1
|
Valable S, Césaire M, Lecrosnier K, Gilbert A, Tudor M, Vares G, Hamdi DH, Diouf OB, Nguyen Pham T, Coupey J, Thariat J, Lesueur P, Pérès EA, Aury-Landas J, Nikitaki Z, Haghdoost S, Laurent C, Poully JC, Balosso J, Bernaudin M, Savu DI, Chevalier F. Particle Therapy to Overcome Cancer Radiation Resistance: "ARCHADE" Consortium Updates in Radiation Biology. Cancers (Basel) 2025; 17:1580. [PMID: 40361506 PMCID: PMC12071746 DOI: 10.3390/cancers17091580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/28/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
Radiation therapy is a medical treatment that uses high doses of radiation to kill or damage cancer cells. It works by damaging the DNA within the cancer cells, ultimately causing cell death. Radiotherapy can be used as a primary treatment, adjuvant treatment in combination with surgery or chemotherapy or palliative treatment to relieve symptoms in advanced cancer stages. Radiation therapy is constantly improving in order to enhance the effect on cancer cells and reduce the side effects on healthy tissues. Our results clearly demonstrate that proton therapy and, even more, carbon ion therapy appear as promising alternatives to overcome the radioresistance of various tumors thanks to less dependency on oxygen and a better ability to kill cancer stem cells. Interestingly, hadrons also retain the advantages of radiosensitization approaches. These data confirm the great ability of hadrons to spare healthy tissue near the tumor via various mechanisms (reduced lymphopenia, bystander effect, etc.). Technology and machine improvements such as image-guided radiotherapy or particle therapies can improve treatment quality and efficacy (dose deposition and biological effect) in tumors while increasingly sparing healthy tissues. Radiation biology can help to understand how cancer cells resist radiation (hypoxia, DNA repair mechanisms, stem cell status, cell cycle position, etc.), how normal tissues may display sensitivity to radiation and how radiation effects can be increased with either radiosensitizers or accelerated particles. All these research topics are under investigation within the ARCHADE research community in France. By focusing on these areas, radiotherapy can become more effective, targeted and safe, enhancing the overall treatment experience and outcomes for cancer patients. Our goal is to provide biological evidence of the therapeutic advantages of hadrontherapy, according to the tumor characteristics. This article aims to give an updated view of our research in radiation biology within the frame of the French "ARCHADE association" and new perspectives on research and treatment with the C400 multi-ions accelerator prototype.
Collapse
Affiliation(s)
- Samuel Valable
- ARCHADE, Association for “Advanced Resource Center for Hadrontherapy in Europe”, 14000 Caen, France; (S.V.); (M.C.); (K.L.); (A.G.); (J.T.); (P.L.); (E.A.P.); (J.A.-L.); (Z.N.); (S.H.); (C.L.); (J.-C.P.); (J.B.); (M.B.)
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP CYCERON, 14000 Caen, France
| | - Mathieu Césaire
- ARCHADE, Association for “Advanced Resource Center for Hadrontherapy in Europe”, 14000 Caen, France; (S.V.); (M.C.); (K.L.); (A.G.); (J.T.); (P.L.); (E.A.P.); (J.A.-L.); (Z.N.); (S.H.); (C.L.); (J.-C.P.); (J.B.); (M.B.)
- Université de Caen Normandie, ENSICAEN, CNRS, CEA, Normandie Université, CIMAP UMR6252, 14000 Caen, France; (D.H.H.); (O.B.D.)
| | - Kilian Lecrosnier
- ARCHADE, Association for “Advanced Resource Center for Hadrontherapy in Europe”, 14000 Caen, France; (S.V.); (M.C.); (K.L.); (A.G.); (J.T.); (P.L.); (E.A.P.); (J.A.-L.); (Z.N.); (S.H.); (C.L.); (J.-C.P.); (J.B.); (M.B.)
- Université de Caen Normandie, ENSICAEN, CNRS, CEA, Normandie Université, CIMAP UMR6252, 14000 Caen, France; (D.H.H.); (O.B.D.)
| | - Antoine Gilbert
- ARCHADE, Association for “Advanced Resource Center for Hadrontherapy in Europe”, 14000 Caen, France; (S.V.); (M.C.); (K.L.); (A.G.); (J.T.); (P.L.); (E.A.P.); (J.A.-L.); (Z.N.); (S.H.); (C.L.); (J.-C.P.); (J.B.); (M.B.)
- Université de Caen Normandie, ENSICAEN, CNRS, CEA, Normandie Université, CIMAP UMR6252, 14000 Caen, France; (D.H.H.); (O.B.D.)
| | - Mihaela Tudor
- Department of Life and Environmental Physics, Horia Hulubei National Institute of Physics and Nuclear Engineering, 077125 Magurele, Romania;
- Faculty of Biology, University of Bucharest, 030018 Bucharest, Romania
| | - Guillaume Vares
- Autorité de Sûreté Nucléaire et de Radioprotection (ASNR), PSE-SANTE/SESANE/LRTOX, 92260 Fontenay-aux-Roses, France;
| | - Dounia Houria Hamdi
- Université de Caen Normandie, ENSICAEN, CNRS, CEA, Normandie Université, CIMAP UMR6252, 14000 Caen, France; (D.H.H.); (O.B.D.)
| | - Ousseynou Ben Diouf
- Université de Caen Normandie, ENSICAEN, CNRS, CEA, Normandie Université, CIMAP UMR6252, 14000 Caen, France; (D.H.H.); (O.B.D.)
- Mixed Research Exploration and Diagnosis (UMRED), UFR-Healthy, Iba Der THIAM University of Thies, Thies BP A967, Senegal
| | - Thao Nguyen Pham
- ARCHADE, Association for “Advanced Resource Center for Hadrontherapy in Europe”, 14000 Caen, France; (S.V.); (M.C.); (K.L.); (A.G.); (J.T.); (P.L.); (E.A.P.); (J.A.-L.); (Z.N.); (S.H.); (C.L.); (J.-C.P.); (J.B.); (M.B.)
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP CYCERON, 14000 Caen, France
| | - Julie Coupey
- ARCHADE, Association for “Advanced Resource Center for Hadrontherapy in Europe”, 14000 Caen, France; (S.V.); (M.C.); (K.L.); (A.G.); (J.T.); (P.L.); (E.A.P.); (J.A.-L.); (Z.N.); (S.H.); (C.L.); (J.-C.P.); (J.B.); (M.B.)
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP CYCERON, 14000 Caen, France
| | - Juliette Thariat
- ARCHADE, Association for “Advanced Resource Center for Hadrontherapy in Europe”, 14000 Caen, France; (S.V.); (M.C.); (K.L.); (A.G.); (J.T.); (P.L.); (E.A.P.); (J.A.-L.); (Z.N.); (S.H.); (C.L.); (J.-C.P.); (J.B.); (M.B.)
- Radiation Oncology Department, Centre François Baclesse, 14000 Caen, France
| | - Paul Lesueur
- ARCHADE, Association for “Advanced Resource Center for Hadrontherapy in Europe”, 14000 Caen, France; (S.V.); (M.C.); (K.L.); (A.G.); (J.T.); (P.L.); (E.A.P.); (J.A.-L.); (Z.N.); (S.H.); (C.L.); (J.-C.P.); (J.B.); (M.B.)
- Radiation Oncology Department, Centre Guillaume Le Conquérant, 76600 Le Havre, France
| | - Elodie Anne Pérès
- ARCHADE, Association for “Advanced Resource Center for Hadrontherapy in Europe”, 14000 Caen, France; (S.V.); (M.C.); (K.L.); (A.G.); (J.T.); (P.L.); (E.A.P.); (J.A.-L.); (Z.N.); (S.H.); (C.L.); (J.-C.P.); (J.B.); (M.B.)
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP CYCERON, 14000 Caen, France
| | - Juliette Aury-Landas
- ARCHADE, Association for “Advanced Resource Center for Hadrontherapy in Europe”, 14000 Caen, France; (S.V.); (M.C.); (K.L.); (A.G.); (J.T.); (P.L.); (E.A.P.); (J.A.-L.); (Z.N.); (S.H.); (C.L.); (J.-C.P.); (J.B.); (M.B.)
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP CYCERON, 14000 Caen, France
| | - Zacharenia Nikitaki
- ARCHADE, Association for “Advanced Resource Center for Hadrontherapy in Europe”, 14000 Caen, France; (S.V.); (M.C.); (K.L.); (A.G.); (J.T.); (P.L.); (E.A.P.); (J.A.-L.); (Z.N.); (S.H.); (C.L.); (J.-C.P.); (J.B.); (M.B.)
- Université de Caen Normandie, ENSICAEN, CNRS, CEA, Normandie Université, CIMAP UMR6252, 14000 Caen, France; (D.H.H.); (O.B.D.)
- Normandie University, UNICAEN, UNIROUEN, ABTE UR4651, Cancer Center François Baclesse, 14000 Caen, France
| | - Siamak Haghdoost
- ARCHADE, Association for “Advanced Resource Center for Hadrontherapy in Europe”, 14000 Caen, France; (S.V.); (M.C.); (K.L.); (A.G.); (J.T.); (P.L.); (E.A.P.); (J.A.-L.); (Z.N.); (S.H.); (C.L.); (J.-C.P.); (J.B.); (M.B.)
- Université de Caen Normandie, ENSICAEN, CNRS, CEA, Normandie Université, CIMAP UMR6252, 14000 Caen, France; (D.H.H.); (O.B.D.)
- Normandie University, UNICAEN, UNIROUEN, ABTE UR4651, Cancer Center François Baclesse, 14000 Caen, France
| | - Carine Laurent
- ARCHADE, Association for “Advanced Resource Center for Hadrontherapy in Europe”, 14000 Caen, France; (S.V.); (M.C.); (K.L.); (A.G.); (J.T.); (P.L.); (E.A.P.); (J.A.-L.); (Z.N.); (S.H.); (C.L.); (J.-C.P.); (J.B.); (M.B.)
- Normandie University, UNICAEN, UNIROUEN, ABTE UR4651, Cancer Center François Baclesse, 14000 Caen, France
| | - Jean-Christophe Poully
- ARCHADE, Association for “Advanced Resource Center for Hadrontherapy in Europe”, 14000 Caen, France; (S.V.); (M.C.); (K.L.); (A.G.); (J.T.); (P.L.); (E.A.P.); (J.A.-L.); (Z.N.); (S.H.); (C.L.); (J.-C.P.); (J.B.); (M.B.)
- Université de Caen Normandie, ENSICAEN, CNRS, CEA, Normandie Université, CIMAP UMR6252, 14000 Caen, France; (D.H.H.); (O.B.D.)
| | - Jacques Balosso
- ARCHADE, Association for “Advanced Resource Center for Hadrontherapy in Europe”, 14000 Caen, France; (S.V.); (M.C.); (K.L.); (A.G.); (J.T.); (P.L.); (E.A.P.); (J.A.-L.); (Z.N.); (S.H.); (C.L.); (J.-C.P.); (J.B.); (M.B.)
- Radiation Oncology Department, Centre François Baclesse, 14000 Caen, France
| | - Myriam Bernaudin
- ARCHADE, Association for “Advanced Resource Center for Hadrontherapy in Europe”, 14000 Caen, France; (S.V.); (M.C.); (K.L.); (A.G.); (J.T.); (P.L.); (E.A.P.); (J.A.-L.); (Z.N.); (S.H.); (C.L.); (J.-C.P.); (J.B.); (M.B.)
- Université de Caen Normandie, CNRS, Normandie Université, ISTCT UMR6030, GIP CYCERON, 14000 Caen, France
| | - Diana I. Savu
- Department of Life and Environmental Physics, Horia Hulubei National Institute of Physics and Nuclear Engineering, 077125 Magurele, Romania;
| | - François Chevalier
- ARCHADE, Association for “Advanced Resource Center for Hadrontherapy in Europe”, 14000 Caen, France; (S.V.); (M.C.); (K.L.); (A.G.); (J.T.); (P.L.); (E.A.P.); (J.A.-L.); (Z.N.); (S.H.); (C.L.); (J.-C.P.); (J.B.); (M.B.)
- Université de Caen Normandie, ENSICAEN, CNRS, CEA, Normandie Université, CIMAP UMR6252, 14000 Caen, France; (D.H.H.); (O.B.D.)
| |
Collapse
|
3
|
Honeyman L, Bergeron ME, Thang C, Kunwar A, McCurry EE, Haston CK. A chromosome 2 locus influences the onset of radiation-induced lung disease in mice. Int J Radiat Biol 2025; 101:581-589. [PMID: 40080429 DOI: 10.1080/09553002.2025.2473977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/09/2025] [Accepted: 02/19/2025] [Indexed: 03/15/2025]
Abstract
PURPOSE The onset of distress from radiation-induced lung disease differs among patients and among inbred strains of mice exposed to thoracic cavity radiotherapy. For the latter specifically, C3H/HeJ mice present distress due to pneumonitis at approximately 10-14 weeks following thoracic irradiation, while C57BL/6J mice show distress due to pneumonitis with pulmonary fibrosis at 22-30 weeks. Mapping studies completed in offspring derived from these inbred strains revealed a chromosome 2 locus to be linked to onset of distress in irradiated mice. Herein, we bred and phenotyped a panel of chromosome 2 subcongenic mice with 64 Mb of C3H/HeJ alleles on a C57BL/6J background, to investigate the contribution of the chromosome 2 locus to radiation-induced lung disease. MATERIALS AND METHODS Mice received 18 Gy to the thoracic cavity and were monitored for the onset of distress. Lung disease was assessed histologically and with bronchoalveolar lavage. RESULTS Following whole thorax irradiation, subcongenic mice with C3H/HeJ alleles from 95 to 123 Mb showed significantly earlier onset of respiratory distress (16-22 weeks; p < .02) from pneumonitis and fibrosis compared to C57BL/6J mice. These subcongenic mice did not differ from C57BL/6J mice in pneumonitis (p = .23), mast cell counts (p = .96), or lavage neutrophils (p = .69), evident at distress. In silico analyses reveal 246 protein coding genes mapped within the reduced region, 52 of which differ in pulmonary expression of C3H/HeJ, compared to C57BL/6J, mice after whole thorax irradiation. CONCLUSIONS We have identified a 28 Mb region of chromosome 2 to influence the onset of radiation-induced lung disease in mice.
Collapse
Affiliation(s)
- Lisa Honeyman
- Meakins-Christie Laboratories and the Departments of Human Genetics, McGill University, Montreal, Canada
| | | | - Cin Thang
- Medicine, McGill University, Montreal, Canada
| | - Amit Kunwar
- Medicine, McGill University, Montreal, Canada
| | - Erin E McCurry
- Physics Department, I.K. Barber Faculty of Science, The University of British Columbia Okanagan, Kelowna, Canada
| | | |
Collapse
|
4
|
Yu H, Zhong T, Xu Y, Zhang Z, Ma J, Yuan J, Wang M, Wu M, Yu J, Ma Y, Chen D. Molecular profiling of skin cells identifies distinct cellular signatures in radiation-induced skin injury across various stages in the murine dataset. Exp Hematol Oncol 2025; 14:18. [PMID: 40001256 PMCID: PMC11852861 DOI: 10.1186/s40164-025-00596-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/13/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Radiation-induced skin injury (RISI) commonly manifests in cancer patients undergoing radiotherapy (RT). However, a universally accepted standard for treating radiation injury has not yet been established. Our objective was to provide a detailed molecular overview of skin pre- and post-radiation therapy, aiming to enhance our understanding of the subclusters and molecular mechanisms contributing to radiodermatitis. METHODS C57BL/6 mice were subjected to a single fraction (20 Gy) of RT targeting the right dorsal skin. We then employed integrated single-cell RNA sequencing (scRNA-seq) to analyze skin samples from mice at 7 and 30 days after radiation exposure, as well as from non-irradiated mice. The Seurat analysis pipeline, Cellchat, SCP, and ssGSEA were used to define the cell types and mechanisms involved in radiation-induced skin injury. Reverse transcription polymerase chain reaction (RT-PCR), multiplex immunofluorescent staining, and other datasets (GSE130183, GSE193564, and GSE193807) were used to validate our findings. RESULTS Thirty-two distinct cell clusters encompassing 71,412 cells were identified. We discovered that cycling keratinocytes (KCs), with the BMP signaling pathway enriched, could activate the Wnt pathway, as well as the SMAD pathways, driving the wound healing and fibrosis processes in RISI. Terminally differentiated secretory-papillary fibroblasts (Fibs) are capable of attracting immune cells, which contributes to the pathogenesis of RISI. Lymphatic endothelial cells (ECs) with pro-inflammatory properties play a critical role in the pathogenesis of RISI by facilitating leukocyte migration. Our analysis also highlighted enhanced ligand-receptor interactions, notably the interactions between chemokines like CXCL10, CCL2, and ACKR1, across subclusters of inflammatory KCs, Fibs, ECs, and immune cells, underscoring their pivotal role in leukocyte recruitment in RISI. CONCLUSIONS Cycling KCs, secretory-papillary Fibs, and lymphatic ECs play critical roles in RISI progression. Targeting the interactions of these subclusters with immune cells might help improve the severity of RISI. Furthermore, our study provides a valuable resource for understanding the interactions among immune cells in the context of RISI.
Collapse
Affiliation(s)
- Hongxuan Yu
- Shandong University Cancer Center, Shandong University, Jinan, Shandong, China
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Tao Zhong
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ying Xu
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zengfu Zhang
- Shandong University Cancer Center, Shandong University, Jinan, Shandong, China
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jiachun Ma
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jupeng Yuan
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Minglei Wang
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Meng Wu
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jinming Yu
- Shandong University Cancer Center, Shandong University, Jinan, Shandong, China
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yuequn Ma
- Shandong University Cancer Center, Shandong University, Jinan, Shandong, China.
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China.
- Department of Radiation Oncology, The First Hospital of China Medical University, 155 N, Nanjing Street, Shenyang, Liaoning, China.
| | - Dawei Chen
- Shandong University Cancer Center, Shandong University, Jinan, Shandong, China.
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Precision Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|