1
|
Zhou S, Yang H. Radiotherapy modulates autophagy to reshape the tumor immune microenvironment to enhance anti-tumor immunity in esophageal cancer. Biochim Biophys Acta Rev Cancer 2025; 1880:189302. [PMID: 40120778 DOI: 10.1016/j.bbcan.2025.189302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 03/15/2025] [Accepted: 03/16/2025] [Indexed: 03/25/2025]
Abstract
The combination of radiotherapy and immunotherapy exerts synergistic antitumor in a range of human cancers, and also in esophageal cancer. Radiotherapy-induced tumor immune microenvironment (TIME) reprogramming is an essential basis for the synergistic antitumor between radiotherapy and immunotherapy. Radiotherapy can induce autophagy in tumor cells and immune cells of TIME, and autophagy activation is involved in the modification of immunological characteristics of TIME. The TIME landscape of esophageal cancer, especially ESCC, can be affected by radiotherapy or autophagy regulation. In this review, we depicted that local radiotherapy-induced autophagy could promote the maturation, migration, infiltration, and function of immune cells by complicated mechanisms to make TIME from immune "cold" to "hot", resulting in the synergistic antitumor of RT and IO. We argue that unraveling the relevance of radiotherapy-initiated autophagy to driving radiotherapy reprogramming TIME will open new ideas to explore new targets or more efficiently multimodal therapeutic interventions in ESCC.
Collapse
Affiliation(s)
- Suna Zhou
- Key Laboratory of Radiation Oncology of Taizhou, Department of Radiation Oncology, Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, Zhejiang 317000, China
| | - Haihua Yang
- Key Laboratory of Radiation Oncology of Taizhou, Department of Radiation Oncology, Key Laboratory of Minimally Invasive Techniques & Rapid Rehabilitation of Digestive System Tumor of Zhejiang Province, Taizhou Hospital Affiliated to Wenzhou Medical University, Taizhou, Zhejiang 317000, China.
| |
Collapse
|
2
|
Zhang J, Jin X, Hou Y, Gu B, Li H, Yi L, Wu W, Hu S. Comprehensive analysis of the critical role of the epithelial mesenchymal transition subtype - TAGLN-positive fibroblasts in colorectal cancer progression and immunosuppression. Cell Biosci 2025; 15:66. [PMID: 40413514 PMCID: PMC12102804 DOI: 10.1186/s13578-025-01405-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 05/05/2025] [Indexed: 05/27/2025] Open
Abstract
Epithelial-mesenchymal transition (EMT) plays a pivotal role in tumor metastasis and immune suppression in colorectal cancer (CRC). However, the specific mechanisms of EMT and its relationship with the clinical prognosis and immunotherapy response in CRC patients remain unclear. In this study, we identified TAGLN-positive fibroblasts (TAGLN⁺Fib) as a cancer-associated fibroblast (CAF) subtype within the tumor microenvironment (TME) that promotes tumor metastasis and immune evasion. High EMT scores, strongly associated with TAGLN expression, were correlated with advanced tumor stages, poor prognosis, and resistance to immunotherapy. Functional experiments demonstrated that TAGLN knockdown significantly reduced CRC cell proliferation, migration, and EMT phenotypes in vitro and suppressed tumor growth in vivo. Furthermore, TAGLN⁺Fib closely interacted with MMP7-positive tumor epithelial cells and SPP1-positive macrophages, forming a pro-metastatic and immunosuppressive network. An EMT-TME risk model constructed using TAGLN⁺Fib exhibited robust predictive power for CRC prognosis and immunotherapy response. This study reveals the association of EMT scores with CRC prognosis and immunotherapy response, highlights TAGLN⁺Fib's critical role in tumor progression, and develops an EMT-TME risk model, offering insights for personalized CRC treatment and precision medicine.
Collapse
Affiliation(s)
- Junli Zhang
- Department of Blood transfusion, The Third People's Hospital of Bengbu Affiliated to Bengbu Medical University, No. 38 Shengli Road, Bengshan District, Bengbu City, Anhui Province, China
- Anhui Provincial Key Laboratory of Tumor Evolution and Intelligent Diagnosis and Treatment, Anhui, China
- Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical University, Bengbu, Anhui, 233030, China
| | - Xinxin Jin
- Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical University, Bengbu, Anhui, 233030, China
| | - Yachao Hou
- Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical University, Bengbu, Anhui, 233030, China
| | - Biao Gu
- Department of Blood transfusion, The Third People's Hospital of Bengbu Affiliated to Bengbu Medical University, No. 38 Shengli Road, Bengshan District, Bengbu City, Anhui Province, China
| | - Hongwei Li
- Department of Blood transfusion, The Third People's Hospital of Bengbu Affiliated to Bengbu Medical University, No. 38 Shengli Road, Bengshan District, Bengbu City, Anhui Province, China
| | - Li Yi
- Department of Blood transfusion, The Third People's Hospital of Bengbu Affiliated to Bengbu Medical University, No. 38 Shengli Road, Bengshan District, Bengbu City, Anhui Province, China
| | - Wenjuan Wu
- Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical University, Bengbu, Anhui, 233030, China.
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical University, Bengbu, Anhui, 233030, China.
| | - Shangshang Hu
- Department of Blood transfusion, The Third People's Hospital of Bengbu Affiliated to Bengbu Medical University, No. 38 Shengli Road, Bengshan District, Bengbu City, Anhui Province, China.
- School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China.
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical University, Bengbu, Anhui, 233030, China.
| |
Collapse
|
3
|
Lan X, Li W, Zhao K, Wang J, Li S, Zhao H. Revisiting the role of cancer-associated fibroblasts in tumor microenvironment. Front Immunol 2025; 16:1582532. [PMID: 40313969 PMCID: PMC12043473 DOI: 10.3389/fimmu.2025.1582532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 03/31/2025] [Indexed: 05/03/2025] Open
Abstract
Cancer-associated fibroblasts (CAFs) are integral components of the tumor microenvironment playing key roles in tumor progression, metastasis, and therapeutic resistance. However, challenges persist in understanding their heterogeneity, origin, and functional diversity. One major obstacle is the lack of standardized naming conventions for CAF subpopulations, with current systems failing to capture their full complexity. Additionally, the identification of CAFs is hindered by the absence of specific biomarkers, limiting the precision of diagnostic and therapeutic strategies. In vitro culture conditions often fail to maintain the in vivo characteristics of CAFs, which complicates their study and the translation of findings to clinical practice. Although current detection methods, such as antibodies, mRNA probes, and single-cell transcriptomics, offer insights into CAF biology, they lack standardization and fail to provide reliable quantitative measures. Furthermore, the dynamic interactions between CAFs, tumor cells, and immune cells within the TME remain insufficiently understood, and the role of CAFs in immune evasion and therapy resistance is an area of ongoing research. Understanding how CAFs influence drug resistance and the immune response is essential for developing more effective cancer therapies. This review aims to provide an in-depth analysis of the challenges in CAF research, propose future research directions, and emphasize the need for improved CAF-targeted therapeutic strategies. By addressing these gaps, it seeks to highlight the potential of CAFs as targets for overcoming therapeutic resistance and enhancing the efficacy of cancer treatments.
Collapse
Affiliation(s)
| | | | | | | | | | - Hai Zhao
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
4
|
Li YH, Huang XJ, Zhao XY. Translational study of the regulatory mechanism by which immune synapses enhance immune cell function. Cancer Lett 2025; 614:217542. [PMID: 39924076 DOI: 10.1016/j.canlet.2025.217542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/29/2025] [Accepted: 02/07/2025] [Indexed: 02/11/2025]
Abstract
Immune synapses, which were initially discovered at the interface between antigen-presenting cells (APCs) and T cells, are special structures formed at the contact site between antigen-presenting cells and immune cells and constitute the structural basis for immune cells to kill tumours and synthesise antibodies. Their structures are very similar to those of neural synapses in the nervous system, and they contain different functional structural regions. With the development of cell visualization research, scientists have increasingly conducted in-depth research on immune synapses. At present, it is known that T cells, B cells, and NK cells can form different immune synapses with target cells. Immune synapses formed by different cell subsets as well as CAR-T cells have their own characteristics, mainly in terms of their structure, formation process and regulatory mechanism. Therefore, how to enhance immune cell killing function by enhancing immune synaptic function has long been a research hotspot. At present, the killing function of immune cells can be enhanced by influencing the signalling molecules of immune synapses and the cell microenvironment and modifying the structure of immune synapses. Through a review of the factors affecting immune synapses, we can better explore the target for enhancing immune system function.
Collapse
Affiliation(s)
- Ya-Hui Li
- Peking University People's Hospital, Peking University Institute of Haematology, National Clinical Research Center for Haematologic Disease, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, Peking University, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Haematology, National Clinical Research Center for Haematologic Disease, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, Peking University, Beijing, China
| | - Xiang-Yu Zhao
- Peking University People's Hospital, Peking University Institute of Haematology, National Clinical Research Center for Haematologic Disease, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, Peking University, Beijing, China.
| |
Collapse
|
5
|
Chang J, Lu J, Liu Q, Xiang T, Zhang S, Yi Y, Li D, Liu T, Liu Z, Chen X, Dong Z, Li C, Yi H, Yu S, Huang L, Qu F, Wang M, Wang D, Dong H, Cheng G, Zhu L, Li J, Li C, Wu P, Xie X, Teschendorff AE, Lin D, Wang X, Wu C. Single-cell multi-stage spatial evolutional map of esophageal carcinogenesis. Cancer Cell 2025; 43:380-397.e7. [PMID: 40068596 DOI: 10.1016/j.ccell.2025.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 01/09/2025] [Accepted: 02/10/2025] [Indexed: 05/13/2025]
Abstract
Cancer development involves the co-evolution of cancer cells and their surrounding microenvironment, yet the dynamics of this interaction within the physical architecture remains poorly understood. Here, we present a spatial transcriptomic map at single-cell resolution, encompassing 127 multi-stage fields of view from 43 patients, to chart the evolutionary trajectories of human esophageal squamous cell carcinoma (ESCC). By analyzing 6.4 million cells, we reveal that ESCC progression is driven by a proliferative epithelial cell subpopulation that acquires dedifferentiated and invasive characteristics. At the late precancerous stage, these cells disrupt the epithelial-stromal interface and recruit normal fibroblasts via JAG1-NOTCH1 signaling, transforming them into cancer-associated fibroblasts (CAFs). This interaction leads to the formation of a "CAF-Epi" (CAF and epithelial cell) niche at the tumor edge that shields the tumor from immune surveillance. The CAF-Epi niche formation is a key indicator of progression in ESCC and other squamous cell carcinomas and patient outcomes.
Collapse
Affiliation(s)
- Jiang Chang
- Department of Health Toxicology, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Junting Lu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Qingyi Liu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Tao Xiang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shaosen Zhang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yonglin Yi
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Dongxu Li
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Tianyuan Liu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China
| | - Zeyuan Liu
- Changping Laboratory, Beijing 102206, China
| | - Xinjie Chen
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zhenghao Dong
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China
| | - Cainan Li
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - HanZhang Yi
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Siqi Yu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Luwei Huang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100875, China
| | - Fangfei Qu
- Changping Laboratory, Beijing 102206, China
| | - Mengdi Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100875, China
| | - Dehe Wang
- Changping Laboratory, Beijing 102206, China
| | - Hao Dong
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100875, China
| | - Guoyu Cheng
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Liang Zhu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jiachen Li
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Chenying Li
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Pujie Wu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xiaoting Xie
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Andrew E Teschendorff
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Dongxin Lin
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China; Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou 510060, China.
| | - Xiaoqun Wang
- Changping Laboratory, Beijing 102206, China; State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100875, China; State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, New Cornerstone Science Laboratory, Beijing Normal University, Beijing 100875, China.
| | - Chen Wu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College (PUMC), Beijing 100021, China; Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing 211166, China; CAMS Oxford Institute, Chinese Academy of Medical Sciences, Beijing 100006, China.
| |
Collapse
|
6
|
Revilla SA, Frederiks CL, Prekovic S, Mocholi E, Kranenburg O, Coffer PJ. Tumor-derived colorectal cancer organoids induce a unique Treg cell population by directing CD4 + T cell differentiation. iScience 2025; 28:111827. [PMID: 39995881 PMCID: PMC11848486 DOI: 10.1016/j.isci.2025.111827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/22/2024] [Accepted: 01/13/2025] [Indexed: 02/26/2025] Open
Abstract
In colorectal cancer (CRC), increased numbers of tumor-infiltrating CD4+ regulatory T (Treg) cells correlate with tumor development, immunotherapy failure, and poor prognosis. To assess how CRC tumors directly modulate Treg cell differentiation, we developed an in vitro co-culture system using CD4+ T cells from Foxp3eGFP mice and CRC tumor-derived organoids. Co-culture resulted in a significant increase in Treg cell numbers. RNA-sequencing identified a distinct transcriptional profile of CRC organoid-induced Treg cells, with upregulation of genes associated with CRC Treg cells in vivo. High expression of genes upregulated in CRC organoid-induced Treg cells correlates with shorter progression-free intervals and overall survival in CRC patients. Human CRC organoids similarly induced Treg cells with enhanced suppressive capacity and upregulated genes linked to CRC Treg cells in vivo. This model provides insights into how CRC tumors modulate CD4+ T cell differentiation and can identify approaches to disrupt Treg cells and stimulate anti-tumor immunity.
Collapse
Affiliation(s)
- Sonia Aristin Revilla
- Center Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, the Netherlands
- Laboratory Translational Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Cynthia L. Frederiks
- Center Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, the Netherlands
- Laboratory Translational Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Stefan Prekovic
- Center Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Enric Mocholi
- Center Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Onno Kranenburg
- Laboratory Translational Oncology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Paul J. Coffer
- Center Molecular Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
- Regenerative Medicine Center, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
7
|
Yang H, Sun T, Sun Z, Wang H, Liu D, Wu D, Qin T, Zhou M. Unravelling the role of ubiquitin-specific proteases in breast carcinoma: insights into tumour progression and immune microenvironment modulation. World J Surg Oncol 2025; 23:60. [PMID: 39979972 PMCID: PMC11841324 DOI: 10.1186/s12957-025-03667-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/19/2025] [Indexed: 02/22/2025] Open
Abstract
Breast cancer is a prevalent malignancy worldwide, and its treatment has increasingly shifted towards precision medicine, with immunotherapy emerging as a key therapeutic strategy. Deubiquitination, an essential epigenetic modification, is regulated by deubiquitinating enzymes (DUBs) and plays a critical role in immune function and tumor progression. Ubiquitin-specific proteases (USPs), a prominent subgroup of DUBs, are involved in regulating immune cell functions, antigen processing, and T cell development in the context of breast cancer. Certain USPs also modulate the differentiation of immune cells, such as myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs), within the breast cancer immune microenvironment. Furthermore, several USPs influence the expression of PD-L1, thus affecting the efficacy of immune checkpoint inhibitors. The overexpression of USPs may promote immune evasion, contributing to the development of treatment resistance. This review elucidates the role of USPs in modulating the immune microenvironment and immune responses in breast cancer. Additionally, it discusses effective strategies for combining USP inhibitors with other therapeutic agents to enhance treatment outcomes. Therefore, targeting USPs presents the potential to enhance the efficacy of immunotherapy and overcome drug resistance, offering a more effective treatment strategy for breast cancer patients.
Collapse
Affiliation(s)
- Huiyuan Yang
- Qingdao Municipal Hospital Affiliated with Qingdao University, Qingdao, Shandong Province, 266011, China
| | - Tingting Sun
- Department of Oncology, Qingdao Municipal Hospital, Qingdao, Shandong Province, 266011, China
| | - Zhenni Sun
- Department of Oncology, Qingdao Municipal Hospital, Qingdao, Shandong Province, 266011, China
| | - Haining Wang
- Department of Oncology, No. 971 Hospital of the People's Liberation Army Navy, Qingdao, 266001, China
| | - Dongjie Liu
- Department of Second Recuperation, Dalian Rehabilitation Recuperation Center of Joint Logistics Support Force of PLA, Dalian, 116013, China
| | - Dapeng Wu
- Department of Oncology, Qingdao Municipal Hospital, Qingdao, Shandong Province, 266011, China.
| | - Tao Qin
- Qingdao Municipal Hospital Affiliated with Qingdao University, Qingdao, Shandong Province, 266011, China.
- Department of Oncology, Qingdao Municipal Hospital, Qingdao, Shandong Province, 266011, China.
| | - Mi Zhou
- Qingdao Municipal Hospital Affiliated with Qingdao University, Qingdao, Shandong Province, 266011, China.
- Department of Oncology, Qingdao Municipal Hospital, Qingdao, Shandong Province, 266011, China.
| |
Collapse
|
8
|
Chen X, Chen F, Jia S, Lu Q, Zhao M. Antigen-presenting fibroblasts: emerging players in immune modulation and therapeutic targets. Theranostics 2025; 15:3332-3344. [PMID: 40093895 PMCID: PMC11905139 DOI: 10.7150/thno.104900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 01/28/2025] [Indexed: 03/19/2025] Open
Abstract
Antigen-presenting fibroblasts are a newly recognized subset that challenges the traditional view of these cells as mere structural components. Under pathological or environmental stimuli, fibroblasts acquire antigen-presenting capabilities through the expression of MHC-II molecules and co-stimulatory factors, enabling them to interact with T cells and modulate immune responses. These specialized fibroblasts have been identified across various tissues and diseases, where they play context-dependent roles, either amplifying immune dysregulation or contributing to immune homeostasis. This review synthesizes recent advances in understanding the origins, activation, and functions of antigen-presenting fibroblasts. It highlights their role in promoting pathogenic immune responses and offering therapeutic opportunities through targeted modulation. Advancing our understanding of antigen-presenting fibroblasts holds great promise for developing innovative approaches to immune modulation and therapy across a range of diseases.
Collapse
Affiliation(s)
- Xiaoyun Chen
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Fangqi Chen
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Sujie Jia
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Ming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, the Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, 210042, China
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| |
Collapse
|
9
|
Wu S, Hu Y, Sui B. Promotion Mechanisms of Stromal Cell-Mediated Lung Cancer Development Within Tumor Microenvironment. Cancer Manag Res 2025; 17:249-266. [PMID: 39957904 PMCID: PMC11829646 DOI: 10.2147/cmar.s505549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/19/2025] [Indexed: 02/18/2025] Open
Abstract
Lung cancer, with its high incidence and mortality rates, has garnered significant attention in the medical community. The tumor microenvironment (TME), composed of tumor cells, stromal cells, extracellular matrix, surrounding blood vessels, and other signaling molecules, plays a pivotal role in the development of lung cancer. Stromal cells within the TME hold potential as therapeutic targets for lung cancer treatment. However, the precise and comprehensive mechanisms by which stromal cells contribute to lung cancer progression have not been fully elucidated. This review aims to explore the mechanisms through which stromal cells in the tumor microenvironment promote lung cancer development, with a particular focus on how immune cells, tumor-associated fibroblasts, and endothelial cells contribute to immune suppression, inflammation, and angiogenesis. The goal is to provide new insights and potential strategies for the diagnosis and treatment of lung cancer.
Collapse
Affiliation(s)
- Siyu Wu
- Heilongjiang University of Chinese Medicine, Harbin, People’s Republic of China
| | - Yumeng Hu
- Heilongjiang University of Chinese Medicine, Harbin, People’s Republic of China
| | - Bowen Sui
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, People’s Republic of China
| |
Collapse
|
10
|
Wang Y, Qiu X, Li Q, Qin J, Ye L, Zhang X, Huang X, Wen X, Wang Z, He W, Di Y, Zhou Q. Single-cell and spatial-resolved profiling reveals cancer-associated fibroblast heterogeneity in colorectal cancer metabolic subtypes. J Transl Med 2025; 23:175. [PMID: 39934919 PMCID: PMC11817247 DOI: 10.1186/s12967-025-06103-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 01/08/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Colorectal cancer (CRC) presents significant treatment challenges due to its high heterogeneity and complex intercellular interactions. Further exploration of CRC subtypes and interactions among tumor-specific clusters will facilitate the development of personalized treatment strategies. METHODS Single-cell RNA sequencing and bulk RNA sequencing datasets were integrated to determine CRC metabolic subtypes by hierarchical clustering. The analysis was further extended to cellchat, pseudotime, immune infiltration, and clinicopathological relevance to explore the characteristics of secreted frizzled related protein 2 (SFRP2) + cancer-associated fibroblast (CAF) clusters, and validated by spatial transcriptomics (ST), in vivo experiments, and multiple immunohistochemistry (mIHC). RESULTS CRC samples were stably classified into three heterogeneous metabolic subtypes, each exhibiting different microenvironment and CAF heterogeneity, particularly in the distribution of SFRP2 + CAF, which was aligned with metabolic activity. SFRP2 + CAF exhibits high extracellular matrix (ECM) activity and is closely involved in cellular communication, not only promoting the malignant progression of cancer cells but also inducing the differentiation of Tregs. Compared to responders of chemotherapy, the proportion of SFRP2 + CAFs is significantly increased in non-responders. Importantly, mIHC and ST analyses confirm that cancer cells with low expression of agmatinase (AGMAT) can recruit SFRP2 + CAFs, and Treg infiltration surrounding SFRP2 + CAFs was observed. AGMAT combined with oxaliplatin showed the best efficacy in vivo, which may be associated with the inhibition of SFRP2 + CAF infiltration. CONCLUSIONS Our study identified and described the potential protumor biological properties of SFRP2 + CAFs, and AGMAT may be a valuable target for disrupting their properties.
Collapse
Affiliation(s)
- Youpeng Wang
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China
| | - Xingfeng Qiu
- Department of Gastrointestinal Surgery, School of Medicine, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen, Fujian, 361000, China
| | - Qinghai Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China
| | - Jiale Qin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China
| | - Lvlan Ye
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Xiang Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China
| | - Xingxiang Huang
- Department of Gastrointestinal Surgery, School of Medicine, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen, Fujian, 361000, China
| | - Xiangqiong Wen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China
| | - Ziyang Wang
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Weiling He
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China.
- Department of Gastrointestinal Surgery, School of Medicine, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen, Fujian, 361000, China.
| | - Yuqin Di
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China.
- Molecular Diagnosis and Gene Testing Center, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China.
| | - Qi Zhou
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China.
- Department of General Surgery, Hui Ya Hospital of The First Affiliated Hospital, Sun Yat-sen University, Huizhou, Guangdong, 516081, China.
| |
Collapse
|
11
|
Lv K, He T. Cancer-associated fibroblasts: heterogeneity, tumorigenicity and therapeutic targets. MOLECULAR BIOMEDICINE 2024; 5:70. [PMID: 39680287 PMCID: PMC11649616 DOI: 10.1186/s43556-024-00233-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/04/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024] Open
Abstract
Cancer, characterized by its immune evasion, active metabolism, and heightened proliferation, comprises both stroma and cells. Although the research has always focused on parenchymal cells, the non-parenchymal components must not be overlooked. Targeting cancer parenchymal cells has proven to be a formidable challenge, yielding limited success on a broad scale. The tumor microenvironment(TME), a critical niche for cancer cell survival, presents a novel way for cancer treatment. Cancer-associated fibroblast (CAF), as a main component of TME, is a dynamically evolving, dual-functioning stromal cell. Furthermore, their biological activities span the entire spectrum of tumor development, metastasis, drug resistance, and prognosis. A thorough understanding of CAFs functions and therapeutic advances holds significant clinical implications. In this review, we underscore the heterogeneity of CAFs by elaborating on their origins, types and function. Most importantly, by elucidating the direct or indirect crosstalk between CAFs and immune cells, the extracellular matrix, and cancer cells, we emphasize the tumorigenicity of CAFs in cancer. Finally, we highlight the challenges encountered in the exploration of CAFs and list targeted therapies for CAF, which have implications for clinical treatment.
Collapse
Affiliation(s)
- Keke Lv
- Department of Hepatopanreatobiliary Surgery, Changhai Hospital, 168 Changhai Road, Yangpu District, Shanghai, 200433, China
| | - Tianlin He
- Department of Hepatopanreatobiliary Surgery, Changhai Hospital, 168 Changhai Road, Yangpu District, Shanghai, 200433, China.
| |
Collapse
|
12
|
Chen X, Zhou Z, Yazgan Z, Xie L, Rossi F, Liu Y, Zhang B, Polanco PM, Zeh HJ, Kim AC, Huang H. Single-cell resolution spatial analysis of antigen-presenting cancer-associated fibroblast niches. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.15.623232. [PMID: 39605724 PMCID: PMC11601292 DOI: 10.1101/2024.11.15.623232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Recent studies have identified a unique subtype of cancer-associated fibroblasts (CAFs) termed antigen-presenting CAFs (apCAFs), which remain the least understood CAF subtype. To gain a comprehensive understanding of the origin and function apCAFs, we construct a fibroblast molecular atlas across 14 types of solid tumors. Our integration study unexpectedly reveals two distinct apCAF lineages present in most cancer types: one associated with mesothelial-like cells and the other with fibrocytes. Using a high-resolution single-cell spatial imaging platform, we characterize the spatial niches of these apCAF lineages. We find that mesothelial-like apCAFs are located near cancer cells, while fibrocyte-like apCAFs are associated with tertiary lymphoid structures. Additionally, we discover that both apCAF lineages can up-regulate the secreted protein SPP1, which facilitates primary tumor formation and peritoneal metastasis. Taken together, this study offers an unprecedented resolution in analyzing apCAF lineages and their spatial niches.
Collapse
|
13
|
Mastrogiovanni M, Donnadieu E, Pathak R, Di Bartolo V. Subverting Attachment to Prevent Attacking: Alteration of Effector Immune Cell Migration and Adhesion as a Key Mechanism of Tumor Immune Evasion. BIOLOGY 2024; 13:860. [PMID: 39596815 PMCID: PMC11591779 DOI: 10.3390/biology13110860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 11/29/2024]
Abstract
Cell adhesion regulates specific migratory patterns, location, communication with other cells, physical interactions with the extracellular matrix, and the establishment of effector programs. Proper immune control of cancer strongly depends on all these events occurring in a highly accurate spatiotemporal sequence. In response to cancer-associated inflammatory signals, effector immune cells navigating the bloodstream shift from their patrolling exploratory migration mode to establish adhesive interactions with vascular endothelial cells. This interaction enables them to extravasate through the blood vessel walls and access the cancer site. Further adhesive interactions within the tumor microenvironment (TME) are crucial for coordinating their distribution in situ and for mounting an effective anti-tumor immune response. In this review, we examine how alterations of adhesion cues in the tumor context favor tumor escape by affecting effector immune cell infiltration and trafficking within the TME. We discuss the mechanisms by which tumors directly modulate immune cell adhesion and migration patterns to affect anti-tumor immunity and favor tumor evasion. We also explore indirect immune escape mechanisms that involve modifications of TME characteristics, such as vascularization, immunogenicity, and structural topography. Finally, we highlight the significance of these aspects in designing more effective drug treatments and cellular immunotherapies.
Collapse
Affiliation(s)
- Marta Mastrogiovanni
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Emmanuel Donnadieu
- Equipe Labellisée Ligue Contre le Cancer, CNRS, INSERM, Institut Cochin, Université Paris Cité, F-75014 Paris, France;
| | - Rajiv Pathak
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA;
| | - Vincenzo Di Bartolo
- Immunoregulation Unit, Institut Pasteur, Université Paris Cité, F-75015 Paris, France;
| |
Collapse
|
14
|
Boumpas A, Papaioannou AS, Bousounis P, Grigoriou M, Bergo V, Papafragkos I, Tasis A, Iskas M, Boon L, Makridakis M, Vlachou A, Gavriilaki E, Hatzioannou A, Mitroulis I, Trompouki E, Verginis P. PD-L1 blockade immunotherapy rewires cancer-induced emergency myelopoiesis. Front Immunol 2024; 15:1386838. [PMID: 39464894 PMCID: PMC11502414 DOI: 10.3389/fimmu.2024.1386838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 08/06/2024] [Indexed: 10/29/2024] Open
Abstract
Introduction Immune checkpoint blockade (ICB) immunotherapy has revolutionized cancer treatment, demonstrating exceptional clinical responses in a wide range of cancers. Despite the success, a significant proportion of patients still fail to respond, highlighting the existence of unappreciated mechanisms of immunotherapy resistance. Delineating such mechanisms is paramount to minimize immunotherapy failures and optimize the clinical benefit. Methods In this study, we treated tumour-bearing mice with PD-L1 blockage antibody (aPD-L1) immunotherapy, to investigate its effects on cancer-induced emergency myelopoiesis, focusing on bone marrow (BM) hematopoietic stem and progenitor cells (HSPCs). We examined the impact of aPD-L1 treatment on HSPC quiescence, proliferation, transcriptomic profile, and functionality. Results Herein, we reveal that aPD-L1 in tumour-bearing mice targets the HSPCs in the BM, mediating their exit from quiescence and promoting their proliferation. Notably, disruption of the PDL1/PD1 axis induces transcriptomic reprogramming in HSPCs, observed in both individuals with Hodgkin lymphoma (HL) and tumour-bearing mice, shifting towards an inflammatory state. Furthermore, HSPCs from aPDL1-treated mice demonstrated resistance to cancer-induced emergency myelopoiesis, evidenced by a lower generation of MDSCs compared to control-treated mice. Discussion Our findings shed light on unrecognized mechanisms of action of ICB immunotherapy in cancer, which involves targeting of BM-driven HSPCs and reprogramming of cancer-induced emergency myelopoiesis.
Collapse
Affiliation(s)
- Athina Boumpas
- Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
- Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens (BRFAA), Athens, Greece
| | - Antonis S. Papaioannou
- Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
- Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens (BRFAA), Athens, Greece
| | - Pavlos Bousounis
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Maria Grigoriou
- Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens (BRFAA), Athens, Greece
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Veronica Bergo
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Department of Cellular and Molecular Immunology, International Max Planck Research School for Molecular and Cellular Biology (IMPRS-MCB), Freiburg, Germany
| | - Iosif Papafragkos
- Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
- The Institute of Molecular Biology and Biotechnology of the Foundation for Research and Technology Hellas (IMBB-FORTH), Heraklion, Greece
| | - Athanasios Tasis
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Michael Iskas
- Hematology Department, BMT Unit, G Papanicolaou Hospital, Thessaloniki, Greece
| | | | - Manousos Makridakis
- Biotechnology Division, Biomedical Research Foundation, Academy of Athens (BRFAA), Athens, Greece
| | - Antonia Vlachou
- Biotechnology Division, Biomedical Research Foundation, Academy of Athens (BRFAA), Athens, Greece
| | - Eleni Gavriilaki
- Hematology Department, BMT Unit, G Papanicolaou Hospital, Thessaloniki, Greece
| | - Aikaterini Hatzioannou
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Ioannis Mitroulis
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, Alexandroupolis, Greece
| | - Eirini Trompouki
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- IRCAN Institute for Research on Cancer and Aging, INSERM Unité 1081, Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR), Université Côte, Nice, France
| | - Panayotis Verginis
- Laboratory of Immune Regulation and Tolerance, Division of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
- Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation Academy of Athens (BRFAA), Athens, Greece
- The Institute of Molecular Biology and Biotechnology of the Foundation for Research and Technology Hellas (IMBB-FORTH), Heraklion, Greece
| |
Collapse
|
15
|
Zhang F, Ma Y, Li D, Wei J, Chen K, Zhang E, Liu G, Chu X, Liu X, Liu W, Tian X, Yang Y. Cancer associated fibroblasts and metabolic reprogramming: unraveling the intricate crosstalk in tumor evolution. J Hematol Oncol 2024; 17:80. [PMID: 39223656 PMCID: PMC11367794 DOI: 10.1186/s13045-024-01600-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Metabolic reprogramming provides tumors with an energy source and biofuel to support their survival in the malignant microenvironment. Extensive research into the intrinsic oncogenic mechanisms of the tumor microenvironment (TME) has established that cancer-associated fibroblast (CAFs) and metabolic reprogramming regulates tumor progression through numerous biological activities, including tumor immunosuppression, chronic inflammation, and ecological niche remodeling. Specifically, immunosuppressive TME formation is promoted and mediators released via CAFs and multiple immune cells that collectively support chronic inflammation, thereby inducing pre-metastatic ecological niche formation, and ultimately driving a vicious cycle of tumor proliferation and metastasis. This review comprehensively explores the process of CAFs and metabolic regulation of the dynamic evolution of tumor-adapted TME, with particular focus on the mechanisms by which CAFs promote the formation of an immunosuppressive microenvironment and support metastasis. Existing findings confirm that multiple components of the TME act cooperatively to accelerate the progression of tumor events. The potential applications and challenges of targeted therapies based on CAFs in the clinical setting are further discussed in the context of advancing research related to CAFs.
Collapse
Affiliation(s)
- Fusheng Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Yongsu Ma
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Dongqi Li
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Jianlei Wei
- Key laboratory of Microecology-immune Regulatory Network and Related Diseases School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang Province, 154007, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research, Peking University Health Science Center, Beijing, 100191, China
| | - Kai Chen
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Enkui Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Guangnian Liu
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Xiangyu Chu
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Xinxin Liu
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Weikang Liu
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China
| | - Xiaodong Tian
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China.
| | - Yinmo Yang
- Department of Hepatobiliary and Pancreatic Surgery, Peking University First Hospital, Beijing, 100034, China.
| |
Collapse
|