1
|
Nosaki S, Ohtsuka M. The DNA binding of plant-specific GROWTH-REGULATING FACTOR transcription factors is stabilized by GRF-INTERACTING FACTOR coactivators. Biosci Biotechnol Biochem 2025; 89:761-768. [PMID: 39904545 DOI: 10.1093/bbb/zbaf016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 01/31/2025] [Indexed: 02/06/2025]
Abstract
The plant-specific GROWTH-REGULATING FACTOR (GRF) transcription factor family proteins play crucial role in regulating diverse aspects of plant life. The transcriptional activity of GRFs is known to be enhanced through direct interaction with the GRF-INTERACTING FACTOR (GIF) coactivators. However, it remains unclear how the binding to GIF affects the biochemical ability of GRFs. Herein, we present evidence that GIFs also stabilize the DNA binding of GRFs. A combination of biochemical experiments and AlphaFold-predicted structural models suggests that the GIF-binding domain in GRFs may partially restrict their own DNA binding through direct interaction with the DNA-binding domain in the absence of GIFs. These findings deepen our understanding of the GRF:GIF module in plant regulation and provide a basis for strategies to manipulate this module for agricultural and biotechnological applications.
Collapse
Affiliation(s)
- Shohei Nosaki
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Tsukuba Plant-Innovation Research Center (T-PIRC), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Masae Ohtsuka
- Tsukuba Plant-Innovation Research Center (T-PIRC), University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
2
|
Miyaji T, Yamagami A, Nakamura Y, Nishida K, Tachibana R, Surina S, Fujioka S, Garcia‐Hourquet M, Mora‐García S, Nosaki S, Miyakawa T, Tanokura M, Matsui M, Osada H, Shinozaki K, Asami T, Nakano T. BIL7 enhances plant growth by regulating the transcription factor BIL1/BZR1 during brassinosteroid signaling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17212. [PMID: 39705127 PMCID: PMC11771540 DOI: 10.1111/tpj.17212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 12/22/2024]
Abstract
Brassinosteroids (BRs) are plant steroid hormones that regulate plant development and environmental responses. BIL1/BZR1, a master transcription factor that regulates approximately 3000 genes in the BR signaling pathway, is transported to the nucleus from the cytosol in response to BR signaling; however, the molecular mechanism underlying this process is unknown. Here, we identify a novel BR signaling factor, BIL7, that enhances plant growth and positively regulates the nuclear accumulation of BIL1/BZR1 in Arabidopsis thaliana. BIL7-overexpressing plants were resistant to the BR biosynthesis inhibitor Brz and taller than wild-type (WT) plants were due to increased cell division. BIL7 is mainly localized to the plasma membrane, but during the early stages of cell growth, it was also localized to the nucleus. BIL7 was directly phosphorylated by the kinase BIN2, and nuclear localization of BIL7 was enhanced by the BIN2 inhibitor bikinin. BIL7 was found to bind to BIL1/BZR1, and nuclear accumulation of BIL1/BZR1 was strongly enhanced by BIL7 overexpression. Finally, double overexpression of BIL1/BZR1 and BIL7 led to greatly elongated hypocotyls in the presence of Brz. These findings suggest that BIL7 mediates nuclear accumulation of BIL1/BZR1, which activates inflorescence elongation in plants via BR signaling.
Collapse
Affiliation(s)
- Tomoko Miyaji
- RIKEN Center for Sustainable Resource ScienceWakoSaitama351‐0198Japan
| | - Ayumi Yamagami
- RIKEN Center for Sustainable Resource ScienceWakoSaitama351‐0198Japan
- Molecular and Cellular Biology Laboratory of Totipotency, Graduate School of BiostudiesKyoto UniversityKyotoKyoto606‐8502Japan
| | - Yusuke Nakamura
- Molecular and Cellular Biology Laboratory of Totipotency, Graduate School of BiostudiesKyoto UniversityKyotoKyoto606‐8502Japan
| | - Kaisei Nishida
- Molecular and Cellular Biology Laboratory of Totipotency, Graduate School of BiostudiesKyoto UniversityKyotoKyoto606‐8502Japan
| | - Ryo Tachibana
- Molecular and Cellular Biology Laboratory of Totipotency, Graduate School of BiostudiesKyoto UniversityKyotoKyoto606‐8502Japan
| | - Surina Surina
- Molecular and Cellular Biology Laboratory of Totipotency, Graduate School of BiostudiesKyoto UniversityKyotoKyoto606‐8502Japan
| | - Shozo Fujioka
- RIKEN Center for Sustainable Resource ScienceWakoSaitama351‐0198Japan
| | | | | | - Shohei Nosaki
- Department of Applied Biological ChemistryThe University of TokyoYayoi, Bunkyo‐kuTokyo113‐8657Japan
- Faculty of Life and Environmental SciencesUniversity of TsukubaTsukubaIbaraki305‐8572Japan
| | - Takuya Miyakawa
- Molecular and Cellular Biology Laboratory of Totipotency, Graduate School of BiostudiesKyoto UniversityKyotoKyoto606‐8502Japan
- Department of Applied Biological ChemistryThe University of TokyoYayoi, Bunkyo‐kuTokyo113‐8657Japan
| | - Masaru Tanokura
- Department of Applied Biological ChemistryThe University of TokyoYayoi, Bunkyo‐kuTokyo113‐8657Japan
| | - Minami Matsui
- Synthetic Genomics Research GroupRIKEN Center for Sustainable Resource ScienceTsurumi, YokohamaKanagawa230‐0045Japan
| | - Hiroyuki Osada
- RIKEN Center for Sustainable Resource ScienceWakoSaitama351‐0198Japan
- Institute of Microbial Chemistry (BIKAKEN)Kamiosaki, Shinagawa‐kuTokyo141‐0021Japan
| | - Kazuo Shinozaki
- RIKEN Center for Sustainable Resource ScienceWakoSaitama351‐0198Japan
| | - Tadao Asami
- Department of Applied Biological ChemistryThe University of TokyoYayoi, Bunkyo‐kuTokyo113‐8657Japan
- Kihara Institute for Biological ResearchYokohama City UniversityMaiokaTotsukaYokohama244‐0813Japan
| | - Takeshi Nakano
- RIKEN Center for Sustainable Resource ScienceWakoSaitama351‐0198Japan
- Molecular and Cellular Biology Laboratory of Totipotency, Graduate School of BiostudiesKyoto UniversityKyotoKyoto606‐8502Japan
| |
Collapse
|
3
|
Guo F, Lv M, Zhang J, Li J. Crosstalk between Brassinosteroids and Other Phytohormones during Plant Development and Stress Adaptation. PLANT & CELL PHYSIOLOGY 2024; 65:1530-1543. [PMID: 38727547 DOI: 10.1093/pcp/pcae047] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/30/2024] [Accepted: 05/08/2024] [Indexed: 11/14/2024]
Abstract
Brassinosteroids (BRs) are a group of polyhydroxylated phytosterols that play essential roles in regulating plant growth and development as well as stress adaptation. It is worth noting that BRs do not function alone, but rather they crosstalk with other endogenous signaling molecules, including the phytohormones auxin, cytokinins, gibberellins, abscisic acid, ethylene, jasmonates, salicylic acid and strigolactones, forming elaborate signaling networks to modulate plant growth and development. BRs interact with other phytohormones mainly by regulating each others' homeostasis, transport or signaling pathway at the transcriptional and posttranslational levels. In this review, we focus our attention on current research progress in BR signal transduction and the crosstalk between BRs and other phytohormones.
Collapse
Affiliation(s)
- Feimei Guo
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Minghui Lv
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Jingjie Zhang
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Jia Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
4
|
Chagan Z, Nakata G, Suzuki S, Yamagami A, Tachibana R, Surina S, Fujioka S, Matsui M, Kushiro T, Miyakawa T, Asami T, Nakano T. BRZ-INSENSITIVE-LONG HYPOCOTYL8 inhibits kinase-mediated phosphorylation to regulate brassinosteroid signaling. PLANT PHYSIOLOGY 2024; 195:2389-2405. [PMID: 38635969 DOI: 10.1093/plphys/kiae191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 04/20/2024]
Abstract
Glycogen synthase kinase 3 (GSK3) is an evolutionarily conserved serine/threonine protein kinase in eukaryotes. In plants, the GSK3-like kinase BRASSINOSTEROID-INSENSITIVE 2 (BIN2) functions as a central signaling node through which hormonal and environmental signals are integrated to regulate plant development and stress adaptation. BIN2 plays a major regulatory role in brassinosteroid (BR) signaling and is critical for phosphorylating/inactivating BRASSINAZOLE-RESISTANT 1 (BZR1), also known as BRZ-INSENSITIVE-LONG HYPOCOTYL 1 (BIL1), a master transcription factor of BR signaling, but the detailed regulatory mechanism of BIN2 action has not been fully revealed. In this study, we identified BIL8 as a positive regulator of BR signaling and plant growth in Arabidopsis (Arabidopsis thaliana). Genetic and biochemical analyses showed that BIL8 is downstream of the BR receptor BRASSINOSTEROID-INSENSITIVE 1 (BRI1) and promotes the dephosphorylation of BIL1/BZR1. BIL8 interacts with and inhibits the activity of the BIN2 kinase, leading to the accumulation of dephosphorylated BIL1/BZR1. BIL8 suppresses the cytoplasmic localization of BIL1/BZR1, which is induced via BIN2-mediated phosphorylation. Our study reveals a regulatory factor, BIL8, that positively regulates BR signaling by inhibiting BIN2 activity.
Collapse
Affiliation(s)
- Zhana Chagan
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Genki Nakata
- Center for Sustainable Resource Science, RIKEN, Kanagawa 230-0045, Japan
- School of Agriculture, Meiji University, Kanagawa 214-8571, Japan
| | - Shin Suzuki
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Ayumi Yamagami
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Ryo Tachibana
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Surina Surina
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Shozo Fujioka
- Center for Sustainable Resource Science, RIKEN, Kanagawa 230-0045, Japan
| | - Minami Matsui
- Center for Sustainable Resource Science, RIKEN, Kanagawa 230-0045, Japan
| | - Tetsuo Kushiro
- School of Agriculture, Meiji University, Kanagawa 214-8571, Japan
| | - Takuya Miyakawa
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Tadao Asami
- Department of Applied Biological Chemistry, The University of Tokyo, Tokyo 113-8657, Japan
| | - Takeshi Nakano
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
5
|
Zhu T, Wei C, Yu Y, Zhang Z, Zhu J, Liang Z, Song X, Fu W, Cui Y, Wang ZY, Li C. The BAS chromatin remodeler determines brassinosteroid-induced transcriptional activation and plant growth in Arabidopsis. Dev Cell 2024; 59:924-939.e6. [PMID: 38359831 PMCID: PMC11003849 DOI: 10.1016/j.devcel.2024.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/22/2023] [Accepted: 01/24/2024] [Indexed: 02/17/2024]
Abstract
Brassinosteroid (BR) signaling leads to the nuclear accumulation of the BRASSINAZOLE-RESISTANT 1 (BZR1) transcription factor, which plays dual roles in activating or repressing the expression of thousands of genes. BZR1 represses gene expression by recruiting histone deacetylases, but how it activates transcription of BR-induced genes remains unclear. Here, we show that BR reshapes the genome-wide chromatin accessibility landscape, increasing the accessibility of BR-induced genes and reducing the accessibility of BR-repressed genes in Arabidopsis. BZR1 physically interacts with the BRAHMA-associated SWI/SNF (BAS)-chromatin-remodeling complex on the genome and selectively recruits the BAS complex to BR-activated genes. Depletion of BAS abrogates the capacities of BZR1 to increase chromatin accessibility, activate gene expression, and promote cell elongation without affecting BZR1's ability to reduce chromatin accessibility and expression of BR-repressed genes. Together, these data identify that BZR1 recruits the BAS complex to open chromatin and to mediate BR-induced transcriptional activation of growth-promoting genes.
Collapse
Affiliation(s)
- Tao Zhu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Chuangqi Wei
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA; Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| | - Yaoguang Yu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhenzhen Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Synthetic Biology Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiameng Zhu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhenwei Liang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xin Song
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Wei Fu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yuhai Cui
- London Research and Development Centre, Agriculture and Agri-food Canada, London, ON N5V 4T3, Canada
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA.
| | - Chenlong Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resource, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
6
|
Liu M, Lu M, Zhao Z, Luo Q, Liu F, Zhao J, He Y, Tian Y, Zhan H. Rice ILI atypical bHLH transcription factors antagonize OsbHLH157/OsbHLH158 during brassinosteroid signaling. PLANT PHYSIOLOGY 2024; 194:1545-1562. [PMID: 38039100 DOI: 10.1093/plphys/kiad635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/28/2023] [Accepted: 10/30/2023] [Indexed: 12/03/2023]
Abstract
Brassinosteroids (BRs) are a group of steroid hormones that play crucial roles in plant growth and development. Atypical bHLH transcription factors that lack the basic region for DNA binding have been implicated in BR signaling. However, the underlying mechanisms of atypical bHLHs in regulation of rice (Oryza sativa) BR signaling are still largely unknown. Here, we describe a systematic characterization of INCREASED LEAF INCLINATION (ILI) subfamily atypical bHLH transcription factors in rice. A total of 8 members, ILI1 to ILI8, with substantial sequence similarity were retrieved. Knockout and overexpression analyses demonstrated that these ILIs play unequally redundant and indispensable roles in BR-mediated growth and development in rice, with a more prominent role for ILI4 and ILI5. The ili3/4/5/8 quadruple and ili1/3/4/7/8 quintuple mutants displayed tremendous BR-related defects with severe dwarfism, erect leaves, and sterility. Biochemical analysis showed that ILIs interact with OsbHLH157 and OsbHLH158, which are also atypical bHLHs and have no obvious transcriptional activity. Overexpression of OsbHLH157 and OsbHLH158 led to drastic BR-defective growth, whereas the osbhlh157 osbhlh158 double mutant developed a typical BR-enhanced phenotype, indicating that OsbHLH157 and OsbHLH158 play a major negative role in rice BR signaling. Further transcriptome analyses revealed opposite effects of ILIs and OsbHLH157/OsbHLH158 in regulation of downstream gene expression, supporting the antagonism of ILIs and OsbHLH157/OsbHLH158 in maintaining the balance of BR signaling. Our results provide insights into the mechanism of BR signaling and plant architecture formation in rice.
Collapse
Affiliation(s)
- Mingqian Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingmin Lu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Ziwei Zhao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Qin Luo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Zhao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Yubing He
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
- Hainan Yazhou Bay Seed Laboratory, National Nanfan Research Institute (Sanya), CAAS, Sanya 572024, China
| | - Yanan Tian
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Huadong Zhan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
7
|
Tachibana R, Abe S, Marugami M, Yamagami A, Akema R, Ohashi T, Nishida K, Nosaki S, Miyakawa T, Tanokura M, Kim JM, Seki M, Inaba T, Matsui M, Ifuku K, Kushiro T, Asami T, Nakano T. BPG4 regulates chloroplast development and homeostasis by suppressing GLK transcription factors and involving light and brassinosteroid signaling. Nat Commun 2024; 15:370. [PMID: 38191552 PMCID: PMC10774444 DOI: 10.1038/s41467-023-44492-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 12/15/2023] [Indexed: 01/10/2024] Open
Abstract
Chloroplast development adapts to the environment for performing suitable photosynthesis. Brassinosteroids (BRs), plant steroid hormones, have crucial effects on not only plant growth but also chloroplast development. However, the detailed molecular mechanisms of BR signaling in chloroplast development remain unclear. Here, we identify a regulator of chloroplast development, BPG4, involved in light and BR signaling. BPG4 interacts with GOLDEN2-LIKE (GLK) transcription factors that promote the expression of photosynthesis-associated nuclear genes (PhANGs), and suppresses their activities, thereby causing a decrease in the amounts of chlorophylls and the size of light-harvesting complexes. BPG4 expression is induced by BR deficiency and light, and is regulated by the circadian rhythm. BPG4 deficiency causes increased reactive oxygen species (ROS) generation and damage to photosynthetic activity under excessive high-light conditions. Our findings suggest that BPG4 acts as a chloroplast homeostasis factor by fine-tuning the expression of PhANGs, optimizing chloroplast development, and avoiding ROS generation.
Collapse
Affiliation(s)
- Ryo Tachibana
- Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Susumu Abe
- CSRS, RIKEN, Tsurumi-ku, Yokohama, 230-0045, Japan
- School of Agriculture, Meiji University, Tama-ku, Kawasaki, 214-8571, Japan
| | - Momo Marugami
- CSRS, RIKEN, Tsurumi-ku, Yokohama, 230-0045, Japan
- School of Agriculture, Meiji University, Tama-ku, Kawasaki, 214-8571, Japan
| | - Ayumi Yamagami
- Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Rino Akema
- Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Takao Ohashi
- Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Kaisei Nishida
- Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Shohei Nosaki
- Faculty of Life and Environmental Sciences, Tsukuba University, 1-1-1 Tennoudai, Tsukuba-shi, 305-8572, Japan
| | - Takuya Miyakawa
- Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Masaru Tanokura
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Jong-Myong Kim
- CSRS, RIKEN, Tsurumi-ku, Yokohama, 230-0045, Japan
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
- Ac-Planta Inc., Bunkyo-ku, Tokyo, 113-0044, Japan
| | - Motoaki Seki
- CSRS, RIKEN, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Takehito Inaba
- Department of Agricultural and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuenkibanadai-nishi, Miyazaki, 889-2192, Japan
| | | | - Kentaro Ifuku
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Tetsuo Kushiro
- School of Agriculture, Meiji University, Tama-ku, Kawasaki, 214-8571, Japan
| | - Tadao Asami
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Takeshi Nakano
- Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan.
- CSRS, RIKEN, Tsurumi-ku, Yokohama, 230-0045, Japan.
| |
Collapse
|
8
|
Furuya T, Kondo Y. Comprehensive analysis of downstream transcriptomic features in the competitive relationships between BEH3 and other BES/BZR transcription factors. Genes Genet Syst 2023; 98:89-92. [PMID: 37331806 DOI: 10.1266/ggs.23-00029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023] Open
Abstract
Members of a plant-specific BES/BZR transcription factor (TF) family including BRI1-EMS-SUPPRESSOR 1 (BES1) and BRASSINAZOLE-RESISTANT 1 (BZR1) regulate various developmental processes and environmental responses. Recently, we reported that BES1/BZR1 Homolog 3 (BEH3) exhibited a competitive effect toward other BES/BZR TFs. In this study, we analyzed transcriptome profiles in BEH3-overexpressing plants and compared them with those of BES1 and BZR1 double gain-of-function mutants. We identified 46 differentially expressed genes (DEGs), which were downregulated in the gain-of-function mutants of BES1 and BZR1 but upregulated upon BEH3 overexpression. In these DEGs, putative BES1 and BZR1 direct-targeted genes were highly enriched. In addition, these DEGs contained not only known brassinosteroid biosynthetic enzymes, but also some NAC TFs, which negatively regulate brassinosteroid-inactivating enzymes. Moreover, the iron sensor and the iron-deficient response-related bHLH TFs were also included. Taken together, our findings indicate that a competitive relationship between BEH3 and other BES/BZR TFs exists in various BES/BZR binding target genes.
Collapse
Affiliation(s)
- Tomoyuki Furuya
- College of Life Sciences, Ritsumeikan University
- Graduate School of Science, Kobe University
| | - Yuki Kondo
- Graduate School of Science, Kobe University
| |
Collapse
|
9
|
Han C, Wang L, Lyu J, Shi W, Yao L, Fan M, Bai MY. Brassinosteroid signaling and molecular crosstalk with nutrients in plants. J Genet Genomics 2023; 50:541-553. [PMID: 36914050 DOI: 10.1016/j.jgg.2023.03.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/25/2023] [Accepted: 03/02/2023] [Indexed: 03/15/2023]
Abstract
As sessile organisms, plants have evolved sophisticated mechanisms to optimize their growth and development in response to fluctuating nutrient levels. Brassinosteroids (BRs) are a group of plant steroid hormones that play critical roles in plant growth and developmental processes as well as plant responses to environmental stimuli. Recently, multiple molecular mechanisms have been proposed to explain the integration of BRs with different nutrient signaling processes to coordinate gene expression, metabolism, growth, and survival. Here, we review recent advances in understanding the molecular regulatory mechanisms of the BR signaling pathway and the multifaceted roles of BR in the intertwined sensing, signaling, and metabolic processes of sugar, nitrogen, phosphorus, and iron. Further understanding and exploring these BR-related processes and mechanisms will facilitate advances in crop breeding for higher resource efficiency.
Collapse
Affiliation(s)
- Chao Han
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Lingyan Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Jinyang Lyu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Wen Shi
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Lianmei Yao
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Min Fan
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Ming-Yi Bai
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
10
|
Shaping transcriptional responses to a phytohormone. Commun Biol 2023; 6:45. [PMID: 36639703 PMCID: PMC9839687 DOI: 10.1038/s42003-023-04440-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|