1
|
Alemu MD, Ben-Zeev S, Barak V, Tutus Y, Cakmak I, Saranga Y. Genomic loci associated with grain protein and mineral nutrients concentrations in Eragrostis tef under contrasting water regimes. FRONTIERS IN PLANT SCIENCE 2024; 15:1458408. [PMID: 39759240 PMCID: PMC11695128 DOI: 10.3389/fpls.2024.1458408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/11/2024] [Indexed: 01/07/2025]
Abstract
Climate change is becoming a global challenge, threating agriculture's capacity to meet the food and nutritional requirements of the growing population. Underutilized crops present an opportunity to address climate change and nutritional deficiencies. Tef is a stress-resilient cereal crop, producing gluten-free grain of high nutritional quality. However, knowledge is lacking on tef's diversity of grain nutritional properties, their interaction with environmental conditions (e.g., water availability) and the underlying genomic loci. We assessed the effect of water availability on tef grain nutrient concentrations and identify the associated genomic loci. A collection of 223 tef genotypes, a subset of tef diversity panel 300 (TDP-300), were grown in the field under well-watered and water-limited conditions in 2021, and phenotyped for 11 traits including: grain protein and mineral concentrations and seed color. A genome-wide association study was conducted using 28,837 single-nucleotide polymorphisms (SNPs) and phenotypic data to identify marker-trait associations (MTAs). Tef grain nutrient concentrations exhibited wide genetic diversity with a significant influence of environment. Protein and most micronutrients were more concentrated under water-limited conditions, whereas most macronutrients were higher in the well-watered environment. A total of 59 SNPs were associated with one or more of the studied traits, resulting in 65 MTAs detected under both water treatments, and providing insights into the genetic basis of grain nutrients. Five SNPs reflected multiple associations, with four detecting the same trait under both treatments (multiple-environment effect), and one associated with both Zn and K (pleiotropic effect). In addition, two pairs of closely linked SNPs reflected multiple-environment effects. While multiple-environment associations provide greater support for the integrity of these MTAs, the pleiotropic locus hints at a common mechanism controlling two mineral ions. The identified MTAs shed new light on the genomic architecture of tef's nutritional properties and provide the basis to enhance tef grain nutritional quality alongside drought resilience.
Collapse
Affiliation(s)
- Muluken Demelie Alemu
- R. H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- Crop Research, Ethiopian Institute of Agricultural Research, Addis Ababa, Ethiopia
| | - Shiran Ben-Zeev
- R. H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Vered Barak
- R. H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yusuf Tutus
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Türkiye
| | - Ismail Cakmak
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Türkiye
| | - Yehoshua Saranga
- R. H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
2
|
Shan Y, Osborne CP. Diversification of quantitative morphological traits in wheat. ANNALS OF BOTANY 2024; 133:413-426. [PMID: 38195097 PMCID: PMC11006538 DOI: 10.1093/aob/mcad202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/08/2024] [Indexed: 01/11/2024]
Abstract
BACKGROUND AND AIMS The development and morphology of crop plants have been profoundly altered by evolution under cultivation, initially through unconscious selection, without deliberate foresight, and later by directed breeding. Wild wheats remain an important potential source of variation for modern breeders; however, the sequence and timing of morphological changes during domestication are not fully resolved. METHODS We grew and measured 142 wheat accessions representing different stages in wheat evolution, including three independent domestication events, and compared their morphological traits to define the morphospace of each group. KEY RESULTS The results show that wild and domesticated wheats have overlapping morphospaces, but each also occupies a distinct area of morphospace from one another. Polyploid formation in wheat increased leaf biomass and seed weight but had its largest effects on tiller loss. Domestication continued to increase the sizes of wheat leaves and seeds and made wheat grow taller, with more erect architecture. Associated changes to the biomass of domesticated wheats generated more grains and achieved higher yields. Landrace improvement subsequently decreased the numbers of tillers and spikes, to focus resource allocation to the main stem, accompanied by a thicker main stem and larger flag leaves. During the Green Revolution, wheat height was reduced to increase the harvest index and therefore yield. Modern wheats also have more erect leaves and larger flower biomass proportions than landraces. CONCLUSIONS Quantitative trait history in wheat differs by trait. Some trait values show progressive changes in the same direction (e.g. leaf size, grain weight), whereas others change in a punctuated way at particular stages (e.g. canopy architecture), and other trait values switch directions during wheat evolution (e.g. plant height, flower biomass proportion). Agronomically valued domestication traits arose during different stages of wheat history, such that modern wheats are the product of >10 000 years of morphological evolution.
Collapse
Affiliation(s)
- Yixiang Shan
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Colin P Osborne
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
3
|
Gómez-Fernández A, Aranda I, Milla R. Early human selection of crops' wild progenitors explains the acquisitive physiology of modern cultivars. NATURE PLANTS 2024; 10:25-36. [PMID: 38172574 DOI: 10.1038/s41477-023-01588-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 11/09/2023] [Indexed: 01/05/2024]
Abstract
Crops have resource-acquisitive leaf traits, which are usually attributed to the process of domestication. However, early choices of wild plants amenable for domestication may also have played a key role in the evolution of crops' physiological traits. Here we compiled data on 1,034 annual herbs to place the ecophysiological traits of 69 crops' wild progenitors in the context of global botanical variation, and we conducted a common-garden experiment to measure the effects of domestication on crop ecophysiology. Our study found that crops' wild progenitors already had high leaf nitrogen, photosynthesis, conductance and transpiration and soft leaves. After domestication, ecophysiological traits varied little and in idiosyncratic ways. Crops did not surpass the trait boundaries of wild species. Overall, the resource-acquisitive strategy of crops is largely due to the inheritance from their wild progenitors rather than to further breeding improvements. Our study concurs with recent literature highlighting constraints of crop breeding for faster ecophysiological traits.
Collapse
Affiliation(s)
- Alicia Gómez-Fernández
- Grupo de investigación en Ecología Evolutiva, Departamento de Biología y Geología, Física y Química Inorgánica, Instituto de Investigación en Cambio Global, Universidad Rey Juan Carlos, Madrid, Spain.
| | - Ismael Aranda
- Instituto de Ciencias Forestales, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Rubén Milla
- Grupo de investigación en Ecología Evolutiva, Departamento de Biología y Geología, Física y Química Inorgánica, Instituto de Investigación en Cambio Global, Universidad Rey Juan Carlos, Madrid, Spain.
| |
Collapse
|
4
|
Petrone BL, Aqeel A, Jiang S, Durand HK, Dallow EP, McCann JR, Dressman HK, Hu Z, Tenekjian CB, Yancy WS, Lin PH, Scialla JJ, Seed PC, Rawls JF, Armstrong SC, Stevens J, David LA. Diversity of plant DNA in stool is linked to dietary quality, age, and household income. Proc Natl Acad Sci U S A 2023; 120:e2304441120. [PMID: 37368926 PMCID: PMC10319039 DOI: 10.1073/pnas.2304441120] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/10/2023] [Indexed: 06/29/2023] Open
Abstract
Eating a varied diet is a central tenet of good nutrition. Here, we develop a molecular tool to quantify human dietary plant diversity by applying DNA metabarcoding with the chloroplast trnL-P6 marker to 1,029 fecal samples from 324 participants across two interventional feeding studies and three observational cohorts. The number of plant taxa per sample (plant metabarcoding richness or pMR) correlated with recorded intakes in interventional diets and with indices calculated from a food frequency questionnaire in typical diets (ρ = 0.40 to 0.63). In adolescents unable to collect validated dietary survey data, trnL metabarcoding detected 111 plant taxa, with 86 consumed by more than one individual and four (wheat, chocolate, corn, and potato family) consumed by >70% of individuals. Adolescent pMR was associated with age and household income, replicating prior epidemiologic findings. Overall, trnL metabarcoding promises an objective and accurate measure of the number and types of plants consumed that is applicable to diverse human populations.
Collapse
Affiliation(s)
- Brianna L. Petrone
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC27710
- Medical Scientist Training Program, Duke University School of Medicine, Durham, NC27710
| | - Ammara Aqeel
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC27710
| | - Sharon Jiang
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC27710
| | - Heather K. Durand
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC27710
| | - Eric P. Dallow
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC27710
| | - Jessica R. McCann
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC27710
| | - Holly K. Dressman
- Duke Microbiome Core Facility, Center for Genomic and Computational Biology, Duke University, Durham, NC27710
| | - Zhengzheng Hu
- Duke Microbiome Core Facility, Center for Genomic and Computational Biology, Duke University, Durham, NC27710
| | | | - William S. Yancy
- Duke Lifestyle and Weight Management Center, Durham, NC27710
- Department of Medicine, Duke University School of Medicine, Durham, NC27710
| | - Pao-Hwa Lin
- Department of Medicine, Nephrology Division, Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC27705
| | - Julia J. Scialla
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA22903
- Department of Public Health Sciences, University of Virginia School of Medicine, Charlottesville, VA22903
| | - Patrick C. Seed
- Division of Pediatric Infectious Diseases, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL60611
| | - John F. Rawls
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC27710
- Duke Microbiome Center, Duke University School of Medicine, Durham, NC27710
| | - Sarah C. Armstrong
- Department of Pediatrics, Duke University School of Medicine, Durham, NC27710
| | - June Stevens
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Lawrence A. David
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC27710
- Duke Microbiome Center, Duke University School of Medicine, Durham, NC27710
| |
Collapse
|
5
|
Großkinsky DK, Faure JD, Gibon Y, Haslam RP, Usadel B, Zanetti F, Jonak C. The potential of integrative phenomics to harness underutilized crops for improving stress resilience. FRONTIERS IN PLANT SCIENCE 2023; 14:1216337. [PMID: 37409292 PMCID: PMC10318926 DOI: 10.3389/fpls.2023.1216337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/08/2023] [Indexed: 07/07/2023]
Affiliation(s)
- Dominik K. Großkinsky
- AIT Austrian Institute of Technology, Center for Health and Bioresources, Bioresources Unit, Tulln a. d. Donau, Austria
| | - Jean-Denis Faure
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin, Versailles, France
| | - Yves Gibon
- INRAE, Univ. Bordeaux, UMR BFP, Villenave d’Ornon, France
- Bordeaux Metabolome, INRAE, Univ. Bordeaux, Villenave d’Ornon, France
| | | | - Björn Usadel
- IBG-4 Bioinformatics, CEPLAS, Forschungszentrum, Jülich, Germany
- Biological Data Science, Heinrich Heine University, Universitätsstrasse 1, Düsseldorf, Germany
| | - Federica Zanetti
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum - Università di Bologna, Bologna, Italy
| | - Claudia Jonak
- AIT Austrian Institute of Technology, Center for Health and Bioresources, Bioresources Unit, Tulln a. d. Donau, Austria
| |
Collapse
|
6
|
Imran M, Shafiq S, Tang X. CRISPR-Cas9-mediated editing of BADH2 gene triggered fragrance revolution in rice. PHYSIOLOGIA PLANTARUM 2023; 175:e13871. [PMID: 36748269 DOI: 10.1111/ppl.13871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/26/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Fragrance is one of the most important quality traits for breeding in rice. The natural aroma substance 2-acetyl-1-pyrroline (2-AP) is a key fragrance compound among over 200 volatiles identified in fragrant rice. In addition to rice, there are other plant species that contain a germplasm that naturally produces a fragrant aroma. These other plant species all have lower activity levels of the enzyme BETAINE ALDEHYDE DEHYDROGENASE 2 (BADH2). Therefore, improving fragrance efficiency has been a focus of intensive research. Recent studies have engineered BADH2 gene, which is responsible for fragrance trait in non-fragrant cultivars of rice, using CRISPR-Cas9. Although engineering rice BADH2 can be useful for upregulating 2-AP, there are still a lot of restrictions on how it can be applied in practice. In this review article, we discuss the recent developments in BADH2 editing and propose potential future strategies to effectively target BADH2 for transcriptional regulation, with the goal of producing a better fragrance.
Collapse
Affiliation(s)
- Muhammad Imran
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture, Guangzhou, China
- Yingdong College of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Sarfraz Shafiq
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
| | - Xiangru Tang
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture, Guangzhou, China
| |
Collapse
|
7
|
Panchenko K. Bioclimatic projection of the ecological niche of curly mallow (Malva verticillata) based on the forecast of the dynamics of the geographical range in the context of global climate change. REGULATORY MECHANISMS IN BIOSYSTEMS 2022. [DOI: 10.15421/022253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
Curly mallow (Malva verticillata L.) is a promising species for cultivation to obtain valuable compounds for the application in medicine, and this species can be used in the bioenergy system to provide industry with alternative energy sources. For the highest economic efficiency, the practical use of this species requires the development of complex measures related to both agrotechnologies and selective breeding. Such measures require resources and there is an urgent problem of assessing the prospects of such investments taking into account the global climate change. Therefore, the problem that we aimed to solve was the assessment of how the global climate change would impact the curly mallow in general in the global context, as well as in the conditions of Ukraine in the next 50–70 years. The database of the Global Biodiversity Information Facility (GBIF) contains 2,104 records of curly-leaved mallow. This species is found on all the continents except Antarctica. Asia accounts for 39.1% of the species’ range, Europe – 53.3%, Africa – 3.6%, North America – 3.2%, South America – 0.1%, Australia – 0.8%. The modelling of M. verticillata response to the climatic factors showed that the best response models were V (in 31.6% of cases) and VII (in 36.8% of cases). Model V characterizes unimodal bell-shaped asymmetric response, and model VII – bimodal asymmetric response. The species response to the mean annual temperature is asymmetric bell-shaped with a shift to the right. The optimal average annual temperature for this species is 9.1 °C. Comparing the distribution of available resources and their use is the basis for identifying the features of the ecological niche of the species. The MaxEnt approach indicates that Southeast Asia and Europe have the most favourable conditions for the existence of this species. Changes in the climatic conditions over the next 50–70 years will make the conditions for the life of M. verticillata in the southern hemisphere unfavourable, and the favourable conditions for it in the northern hemisphere will shift significantly to the north. At the same time, conditions in the autochthonous range of the species will become unfavourable. Obviously, if not for the significant potential of the species to disperse, it would have died out as a result of the significant climate change. The area where favourable conditions for the species will remain unchanged is Central Europe. Conditions in Eastern Europe, including Ukraine, will moderately improve. The results indicate the perspective of the cultivation of curly mallow in Ukraine in the future.
Collapse
|
8
|
Zhou J, Yang Y, Lv Y, Pu Q, Li J, Zhang Y, Deng X, Wang M, Wang J, Tao D. Interspecific Hybridization Is an Important Driving Force for Origin and Diversification of Asian Cultivated Rice Oryza sativa L. FRONTIERS IN PLANT SCIENCE 2022; 13:932737. [PMID: 35845644 PMCID: PMC9280345 DOI: 10.3389/fpls.2022.932737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
As one of the most important crops, Asian cultivated rice has evolved into a complex group including several subgroups adapting various eco-climate-systems around the globe. Here, we pictured a comprehensive view of its original domestication, divergences, and the origin of different subgroups by integrating agriculture, archeology, genetics, nuclear, and cytoplasm genome results. Then, it was highlighted that interspecific hybridization-introgression has played important role in improving the genetic diversity and adaptation of Oryza sativa during its evolution process. Natural hybridization-introgression led to the origin of indica, aus, and basmatic subgroups, which adapted to changing cultivated environments, and produced feral weedy rice coexisting and competing with cultivars under production management. Artificial interspecific hybridization-introgression gained several breakthroughs in rice breeding, such as developing three-line hybrid rice, new rice for Africa (NERICA), and some important pest and disease resistance genes in rice genetic improvement, contributing to the stable increase of rice production to meet the expanding human population. We proposed a series to exploit the virtues of hybridization-introgression in the genetic improvement of Asian cultivated rice. But some key issues such as reproductive barriers especially hybrid sterility should be investigated further, which are conducive to gene exchange between cultivated rice and its relatives, and even is beneficial to exploiting interspecific hybrid vigor. New technologies help introduce favorable genes from distant wild species to Asian cultivated rice, such as transgenic and genome editing systems. Rising introgression lines in a wider range with multi-donor benefits allele mining, understanding genetic network of rice growth and development, yield formation, and environmental adaptation. Then, integration of new tools and interspecific hybridization can be a future direction to develop more usable breeding populations which can make Asian cultivated rice more resilient to the changing climate and world.
Collapse
Affiliation(s)
- Jiawu Zhou
- Yunnan Key Laboratory for Rice Genetic Improvement, Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Ying Yang
- Yunnan Key Laboratory for Rice Genetic Improvement, Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Yonggang Lv
- Yunnan Key Laboratory for Rice Genetic Improvement, Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Qiuhong Pu
- Yunnan Key Laboratory for Rice Genetic Improvement, Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Jing Li
- Yunnan Key Laboratory for Rice Genetic Improvement, Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Yu Zhang
- Yunnan Key Laboratory for Rice Genetic Improvement, Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Xianneng Deng
- Yunnan Key Laboratory for Rice Genetic Improvement, Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Min Wang
- Yunnan Key Laboratory for Rice Genetic Improvement, Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- Institute of Plant Resources, Yunnan University, Kunming, China
| | - Jie Wang
- Yunnan Key Laboratory for Rice Genetic Improvement, Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- Institute of Plant Resources, Yunnan University, Kunming, China
| | - Dayun Tao
- Yunnan Key Laboratory for Rice Genetic Improvement, Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| |
Collapse
|
9
|
Wilson ML, VanBuren R. Leveraging millets for developing climate resilient agriculture. Curr Opin Biotechnol 2022; 75:102683. [DOI: 10.1016/j.copbio.2022.102683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/16/2021] [Accepted: 01/03/2022] [Indexed: 01/31/2023]
|
10
|
Curtin S, Qi Y, Peres LEP, Fernie AR, Zsögön A. Pathways to de novo domestication of crop wild relatives. PLANT PHYSIOLOGY 2022; 188:1746-1756. [PMID: 34850221 PMCID: PMC8968405 DOI: 10.1093/plphys/kiab554] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/03/2021] [Indexed: 05/24/2023]
Abstract
Growing knowledge about crop domestication, combined with increasingly powerful gene-editing toolkits, sets the stage for the continual domestication of crop wild relatives and other lesser-known plant species.
Collapse
Affiliation(s)
- Shaun Curtin
- United States Department of Agriculture, Plant Science Research Unit, St. Paul, Minnesota 55108, USA
- Center for Plant Precision Genomics, University of Minnesota, St. Paul, Minnesota 55108, USA
- Center for Genome Engineering, University of Minnesota, St. Paul, Minnesota 55108, USA
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108, USA
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, Maryland, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland, USA
| | - Lázaro E P Peres
- Laboratory of Hormonal Control of Plant Development. Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, CP 09, 13418-900, Piracicaba, São Paulo, Brazil
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | | |
Collapse
|
11
|
Zsögön A, Peres LEP, Xiao Y, Yan J, Fernie AR. Enhancing crop diversity for food security in the face of climate uncertainty. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:402-414. [PMID: 34882870 DOI: 10.1111/tpj.15626] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 11/30/2021] [Accepted: 12/04/2021] [Indexed: 05/23/2023]
Abstract
Global agriculture is dominated by a handful of species that currently supply a huge proportion of our food and feed. It additionally faces the massive challenge of providing food for 10 billion people by 2050, despite increasing environmental deterioration. One way to better plan production in the face of current and continuing climate change is to better understand how our domestication of these crops included their adaptation to environments that were highly distinct from those of their centre of origin. There are many prominent examples of this, including the development of temperate Zea mays (maize) and the alteration of day-length requirements in Solanum tuberosum (potato). Despite the pre-eminence of some 15 crops, more than 50 000 species are edible, with 7000 of these considered semi-cultivated. Opportunities afforded by next-generation sequencing technologies alongside other methods, including metabolomics and high-throughput phenotyping, are starting to contribute to a better characterization of a handful of these species. Moreover, the first examples of de novo domestication have appeared, whereby key target genes are modified in a wild species in order to confer predictable traits of agronomic value. Here, we review the scale of the challenge, drawing extensively on the characterization of past agriculture to suggest informed strategies upon which the breeding of future climate-resilient crops can be based.
Collapse
Affiliation(s)
- Agustin Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, CEP 36570-900, Viçosa, MG, Brazil
| | - Lázaro E P Peres
- Laboratory of Plant Developmental Genetics, Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, CP 09, 13418-900, Piracicaba, SP, Brazil
| | - Yingjie Xiao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Alisdair R Fernie
- Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| |
Collapse
|
12
|
Allaby R. First come, first served for ancient crops. NATURE PLANTS 2021; 7:542-543. [PMID: 33986524 DOI: 10.1038/s41477-021-00926-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Affiliation(s)
- Robin Allaby
- School of Life Sciences, University of Warwick, Coventry, UK.
| |
Collapse
|