1
|
Huang Y, Ke C, Lou C, He Q. Chemically active colloidal superstructures. NANOSCALE 2025; 17:12534-12553. [PMID: 40331321 DOI: 10.1039/d5nr00650c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Mimicking biological systems, artificial active colloidal motors that continuously dissipate energy can dynamically self-assemble to form active colloidal superstructures with specific spatial configurations and complex functionalities, which offers a promising pathway for developing new active soft matter materials with adaptability, self-repair, and reconfigurability. Beyond merely propelling their own motion, chemically driven colloidal motors can also induce phoretic effects and osmotic flows to affect the motion of neighboring colloidal motors through local fluid fields generated by chemical reactions, thereby achieving spontaneous chemical communication and promoting dynamic self-assembly between motors. This review summarizes the latest progress in the dynamic self-assembly of chemically driven colloidal motors, ranging from single chemically driven colloidal motors to chemically driven colloidal motors with passive colloidal particles and then to different chemically driven colloidal motors, ultimately forming active colloidal superstructures with complex dynamic behaviors. Not only are the interactions between chemically driven colloidal motors with different self-propulsion mechanisms and passive colloidal particles focused on, but also the communication behaviors between chemically driven colloidal motors are explored. We explain the fundamental physicochemical mechanisms that regulate the assembly behavior of chemically driven colloidal motors, propose general strategies for the controlled construction of active colloidal superstructures, and discuss the potential applications that may emerge from the directed dynamic self-assembly of these superstructures.
Collapse
Affiliation(s)
- Yang Huang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Changcheng Ke
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China.
| | - Celi Lou
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China.
| | - Qiang He
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China.
- School of Medicine and Health, Harbin Institute of Technology, Harbin 150080, China
| |
Collapse
|
2
|
Ma C, Song W, Zhao X, Yu H, Lu J, Qu ZB, Wu W, Han Z, Mu Z, Yan J, Ren L. Bioinspired Soft Robots with Integrated Biological Motion Mechanisms and Rigid-Flexible Coupling Systems. SMALL METHODS 2025:e2402264. [PMID: 40326196 DOI: 10.1002/smtd.202402264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 04/21/2025] [Indexed: 05/07/2025]
Abstract
The inherent flexibility, safety, and biocompatibility of soft robots show significant potential for intelligent biomedical engineering applications. However, the unique operating environments of soft robots, including both in vivo and in vitro conditions, necessitate highly flexible movement capabilities. Optimizing the structural design to enable multi-degree-of-freedom motions is crucial to realize the expansion and deepening of soft robots in this field. Inspired by shape-morphing organisms in nature, researchers have recently developed a variety of bioinspired soft robots (BSR) with morphing capabilities that can realize motions such as bending, twisting, and stretching/contracting. The shape-morphing of organisms is determined by their unique motion mechanisms. This work comprehensively reviews the structure and morphology of typical biological prototypes with different shape-morphing behaviors, motion mechanisms, design strategies of the deformable BSR, and their vast applications in current biomedical engineering. Finally, this review also provides valuable insights into the current challenges and future opportunities for BSR.
Collapse
Affiliation(s)
- Chenxi Ma
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, China
| | - Wenda Song
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, China
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130022, China
| | - Xudong Zhao
- Peking University First Hospital, Peking University, Beijing, 100871, China
| | - Hexuan Yu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, China
| | - Jiaming Lu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, China
| | - Zhi-Bei Qu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai, 200433, China
| | - Wenzheng Wu
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130022, China
| | - Zhiwu Han
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, China
| | - Zhengzhi Mu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, China
| | - Jiao Yan
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 511436, China
- The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Luquan Ren
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, China
| |
Collapse
|
3
|
Lu L, Bai S, Shi J, Zhang H, Hou G, Wang W, Sun S, Huang T, Jia Y, Granovsky A, Nikolai P, Wu Z, Xie H, Wu H. Bacteria Flagella-Mimicking Polymer Multilayer Magnetic Microrobots. SMALL METHODS 2025; 9:e2401558. [PMID: 39838737 DOI: 10.1002/smtd.202401558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/06/2025] [Indexed: 01/23/2025]
Abstract
Mass production of biomedical microrobots demands expensive and complex preparation techniques and versatile biocompatible materials. Learning from natural bacteria flagella, the study demonstrates a magnetic polymer multilayer cylindrical microrobot that bestows the controllable propulsion upon an external rotating magnetic field with uniform intensity. The magnetic microrobots are constructed by template-assisted layer-by-layer technique and subsequent functionalization of magnetic particles onto the large opening of the microrobots. Geometric variables of the polymer microrobots, such as the diameter and wall thickness, can be controlled by selection of porous template and layers of assembly. The microrobots perform controllable propulsion through the manipulation of magnetic field. The comparative analysis of the movement behavior reveals that the deformation of microrobots may be attributed to the propulsion upon rotating magnetic field, which is similar to that of natural bacteria. The influence of actuation and frequency on the velocity of the microrobots is studied. Such polymer multilayer magnetic microrobots may provide a novel concept to develop rapidly delivering drug therapeutic agents for diverse practical biomedical uses.
Collapse
Affiliation(s)
- Liang Lu
- The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, 150001, China
- School of Medicine and Health, Harbin Institute of Technology, Harbin, 150006, China
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150006, China
| | - Shuang Bai
- The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, 150001, China
- School of Medicine and Health, Harbin Institute of Technology, Harbin, 150006, China
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150006, China
| | - Jiaqi Shi
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Hutao Zhang
- The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, 150001, China
| | - Gang Hou
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Wei Wang
- College of Science, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shoubin Sun
- The Fourth Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, 150001, China
| | - Tianyun Huang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150006, China
- Department of Advanced Manufacturing and Robotics, College of Engineering, and State Key Laboratory for Turbulence and Complex Systems, Peking University, Beijing, 100091, China
| | - Yuxin Jia
- Department of Mathematics, Imperial College London, London, SW7 2AZ, UK
| | - Alexander Granovsky
- Magnetism Department, Faculty of Physics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Perov Nikolai
- Magnetism Department, Faculty of Physics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Zhiguang Wu
- The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, 150001, China
- School of Medicine and Health, Harbin Institute of Technology, Harbin, 150006, China
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150006, China
| | - Hui Xie
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin, 150006, China
| | - He Wu
- The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, 150001, China
| |
Collapse
|
4
|
Xu J, Li Y, Wang F, Li W, Zhan J, Deng S, Song C, Yang H, Cai R, Tan W. Machine Learning Assisted-Intelligent Lactic Acid Monitoring in Sweat Supported by a Perspiration-Driven Self-Powered Sensor. NANO LETTERS 2025; 25:2968-2977. [PMID: 39909470 DOI: 10.1021/acs.nanolett.4c06485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Lactic acid has aroused increasing attention due to its close association with serious diseases. A real-time, dynamic, and intelligent detection method is vital for sensitive detection of lactic acid. Here, a machine learning (ML)-assisted perspiration-driven self-powered sensor (PDS sensor) is fabricated using Ni-ZIF-8@lactate oxidase and pyruvate oxidase (Ni-ZIF-8@LOx&POx)/laser-induced graphene (LIG), bilirubin oxidase (BOD)/LIG, and a microchannel for highly sensitive and real-time monitoring of lactic acid in sweat. Driven by the oxidation reaction of lactic acid, PDS sensors exhibit excellent sensitivity, a wide detection range, good reproducibility, and excellent selectivity for lactic acid detection in sweat. When subjects with different body mass index (BMI) undergo aerobic or anaerobic exercise or maintain a sedentary state, PDS sensors can monitor lactic acid in sweat wirelessly and in real-time. Moreover, a ML algorithm was employed to assist PDS sensors to detect lactic acid in the subjects' sweat with a high prediction accuracy of 96.0%.
Collapse
Affiliation(s)
- Jing Xu
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Dabie Mountain Laboratory, Xinyang 464000, China
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Yujin Li
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Dabie Mountain Laboratory, Xinyang 464000, China
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Futing Wang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Wangchen Li
- College of Pipeline and Civil Engineering, China University of Petroleum, Shandong 266580, China
| | - Jiajun Zhan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Suping Deng
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Changxiao Song
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Hongfen Yang
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Ren Cai
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Material Science and Engineering, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
5
|
Yang C, Liu X, Song X, Zhang L. Design and batch fabrication of anisotropic microparticles toward small-scale robots using microfluidics: recent advances. LAB ON A CHIP 2024; 24:4514-4535. [PMID: 39206574 DOI: 10.1039/d4lc00566j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Small-scale robots with shape anisotropy have garnered significant scientific interest due to their enhanced mobility and precise control in recent years. Traditionally, these miniature robots are manufactured using established techniques such as molding, 3D printing, and microfabrication. However, the advent of microfluidics in recent years has emerged as a promising manufacturing technology, capitalizing on the precise and dynamic manipulation of fluids at the microscale to fabricate various complex-shaped anisotropic particles. This offers a versatile and controlled platform, enabling the efficient fabrication of small-scale robots with tailored morphologies and advanced functionalities from the microfluidic-derived anisotropic microparticles at high throughput. This review highlights the recent advances in the microfluidic fabrication of anisotropic microparticles and their potential applications in small-scale robots. In this review, the term 'small-scale robots' broadly encompasses micromotors endowed with capabilities for locomotion and manipulation. Firstly, the fundamental strategies for liquid template formation and the methodologies for generating anisotropic microparticles within the microfluidic system are briefly introduced. Subsequently, the functionality of shape-anisotropic particles in forming components for small-scale robots and actuation mechanisms are emphasized. Attention is then directed towards the diverse applications of these microparticle-derived microrobots in a variety of fields, including pollution remediation, cell microcarriers, drug delivery, and biofilm eradication. Finally, we discuss future directions for the fabrication and development of miniature robots from microfluidics, shedding light on the evolving landscape of this field.
Collapse
Affiliation(s)
- Chaoyu Yang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, China.
| | - Xurui Liu
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, China.
| | - Xin Song
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, China.
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong 999077, China.
| |
Collapse
|