor cell status with an AUC of 0.98 (sensitivity 0.93, specificity 0.94). Elasticnet model tuning on individual marker expression revealed top tumor predictive markers, including FKBP10, ATP1A2, NT5DC2, UGT3A2, PYCR1, CKB, GPX7, DNMT3B, GSTP1, and OXCT1. These findings indicate that an activated metabolic transcriptional program, potentially influencing epigenetic functions, is observed in hepatoblastoma tumors and confirmed at the single-cell level.
Collapse
Affiliation(s)
- Claudia Monge
- Unité Organisation Nucléaire et Oncogenèse, INSERM U993, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Raquel Francés
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 75006 Paris, France
| | - Agnès Marchio
- Unité Organisation Nucléaire et Oncogenèse, INSERM U993, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Pascal Pineau
- Unité Organisation Nucléaire et Oncogenèse, INSERM U993, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| | - Christophe Desterke
- Faculté de Médecine du Kremlin Bicêtre, University Paris-Sud, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Jorge Mata-Garrido
- Unité Organisation Nucléaire et Oncogenèse, INSERM U993, Institut Pasteur, Université Paris Cité, 75015 Paris, France
| |
Collapse
|
9
|
Yunusova A, Zadorozhnyi D, Battulin N. Auxin Triggers AHR Pathway Activation in the Auxin-Inducible Degron System in Mammalian Cells. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:2214-2226. [PMID: 39865034 DOI: 10.1134/s0006297924120101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/23/2024] [Accepted: 11/27/2024] [Indexed: 01/28/2025]
Abstract
The auxin-inducible degron (AID) system is widely used to study function of various proteins. The plant hormone auxin is used as an inducer in this system, which easily penetrates into the cells and causes proteasomal degradation of the protein of interest fused to a small degron tag. It is often assumed that as a plant hormone, auxin does not significantly affect physiology of animal cells. In order to test how auxin affects gene expression in human and mouse cells, we collected a set of published data on the levels of gene expression in various experiments with the auxin degradation system of various proteins. The analysis showed that in human HCT116, DLD1, and HAP1 cell lines, as well as in mouse embryonic stem cell lines, auxin treatment leads to activation of aryl hydrocarbon receptor (AHR)-related genes. However, activation of AHR pathway genes does not occur upon auxin treatment in the human IMR32 cells and mouse G1E-ER4 cells, which are characterized by low AHR gene expression. To verify this observation, we conducted an experiment treating human U87, A549, and HCT116 cells with auxin and demonstrated activation of one of the main AHR pathway responders, the CYP1B1 gene. We believe that activation of the AHR pathway should be taken into account by those using the auxin degradation system in their studies.
Collapse
Affiliation(s)
- Anastasia Yunusova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Daniil Zadorozhnyi
- Center for Genetics and Life Science, Sirius University of Science and Technology, Sochi, 354340, Russia
| | - Nariman Battulin
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
- Novosibirsk State University, Novosibirsk, 630090, Russia
| |
Collapse
|
10
|
Dai W, Qiao X, Fang Y, Guo R, Bai P, Liu S, Li T, Jiang Y, Wei S, Na Z, Xiao X, Li D. Epigenetics-targeted drugs: current paradigms and future challenges. Signal Transduct Target Ther 2024; 9:332. [PMID: 39592582 PMCID: PMC11627502 DOI: 10.1038/s41392-024-02039-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/14/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Epigenetics governs a chromatin state regulatory system through five key mechanisms: DNA modification, histone modification, RNA modification, chromatin remodeling, and non-coding RNA regulation. These mechanisms and their associated enzymes convey genetic information independently of DNA base sequences, playing essential roles in organismal development and homeostasis. Conversely, disruptions in epigenetic landscapes critically influence the pathogenesis of various human diseases. This understanding has laid a robust theoretical groundwork for developing drugs that target epigenetics-modifying enzymes in pathological conditions. Over the past two decades, a growing array of small molecule drugs targeting epigenetic enzymes such as DNA methyltransferase, histone deacetylase, isocitrate dehydrogenase, and enhancer of zeste homolog 2, have been thoroughly investigated and implemented as therapeutic options, particularly in oncology. Additionally, numerous epigenetics-targeted drugs are undergoing clinical trials, offering promising prospects for clinical benefits. This review delineates the roles of epigenetics in physiological and pathological contexts and underscores pioneering studies on the discovery and clinical implementation of epigenetics-targeted drugs. These include inhibitors, agonists, degraders, and multitarget agents, aiming to identify practical challenges and promising avenues for future research. Ultimately, this review aims to deepen the understanding of epigenetics-oriented therapeutic strategies and their further application in clinical settings.
Collapse
Affiliation(s)
- Wanlin Dai
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xinbo Qiao
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuanyuan Fang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Renhao Guo
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peng Bai
- Department of Forensic Genetics, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Shuang Liu
- Shenyang Maternity and Child Health Hospital, Shenyang, China
| | - Tingting Li
- Department of General Internal Medicine VIP Ward, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Yutao Jiang
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuang Wei
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhijing Na
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
| | - Xue Xiao
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, China.
| | - Da Li
- Center of Reproductive Medicine, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
- NHC Key Laboratory of Advanced Reproductive Medicine and Fertility (China Medical University), National Health Commission, Shenyang, China.
- Key Laboratory of Reproductive Dysfunction Diseases and Fertility Remodeling of Liaoning Province, Shenyang, China.
| |
Collapse
|
11
|
Li N, Liu HY, Liu SM. Deciphering DNA Methylation in Gestational Diabetes Mellitus: Epigenetic Regulation and Potential Clinical Applications. Int J Mol Sci 2024; 25:9361. [PMID: 39273309 PMCID: PMC11394902 DOI: 10.3390/ijms25179361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/08/2024] [Accepted: 08/15/2024] [Indexed: 09/15/2024] Open
Abstract
Gestational diabetes mellitus (GDM) represents a prevalent complication during pregnancy, exerting both short-term and long-term impacts on maternal and offspring health. This review offers a comprehensive outline of DNA methylation modifications observed in various maternal and offspring tissues affected by GDM, emphasizing the intricate interplay between DNA methylation dynamics, gene expression, and the pathogenesis of GDM. Furthermore, it explores the influence of environmental pollutants, maternal nutritional supplementation, and prenatal gut microbiota on GDM development through alterations in DNA methylation profiles. Additionally, this review summarizes recent advancements in DNA methylation-based diagnostics and predictive models in early GDM detection and risk assessment for subsequent type 2 diabetes. These insights contribute significantly to our understanding of the epigenetic mechanisms underlying GDM development, thereby enhancing maternal and fetal health outcomes and advocating further efforts in this field.
Collapse
Affiliation(s)
- Nan Li
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071, China
| | - Huan-Yu Liu
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071, China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, 169 Donghu Road, Wuhan 430071, China
| | - Song-Mei Liu
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071, China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, 169 Donghu Road, Wuhan 430071, China
| |
Collapse
|