1
|
Cui C, Shang M, Li Z, Xiao J. Synthetic biology approaches to improve Rubisco carboxylation efficiency in C 3 Plants: Direct and Indirect Strategies. JOURNAL OF PLANT PHYSIOLOGY 2025; 307:154470. [PMID: 40056853 DOI: 10.1016/j.jplph.2025.154470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/10/2025]
Abstract
Food security remains a pressing issue due to the growing global population and climate change, including the global warming along with increased atmospheric CO2 levels, which can negatively impact C3 crop yields. A major limitation in C3 plants is the inefficiency of Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) due to its low carboxylation activity and competing oxygenase activity. Improving Rubisco efficiency in C3 plants is thus essential for improving photosynthetic performance. Recent advances in synthetic biology have introduced promising strategies to overcome these limitations. This review highlights the latest synthetic biology and gene transformation techniques aimed at optimizing Rubsico carboxylation efficiency. Next, direct approaches such as engineering Rubisco subunits by replacing plant Rubisco with proteins from other organisms are discussed. Additionally, indirect strategies involve modifications of Rubisco-interacting proteins and adjustment of Rubisco environment. We explore CO2-concentrating mechanisms (CCMs) based on pyrenoids and carboxysomes, which increase local CO2 concentrations around Rubisco thus favouring the carboxylation reaction. Lastly, photorespiratory bypasses are also covered in this review.
Collapse
Affiliation(s)
- Chuwen Cui
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Mengting Shang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Zhigang Li
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning, 571500, China
| | - Jianwei Xiao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
2
|
Zhu T, Ning P, Liu Y, Liu M, Yang J, Wang Z, Li M. Knowledge of microalgal Rubiscos helps to improve photosynthetic efficiency of crops. PLANTA 2025; 261:78. [PMID: 40042639 DOI: 10.1007/s00425-025-04645-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 02/16/2025] [Indexed: 03/29/2025]
Abstract
MAIN CONCLUSION A comprehensive understanding of microalgal Rubiscos offers opportunities to enhance photosynthetic efficiency of crops. As food production fails to meet the needs of the expanding population, there is increasing concern about Ribulose-1, 5-diphosphate (RuBP) carboxylase/oxygenase (Rubisco), the enzyme that catalyzes CO2 fixation in photosynthesis. There have been many attempts to optimize Rubisco in crops, but the complex multicellular structure of higher plants makes optimization more difficult. Microalgae have the characteristics of rapid growth, simple structure and easy molecular modification, and the function and properties of their Rubiscos are basically the same as those of higher plants. Research on microalgal Rubiscos helps to broaden the understanding of Rubiscos of higher plants. Also, transferring all or part of better microalgal Rubiscos into crop cells or giving crop Rubiscos the advantages of microalgal Rubiscos can help improve the photosynthesis of crops. In this review, the distribution, origin, evolution, molecular structure, folding, assembly, activation and kinetic properties of microalgal Rubiscos are summarized. Moreover, the development of some effective methods to improve the properties and application of Rubiscos in microalgae are also described.
Collapse
Affiliation(s)
- Tongtong Zhu
- Energy-Rich Compound Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, No. 700 Changchen Road, Qingdao, 266109, People's Republic of China
| | - Peng Ning
- Energy-Rich Compound Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, No. 700 Changchen Road, Qingdao, 266109, People's Republic of China
| | - Yiguo Liu
- College of Agronomy, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Min Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 250100, People's Republic of China
| | - Jianming Yang
- Energy-Rich Compound Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, No. 700 Changchen Road, Qingdao, 266109, People's Republic of China
| | - Zhaobao Wang
- Energy-Rich Compound Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, No. 700 Changchen Road, Qingdao, 266109, People's Republic of China.
| | - Meijie Li
- Energy-Rich Compound Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, No. 700 Changchen Road, Qingdao, 266109, People's Republic of China.
| |
Collapse
|
3
|
Salesse‐Smith CE, Wang Y, Long SP. Increasing Rubisco as a simple means to enhance photosynthesis and productivity now without lowering nitrogen use efficiency. THE NEW PHYTOLOGIST 2025; 245:951-965. [PMID: 39688507 PMCID: PMC11711929 DOI: 10.1111/nph.20298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/05/2024] [Indexed: 12/18/2024]
Abstract
Global demand for food may rise by 60% mid-century. A central challenge is to meet this need using less land in a changing climate. Nearly all crop carbon is assimilated through Rubisco, which is catalytically slow, reactive with oxygen, and a major component of leaf nitrogen. Developing more efficient forms of Rubisco, or engineering CO2 concentrating mechanisms into C3 crops to competitively repress oxygenation, are major endeavors, which could hugely increase photosynthetic productivity (≥ 60%). New technologies are bringing this closer, but improvements remain in the discovery phase and have not been reduced to practice. A simpler shorter-term strategy that could fill this time gap, but with smaller productivity increases (c. 10%) is to increase leaf Rubisco content. This has been demonstrated in initial field trials, improving the productivity of C3 and C4 crops. Combining three-dimensional leaf canopies with metabolic models infers that a 20% increase in Rubisco increases canopy photosynthesis by 14% in sugarcane (C4) and 9% in soybean (C3). This is consistent with observed productivity increases in rice, maize, sorghum and sugarcane. Upregulation of Rubisco is calculated not to require more nitrogen per unit yield and although achieved transgenically to date, might be achieved using gene editing to produce transgene-free gain of function mutations or using breeding.
Collapse
Affiliation(s)
- Coralie E. Salesse‐Smith
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- DOE Center for Advanced Bioenergy and Bioproducts InnovationUrbanaIL61801USA
| | - Yu Wang
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- DOE Center for Advanced Bioenergy and Bioproducts InnovationUrbanaIL61801USA
- School of Life SciencesNanjing UniversityNanjing210008China
| | - Stephen P. Long
- Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- DOE Center for Advanced Bioenergy and Bioproducts InnovationUrbanaIL61801USA
- Departments of Plant Biology and of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| |
Collapse
|
4
|
Nakazato I, Arimura SI. Genome editing in angiosperm chloroplasts: targeted DNA double-strand break and base editing. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:872-880. [PMID: 39276374 DOI: 10.1111/tpj.17027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/17/2024]
Abstract
Chloroplasts are organelles that are derived from a photosynthetic bacterium and have their own genome. Genome editing is a recently developing technology that allows for specific modifications of target sequences. The first successful application of genome editing in chloroplasts was reported in 2021, and since then, this research field has been expanding. Although the chloroplast genome of several dicot species can be stably modified by a conventional method, which involves inserting foreign DNAs into the chloroplast genome via homologous recombination, genome editing offers several advantages over this method. In this review, we introduce genome editing methods targeting the chloroplast genome and describe their advantages and limitations. So far, CRISPR/Cas systems are inapplicable for editing the chloroplast genome because guide RNAs, unlike proteins, cannot be efficiently delivered into chloroplasts. Therefore, protein-based enzymes are used to edit the chloroplast genome. These enzymes contain a chloroplast-transit peptide, the DNA-binding domain of transcription activator-like effector nuclease (TALEN), or a catalytic domain that induces DNA modifications. To date, genome editing methods can cause DNA double-strand break or introduce C:G-to-T:A and A:T-to-G:C base edits at or near the target sequence. These methods are expected to contribute to basic research on the chloroplast genome in many species and to be fundamental methods of plant breeding utilizing the chloroplast genome.
Collapse
Affiliation(s)
- Issei Nakazato
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku Tokyo, 113-8657, Japan
- Research Fellow of Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan
| | - Shin-Ichi Arimura
- Laboratory of Plant Molecular Genetics, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku Tokyo, 113-8657, Japan
| |
Collapse
|
5
|
Gamarra Reinoso L, Majláth I, Dernovics M, Fábián A, Jose J, Jampoh EA, Hamow KÁ, Soós V, Sági L, Éva C. Root-based inorganic carbon uptake increases the growth of Arabidopsis thaliana and changes transporter expression and nitrogen and sulfur metabolism. FRONTIERS IN PLANT SCIENCE 2024; 15:1448432. [PMID: 39309181 PMCID: PMC11412874 DOI: 10.3389/fpls.2024.1448432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024]
Abstract
Root-based uptake of inorganic carbon has been suggested as an additional carbon source. Our study aimed to characterize and understand the root-based uptake and fixation mechanisms and their impact on plant growth. 13C-labeled bicarbonate fed to Arabidopsis roots was assimilated into aspartic acid but mainly into sucrose, indicating that the added inorganic carbon was transported to the leaves. A hydroponic treatment was also established for A. thaliana using 2 mM NaHCO3 at pH 5.6, which enhanced the photosynthetic and growth parameters. According to transcriptome sequencing data, the observed enhancement in growth may be orchestrated by trehalose-6-phosphate signaling and supported by augmented nitrogen and sulfur assimilation. The analysis also revealed regulatory and transporter activities, including several nitrate (NRT2.1), and sulfate transporter (SULTR1;1 and SULTR1;2) candidates that could participate in bicarbonate uptake. Different transporters and carbon fixation mutants were assessed. Arabidopsis homologs of SLOW-TYPE ANION CHANNEL 1 (slah3) CARBONIC ANHYDRASE (βca4), and SULFATE TRANSPORTER (sultr1;2) mutants were shown to be inferior to the bicarbonate-treated wild types in several growth and root ultrastructural parameters. Besides, aquaporin genes PIP1;3 and PIP2;6 could play a negative role in the carbon uptake by venting carbon dioxide out of the plant. The findings support the hypothesis that the inorganic carbon is taken up by the root anion channels, mostly transported up to the shoots by the xylem, and fixed there by RuBisCo after the conversion to CO2 by carbonic anhydrases. The process boosts photosynthesis and growth by providing an extra carbon supply.
Collapse
Affiliation(s)
- Liesel Gamarra Reinoso
- Agricultural Institute, Hungarian Research Network (HUN-REN) Centre for Agricultural Research, Martonvásár, Hungary
- PhD School of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Imre Majláth
- Agricultural Institute, Hungarian Research Network (HUN-REN) Centre for Agricultural Research, Martonvásár, Hungary
| | - Mihály Dernovics
- Agricultural Institute, Hungarian Research Network (HUN-REN) Centre for Agricultural Research, Martonvásár, Hungary
| | - Attila Fábián
- Agricultural Institute, Hungarian Research Network (HUN-REN) Centre for Agricultural Research, Martonvásár, Hungary
| | - Jeny Jose
- Agricultural Institute, Hungarian Research Network (HUN-REN) Centre for Agricultural Research, Martonvásár, Hungary
- Doctoral School of Plant Sciences, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Emmanuel Asante Jampoh
- Agricultural Institute, Hungarian Research Network (HUN-REN) Centre for Agricultural Research, Martonvásár, Hungary
- Doctoral School of Horticultural Sciences, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Kamirán Áron Hamow
- Agricultural Institute, Hungarian Research Network (HUN-REN) Centre for Agricultural Research, Martonvásár, Hungary
- Doctoral School of Plant Sciences, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Vilmos Soós
- Agricultural Institute, Hungarian Research Network (HUN-REN) Centre for Agricultural Research, Martonvásár, Hungary
| | - László Sági
- Agricultural Institute, Hungarian Research Network (HUN-REN) Centre for Agricultural Research, Martonvásár, Hungary
| | - Csaba Éva
- Agricultural Institute, Hungarian Research Network (HUN-REN) Centre for Agricultural Research, Martonvásár, Hungary
| |
Collapse
|
6
|
Elsadek MA, Wang R, Xu K, Wang T, Zhang A, Qi Z, Liu B, Yuan L, Chen L. Tuber quality enhancement via grafting potato onto a wooden goji rootstock through vitalizing multi-pathways. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108927. [PMID: 39067104 DOI: 10.1016/j.plaphy.2024.108927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/30/2024]
Abstract
Grafting is applied in Solanaceae to improve growth and quality traits. However, grafting potato onto a wooden goji rootstock is rare. Our study introduces a novel distant grafting technique to investigate potato scion responses, specifically regarding photosynthetic and tuber nutritional quality. The physiological and transcriptomic findings reveal an increase in photosynthesis ratio and carbon fixation in potato leaves after 45 days of grafting due to the upregulation of pivotal genes (PsbA, PPC1, rbcl, and GAPDH). After 95 days of long-term growth, the leaf redox balance was maintained with intensified chlorophyll synthesis, facilitated by the enrichment of crucial genes (GUN4, CHLH, CHLP, CAO) and several light-harvesting proteins (Lhca and Lhcb) in potato leaves. The tubers of grafted plants showed a 6.5% increase in crude protein, 51% in anthocyanin, and lower carbohydrate content. Goji altered the expression of tubers genes involved in assimilatory sulfate reduction, which subsequently affects cysteine-methionine biosynthesis. Furthermore, the tuber transcriptome shows ABA signaling and transcription factors regulate the expression of key biosynthetic genes involved in inducing the secondary metabolites, such as scopoletin and anthocyanin accumulation, which are primary polyphenols in goji. Our innovative grafting approach offers valuable insights into the interactions between woody and herbaceous plants for developing future strategies to modulate growth efficiency and tuber quality in the face of climate challenges and to meet the demand for nutritious food.
Collapse
Affiliation(s)
- Mohamed A Elsadek
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China; Department of Horticulture, Faculty of Agriculture, South Valley University, Qena, 83523, Egypt
| | - Ruiting Wang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Kexin Xu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Tingjin Wang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Aijun Zhang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zhenyu Qi
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Bin Liu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Lu Yuan
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Liping Chen
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
7
|
Bouvier JW, Emms DM, Kelly S. Rubisco is evolving for improved catalytic efficiency and CO 2 assimilation in plants. Proc Natl Acad Sci U S A 2024; 121:e2321050121. [PMID: 38442173 PMCID: PMC10945770 DOI: 10.1073/pnas.2321050121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/25/2024] [Indexed: 03/07/2024] Open
Abstract
Rubisco is the primary entry point for carbon into the biosphere. However, rubisco is widely regarded as inefficient leading many to question whether the enzyme can adapt to become a better catalyst. Through a phylogenetic investigation of the molecular and kinetic evolution of Form I rubisco we uncover the evolutionary trajectory of rubisco kinetic evolution in angiosperms. We show that rbcL is among the 1% of slowest-evolving genes and enzymes on Earth, accumulating one nucleotide substitution every 0.9 My and one amino acid mutation every 7.2 My. Despite this, rubisco catalysis has been continually evolving toward improved CO2/O2 specificity, carboxylase turnover, and carboxylation efficiency. Consistent with this kinetic adaptation, increased rubisco evolution has led to a concomitant improvement in leaf-level CO2 assimilation. Thus, rubisco has been slowly but continually evolving toward improved catalytic efficiency and CO2 assimilation in plants.
Collapse
Affiliation(s)
- Jacques W Bouvier
- Department of Biology, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - David M Emms
- Department of Biology, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - Steven Kelly
- Department of Biology, University of Oxford, Oxford OX1 3RB, United Kingdom
| |
Collapse
|
8
|
Capó-Bauçà S, Iñiguez C, Galmés J. The diversity and coevolution of Rubisco and CO 2 concentrating mechanisms in marine macrophytes. THE NEW PHYTOLOGIST 2024; 241:2353-2365. [PMID: 38197185 DOI: 10.1111/nph.19528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/15/2023] [Indexed: 01/11/2024]
Abstract
The kinetic properties of Rubisco, the most important carbon-fixing enzyme, have been assessed in a small fraction of the estimated existing biodiversity of photosynthetic organisms. Until recently, one of the most significant gaps of knowledge in Rubisco kinetics was marine macrophytes, an ecologically relevant group including brown (Ochrophyta), red (Rhodophyta) and green (Chlorophyta) macroalgae and seagrasses (Streptophyta). These organisms express various Rubisco types and predominantly possess CO2 -concentrating mechanisms (CCMs), which facilitate the use of bicarbonate for photosynthesis. Since bicarbonate is the most abundant form of dissolved inorganic carbon in seawater, CCMs allow marine macrophytes to overcome the slow gas diffusion and low CO2 availability in this environment. The present review aims to compile and integrate recent findings on the biochemical diversity of Rubisco and CCMs in the main groups of marine macrophytes. The Rubisco kinetic data provided demonstrate a more relaxed relationship among catalytic parameters than previously reported, uncovering a variability in Rubisco catalysis that has been hidden by a bias in the literature towards terrestrial vascular plants. The compiled data indicate the existence of convergent evolution between Rubisco and biophysical CCMs across the polyphyletic groups of marine macrophytes and suggest a potential role for oxygen in shaping such relationship.
Collapse
Affiliation(s)
- Sebastià Capó-Bauçà
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears-INAGEA, 07122, Palma, Balearic Islands, Spain
| | - Concepción Iñiguez
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears-INAGEA, 07122, Palma, Balearic Islands, Spain
- Department of Ecology, Faculty of Sciences, University of Malaga, Boulevard Louis Pasteur s/n, 29010, Málaga, Spain
| | - Jeroni Galmés
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears-INAGEA, 07122, Palma, Balearic Islands, Spain
| |
Collapse
|
9
|
Zhao L, Cai Z, Li Y, Zhang Y. Engineering Rubisco to enhance CO 2 utilization. Synth Syst Biotechnol 2024; 9:55-68. [PMID: 38273863 PMCID: PMC10809010 DOI: 10.1016/j.synbio.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/15/2023] [Accepted: 12/25/2023] [Indexed: 01/27/2024] Open
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is a pivotal enzyme that mediates the fixation of CO2. As the most abundant protein on earth, Rubisco has a significant impact on global carbon, water, and nitrogen cycles. However, the significantly low carboxylation activity and competing oxygenase activity of Rubisco greatly impede high carbon fixation efficiency. This review first summarizes the current efforts in directly or indirectly modifying plant Rubisco, which has been challenging due to its high conservation and limitations in chloroplast transformation techniques. However, recent advancements in understanding Rubisco biogenesis with the assistance of chaperones have enabled successful heterologous expression of all Rubisco forms, including plant Rubisco, in microorganisms. This breakthrough facilitates the acquisition and evaluation of modified proteins, streamlining the measurement of their activity. Moreover, the establishment of a screening system in E. coli opens up possibilities for obtaining high-performance mutant enzymes through directed evolution. Finally, this review emphasizes the utilization of Rubisco in microorganisms, not only expanding their carbon-fixing capabilities but also holding significant potential for enhancing biotransformation processes.
Collapse
Affiliation(s)
- Lei Zhao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhen Cai
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yin Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yanping Zhang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
10
|
Rizzieri YC, Lipari A, Gunn L, Li FW. Twelve new metagenome-assembled genomes from non-axenic culture of Griffithsia monilis (Rhodophyta). Microbiol Resour Announc 2024; 13:e0072823. [PMID: 38038470 DOI: 10.1128/mra.00728-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023] Open
Abstract
We report 12 metagenome-assembled genomes from a non-axenic culture of the red alga Griffithsia monilis Harvey, some of which are distantly related to publicly available genomes.
Collapse
Affiliation(s)
- Yanã C Rizzieri
- Boyce Thompson Institute , Ithaca, New York, USA
- Plant Biology Section, Cornell University , Ithaca, New York, USA
| | - August Lipari
- Boyce Thompson Institute , Ithaca, New York, USA
- Grinnell College , Grinnell, Iowa, USA
| | - Laura Gunn
- Plant Biology Section, Cornell University , Ithaca, New York, USA
- Department of Cell and Molecular Biology, Uppsala University , Uppsala, Sweden
| | - Fay-Wei Li
- Boyce Thompson Institute , Ithaca, New York, USA
- Plant Biology Section, Cornell University , Ithaca, New York, USA
| |
Collapse
|
11
|
Theme and variations. NATURE PLANTS 2023; 9:849. [PMID: 37344638 DOI: 10.1038/s41477-023-01456-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
|