1
|
Whittle EE, Orababa O, Osgerby A, Siasat P, Element SJ, Blair JMA, Overton TW. Efflux pumps mediate changes to fundamental bacterial physiology via membrane potential. mBio 2024; 15:e0237024. [PMID: 39248573 PMCID: PMC11481890 DOI: 10.1128/mbio.02370-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 08/15/2024] [Indexed: 09/10/2024] Open
Abstract
Efflux pumps are well known to be an important mechanism for removing noxious substances such as antibiotics from bacteria. Given that many antibiotics function by accumulating inside bacteria, efflux pumps contribute to resistance. Efflux pump inactivation is a potential strategy to combat antimicrobial resistance, as bacteria would not be able to pump out antibiotics. We recently discovered that the impact of loss of efflux function is only apparent in actively growing cells. We demonstrated that the global transcriptome of Salmonella Typhimurium is drastically altered during slower growth leading to stationary-phase cells having a remodeled, less permeable envelope that prevents antibiotics entering the cell. Here, we investigated the effects of deleting the major efflux pump of Salmonella Typhimurium, AcrB, on global gene transcription across growth. We revealed that an acrB knockout entered stationary phase later than the wild-type strain SL1344 and displayed increased and prolonged expression of genes responsible for anaerobic energy metabolism. We devised a model linking efflux and membrane potential, whereby deactivation of AcrB prevents influx of protons across the inner membrane and thereby hyperpolarization. Knockout or deactivation of AcrB was demonstrated to increase membrane potential. We propose that the global transcription regulator ArcBA senses changes to the redox state of the quinol pool (linked to the membrane potential of the bacterium) and coordinates the shift from exponential to stationary phase via the key master regulators RpoS, Rsd, and Rmf. Inactivation of efflux pumps therefore influences the fundamental physiology of Salmonella, with likely impacts on multiple phenotypes.IMPORTANCEWe demonstrate for the first time that deactivation of efflux pumps brings about changes to gross bacterial physiology and metabolism. Rather than simply being a response to noxious substances, efflux pumps appear to play a key role in maintenance of membrane potential and thereby energy metabolism. This discovery suggests that efflux pump inhibition or inactivation might have unforeseen positive consequences on antibiotic activity. Given that stationary-phase bacteria are more resistant to antibiotic uptake, late entry into stationary phase would prolong antibiotic accumulation by bacteria. Furthermore, membrane hyperpolarization could result in increased generation of reactive species proposed to be important for the activity of some antibiotics. Finally, changes in gross physiology could also explain the decreased virulence of efflux mutants.
Collapse
Affiliation(s)
- Emily E. Whittle
- Department of Microbes, Infection and Microbiomes, Institute of Microbiology and Infection, College of Medical and Dental Sciences, Birmingham, United Kingdom
| | - Oluwatosin Orababa
- Department of Microbes, Infection and Microbiomes, Institute of Microbiology and Infection, College of Medical and Dental Sciences, Birmingham, United Kingdom
| | - Alexander Osgerby
- School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| | - Pauline Siasat
- Department of Microbes, Infection and Microbiomes, Institute of Microbiology and Infection, College of Medical and Dental Sciences, Birmingham, United Kingdom
| | - Sarah J. Element
- Department of Microbes, Infection and Microbiomes, Institute of Microbiology and Infection, College of Medical and Dental Sciences, Birmingham, United Kingdom
| | - Jessica M. A. Blair
- Department of Microbes, Infection and Microbiomes, Institute of Microbiology and Infection, College of Medical and Dental Sciences, Birmingham, United Kingdom
| | - Tim W. Overton
- School of Chemical Engineering, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
2
|
Wang H, Fan Q, Wang Y, Yi L, Wang Y. Multi-omics analysis reveals genes and metabolites involved in Streptococcus suis biofilm formation. BMC Microbiol 2024; 24:297. [PMID: 39127666 PMCID: PMC11316374 DOI: 10.1186/s12866-024-03448-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Streptococcus suis is an important zoonotic pathogen. Biofilm formation largely explains the difficulty in preventing and controlling S. suis. However, little is known about the molecular mechanism of S. suis biofilm formation. RESULTS In this study, transcriptomic and metabolomic analyses of S. suis in biofilm and planktonic states were performed to identify key genes and metabolites involved in biofilm formation. A total of 789 differential genes and 365 differential metabolites were identified. By integrating transcriptomics and metabolomics, five main metabolic pathways were identified, including amino acid pathway, nucleotide metabolism pathway, carbon metabolism pathway, vitamin and cofactor metabolism pathway, and aminoacyl-tRNA biosynthesis metabolic pathway. CONCLUSIONS These results provide new insights for exploring the molecular mechanism of S. suis biofilm formation.
Collapse
Affiliation(s)
- Haikun Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Qingying Fan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Yuxin Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
| | - Li Yi
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China
- College of Life Science, Luoyang Normal University, Luoyang, 471934, China
| | - Yang Wang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, China.
- Henan Provincial Engineering Research Center for Detection and Prevention and Control of Emerging Infectious Diseases in Livestock and Poultry, Luoyang, 471003, China.
| |
Collapse
|
3
|
Ray S, Löffler S, Richter‐Dahlfors A. High-Resolution Large-Area Image Analysis Deciphers the Distribution of Salmonella Cells and ECM Components in Biofilms Formed on Charged PEDOT:PSS Surfaces. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307322. [PMID: 38225703 PMCID: PMC11251553 DOI: 10.1002/advs.202307322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/12/2023] [Indexed: 01/17/2024]
Abstract
Biofilms, comprised of cells embedded in extracellular matrix (ECM), enable bacterial surface colonization and contribute to pathogenesis and biofouling. Yet, antibacterial surfaces are mainly evaluated for their effect on bacterial cells rather than the ECM. Here, a method is presented to separately quantify amounts and distribution of cells and ECM in Salmonella biofilms grown on electroactive poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS). Within a custom-designed biofilm reactor, biofilm forms on PEDOT:PSS surfaces electrically addressed with a bias potential and simultaneous recording of the resulting current. The amount and distribution of cells and ECM in biofilms are analyzed using a fluorescence-based spectroscopic mapping technique and fluorescence confocal microscopy combined with advanced image processing. The study shows that surface charge leads to upregulated ECM production, leaving the cell counts largely unaffected. An altered texture is also observed, with biofilms forming small foci or more continuous structures. Supported by mutants lacking ECM production, ECM is identified as an important target when developing antibacterial strategies. Also, a central role for biofilm distribution is highlighted that likely influences antimicrobial susceptibility in biofilms. This work provides yet a link between conductive polymer materials and bacterial metabolism and reveals for the first time a specific effect of electrochemical addressing on bacterial ECM formation.
Collapse
Affiliation(s)
- Sanhita Ray
- AIMES – Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of TechnologyStockholmSE‐171 77Sweden
- Department of NeuroscienceKarolinska InstitutetStockholmSE‐171 77Sweden
| | - Susanne Löffler
- AIMES – Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of TechnologyStockholmSE‐171 77Sweden
- Department of NeuroscienceKarolinska InstitutetStockholmSE‐171 77Sweden
| | - Agneta Richter‐Dahlfors
- AIMES – Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet and KTH Royal Institute of TechnologyStockholmSE‐171 77Sweden
- Department of NeuroscienceKarolinska InstitutetStockholmSE‐171 77Sweden
| |
Collapse
|
4
|
Zayabaatar E, Tang NMT, Pham MT. Electrogenic Staphylococcus epidermidis colonizes nasal cavities and alleviates IL-6 progression induced by the SARS2-CoV nucleocapsid protein. J Appl Microbiol 2023; 134:lxad179. [PMID: 37558389 DOI: 10.1093/jambio/lxad179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/29/2023] [Accepted: 08/08/2023] [Indexed: 08/11/2023]
Abstract
AIM Certain probiotic bacteria have been shown to possess an immunomodulatory effect and a protective effect on influenza infections. Using the Staphylococcus epidermidis K1 colonized mice model, we assessed the effect of nasal administration of glycerol or flavin mononucleotide (FMN) on the production of interleukin (IL)-6 mediated by the severe acute respiratory syndrome coronavirus 2 (SARS2-CoV) nucleocapsid protein (NPP). METHODS AND RESULTS FMN, one of the key electron donors for the generation of electricity facilitated by S. epidermidis ATCC 12228, was detected in the glycerol fermentation medium. Compared to the S. epidermidis ATCC 12228, the S. epidermidis K1 isolate showed significant expression of the electron transfer genes, including pyruvate dehydrogenase (pdh), riboflavin kinase (rk), 1,4-dihydroxy-2-naphthoate octaprenyltransferase (menA), and type II NADH quinone oxidoreductase (ndh2). Institute of cancer research (ICR) mice were intranasally administered with S. epidermidis K1 with or without pretreatment with riboflavin kinase inhibitors, then nasally treated with glycerol or FMN before inoculating the NPP. Furthermore, J774A.1 macrophages were exposed to NPP serum and then treated with NPP of SARS2-CoV. The IL-6 levels in the bronchoalveolar lavage fluid (BALF) of mice and macrophages were quantified using a mouse IL-6 enzyme-linked immunosorbent assay kit. CONCLUSIONS Here, we report that nasal administration of NPP strongly elevates IL-6 levels in both BALF and J774A.1 macrophages. It is worth noting that NPP-neutralizing antibodies can decrease IL-6 levels in macrophages. The nasal administration of glycerol or FMN to S. epidermidis K1-colonized mice results in a reduction of NPP-induced IL-6 production.
Collapse
Affiliation(s)
- Enkhbat Zayabaatar
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan 320317, Taiwan
| | - Nguyen Mai Trinh Tang
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan 320317, Taiwan
| | - Minh Tan Pham
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
5
|
Ganzorig B, Zayabaatar E, Pham MT, Marito S, Huang CM, Lee YH. Lactobacillus plantarum Generate Electricity through Flavin Mononucleotide-Mediated Extracellular Electron Transfer to Upregulate Epithelial Type I Collagen Expression and Thereby Promote Microbial Adhesion to Intestine. Biomedicines 2023; 11:biomedicines11030677. [PMID: 36979656 PMCID: PMC10045142 DOI: 10.3390/biomedicines11030677] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 03/30/2023] Open
Abstract
The mechanism behind how flavin mononucleotide (FMN)-producing bacteria attach to a host intestine remains unclear. In order to address this issue, this study isolated the Gram-positive bacteria Lactobacillus plantarum from Mongolian fermented Airag, named L. plantarum MA. These bacteria were further employed as the model microbes, and their electrogenic properties were first identified by their significant expression of type II NADH-quinone oxidoreductase. This study also demonstrated that the electrical activity of L. plantarum MA can be conducted through flavin mononucleotide (FMN)-based extracellular electron transfer, which is highly dependent on the presence of a carbon source in the medium. Our data show that approximately 15 µM of FMN, one of the key electron donors for the generation of electricity, can be produced from L. plantarum MA, as they were cultured in the presence of lactulose for 24 h. We further demonstrated that the electrical activity of L. plantarum MA can promote microbial adhesion and can thus enhance the colonization effectiveness of Caco-2 cells and mouse cecum. Such enhanced adhesiveness was attributed to the increased expression of type I collagens in the intestinal epithelium after treatment with L. plantarum MA. This study reveals the mechanism behind the electrogenic activity of L. plantarum MA and shows how the bacteria utilize electricity to modulate the protein expression of gut tissue for an enhanced adhesion process.
Collapse
Affiliation(s)
- Binderiya Ganzorig
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City 320317, Taiwan
| | - Enkhbat Zayabaatar
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City 320317, Taiwan
| | - Minh Tan Pham
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam
| | - Shinta Marito
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City 320317, Taiwan
| | - Chun-Ming Huang
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City 320317, Taiwan
| | - Yu-Hsiang Lee
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City 320317, Taiwan
- Department of Chemical and Materials Engineering, National Central University, Taoyuan City 320317, Taiwan
| |
Collapse
|
6
|
Wang C, Xu P, Li X, Zheng Y, Song Z. Research progress of stimulus-responsive antibacterial materials for bone infection. Front Bioeng Biotechnol 2022; 10:1069932. [PMID: 36636700 PMCID: PMC9831006 DOI: 10.3389/fbioe.2022.1069932] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Infection is one of the most serious complications harmful to human health, which brings a huge burden to human health. Bone infection is one of the most common and serious complications of fracture and orthopaedic surgery. Antibacterial treatment is the premise of bone defect healing. Among all the antibacterial strategies, irritant antibacterial materials have unique advantages and the ability of targeted therapy. In this review, we focus on the research progress of irritating materials, the development of antibacterial materials and their advantages and disadvantages potential applications in bone infection.
Collapse
Affiliation(s)
| | | | | | - Yuhao Zheng
- Department of Sports Medicine, Orthopaedic Center, The First Hospital of Jilin University, Changchun, China
| | - Zhiming Song
- Department of Sports Medicine, Orthopaedic Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
Myers B, Hill P, Rawson F, Kovács K. Enhancing Microbial Electron Transfer Through Synthetic Biology and Biohybrid Approaches: Part II : Combining approaches for clean energy. JOHNSON MATTHEY TECHNOLOGY REVIEW 2022. [DOI: 10.1595/205651322x16621070592195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
It is imperative to develop novel processes that rely on cheap, sustainable and abundant resources whilst providing carbon circularity. Microbial electrochemical technologies (MET) offer unique opportunities to facilitate the conversion of chemicals to electrical energy or vice versa
by harnessing the metabolic processes of bacteria to valorise a range of waste products including greenhouse gases (GHGs). Part I (1) introduced the EET pathways, their limitations and applications. Here in Part II, we outline the strategies researchers have used to modulate microbial electron
transfer, through synthetic biology and biohybrid approaches and present the conclusions and future directions.
Collapse
Affiliation(s)
- Benjamin Myers
- Bioelectronics Laboratory, Regenerative Medicine and Cellular Therapies Division, School of Pharmacy, Biodiscovery Institute, University of Nottingham University Park, Clifton Boulevard, Nottingham, NG7 2RD UK
| | - Phil Hill
- School of Biosciences, University of Nottingham Sutton Bonington Campus, Sutton Bonington, Leicestershire, LE12 5RD UK
| | - Frankie Rawson
- Bioelectronics Laboratory, Regenerative Medicine and Cellular Therapies Division, School of Pharmacy, Biodiscovery Institute, University of Nottingham University Park, Clifton Boulevard, Nottingham, NG7 2RD UK
| | - Katalin Kovács
- School of Pharmacy, Boots Science Building, University of Nottingham, University Park Clifton Boulevard, Nottingham, NG7 2RD UK
| |
Collapse
|
8
|
Krukiewicz K, Kazek-Kęsik A, Brzychczy-Włoch M, Łos MJ, Ateba CN, Mehrbod P, Ghavami S, Shyntum DY. Recent Advances in the Control of Clinically Important Biofilms. Int J Mol Sci 2022; 23:9526. [PMID: 36076921 PMCID: PMC9455909 DOI: 10.3390/ijms23179526] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 11/16/2022] Open
Abstract
Biofilms are complex structures formed by bacteria, fungi, or even viruses on biotic and abiotic surfaces, and they can be found in almost any part of the human body. The prevalence of biofilm-associated diseases has increased in recent years, mainly because of the frequent use of indwelling medical devices that create opportunities for clinically important bacteria and fungi to form biofilms either on the device or on the neighboring tissues. As a result of their resistance to antibiotics and host immunity factors, biofilms have been associated with the development or persistence of several clinically important diseases. The inability to completely eradicate biofilms drastically increases the burden of disease on both the patient and the healthcare system. Therefore, it is crucial to develop innovative ways to tackle the growth and development of biofilms. This review focuses on dental- and implant-associated biofilm infections, their prevalence in humans, and potential therapeutic intervention strategies, including the recent advances in pharmacology and biomedical engineering. It lists current strategies used to control the formation of clinically important biofilms, including novel antibiotics and their carriers, antiseptics and disinfectants, small molecule anti-biofilm agents, surface treatment strategies, and nanostructure functionalization, as well as multifunctional coatings particularly suitable for providing antibacterial effects to the surface of implants, to treat either dental- or implant-related bacterial infections.
Collapse
Affiliation(s)
- Katarzyna Krukiewicz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M. Strzody 9, 44-100 Gliwice, Poland
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland
| | - Alicja Kazek-Kęsik
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Silesian University of Technology, 44-100 Gliwice, Poland
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8 Street, 44-100 Gliwice, Poland
| | - Monika Brzychczy-Włoch
- Department of Molecular Medical Microbiology, Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18 Street, 31-121 Krakow, Poland
| | - Marek J. Łos
- Department of Pathology, Pomeranian Medical University, 71-344 Szczecin, Poland
| | - Collins Njie Ateba
- Food Security and Safety Niche Area, North West University, Private Bag X2046, Mahikeng 2735, South Africa
| | - Parvaneh Mehrbod
- Influenza and Respiratory Viruses Department, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Saeid Ghavami
- Faculty of Medicine in Zabrze, University of Technology in Katowice, Academia of Silesia, 41-800 Zabrze, Poland
- Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 3P5, Canada
- Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P5, Canada
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, MB R3E 3P5, Canada
| | - Divine Yufetar Shyntum
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8 Street, 44-100 Gliwice, Poland
| |
Collapse
|
9
|
Kao M, Yang J, Balasubramaniam A, Traisaeng S, Jackson Yang A, Yang JJ, Salamon BP, Herr DR, Huang C. Colonization of nasal cavities by Staphylococcus epidermidis mitigates SARS-CoV-2 nucleocapsid phosphoprotein-induced interleukin (IL)-6 in the lung. Microb Biotechnol 2022; 15:1984-1994. [PMID: 35426250 PMCID: PMC9111282 DOI: 10.1111/1751-7915.13994] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 11/19/2021] [Accepted: 12/02/2021] [Indexed: 11/27/2022] Open
Abstract
Infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can trigger excessive interleukin (IL)-6 signalling, leading to a myriad of biological effects including a cytokine storm that contributes to multiple organ failure in severe coronavirus disease 2019 (COVID-19). Using a mouse model, we demonstrated that nasal inoculation of nucleocapsid phosphoprotein (NPP) of SARS-CoV-2 increased IL-6 content in bronchoalveolar lavage fluid (BALF). Nasal administration of liquid coco-caprylate/caprate (LCC) onto Staphylococcus epidermidis (S. epidermidis)-colonized mice significantly attenuated NPP-induced IL-6. Furthermore, S. epidermidis-mediated LCC fermentation to generate electricity and butyric acid that promoted bacterial colonization and activated free fatty acid receptor 2 (Ffar2) respectively. Inhibition of Ffar2 impeded the effect of S. epidermidis plus LCC on the reduction of NPP-induced IL-6. Collectively, these results suggest that nasal S. epidermidis is part of the first line of defence in ameliorating a cytokine storm induced by airway infection of SARS-CoV-2.
Collapse
Affiliation(s)
- Ming‐Shan Kao
- Department of Biomedical Sciences and EngineeringNational Central UniversityTaoyuan32001Taiwan
| | - Jen‐Ho Yang
- Department of Biomedical Sciences and EngineeringNational Central UniversityTaoyuan32001Taiwan
| | - Arun Balasubramaniam
- Department of Biomedical Sciences and EngineeringNational Central UniversityTaoyuan32001Taiwan
| | | | - Albert Jackson Yang
- Department of Biomedical Sciences and EngineeringNational Central UniversityTaoyuan32001Taiwan
| | - John Jackson Yang
- Department of Biomedical Sciences and EngineeringNational Central UniversityTaoyuan32001Taiwan
| | | | - Deron R. Herr
- Department of BiologySan Diego State UniversitySan DiegoCA92182USA
| | - Chun‐Ming Huang
- Department of Biomedical Sciences and EngineeringNational Central UniversityTaoyuan32001Taiwan
- Department of Biomedical Science and Environment BiologyKaohsiung Medical UniversityKaohsiung80708Taiwan
| |
Collapse
|
10
|
Lin CH, Luo SC. Zwitterionic Conducting Polymers: From Molecular Design, Surface Modification, and Interfacial Phenomenon to Biomedical Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:7383-7399. [PMID: 35675211 DOI: 10.1021/acs.langmuir.2c00448] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Conducting polymers (CPs) have gained attention as electrode materials in bioengineering mainly because of their mechanical softness compared to conventional inorganic materials. To achieve better performance and broaden bioelectronics applications, the surface modification of soft zwitterionic polymers with antifouling properties represents a facile approach to preventing unwanted nonspecific protein adsorption and improving biocompatibility. This feature article emphasizes the antifouling properties of zwitterionic CPs, accompanied by their molecular synthesis and surface modification methods and an analysis of the interfacial phenomenon. Herein, commonly used methods for zwitterionic functionalization on CPs are introduced, including the synthesis of zwitterionic moieties on CP molecules and postsurface modification, such as the grafting of zwitterionic polymer brushes. To analyze the chain conformation, the structure of bound water in the vicinity of zwitterionic CPs and biomolecule behavior, such as protein adsorption or cell adhesion, provide critical insights into the antifouling properties. Integrating these characterization techniques offers general guidelines and paves the way for designing new zwitterionic CPs for advanced biomedical applications. Recent advances in newly designed zwitterionic CP-based electrodes have demonstrated outstanding potential in modern biomedical applications.
Collapse
Affiliation(s)
- Chia-Hsuan Lin
- Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Shyh-Chyang Luo
- Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes (NHRI), Miaoli County 35053, Taiwan
| |
Collapse
|
11
|
Czerwińska-Główka D, Skonieczna M, Barylski A, Golba S, Przystaś W, Zabłocka-Godlewska E, Student S, Cwalina B, Krukiewicz K. Bifunctional conducting polymer matrices with antibacterial and neuroprotective effects. Bioelectrochemistry 2022; 144:108030. [PMID: 34896782 DOI: 10.1016/j.bioelechem.2021.108030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/24/2021] [Accepted: 11/29/2021] [Indexed: 11/02/2022]
Abstract
Current trends in the field of neural tissue engineering include the design of advanced biomaterials combining excellent electrochemical performance with versatile biological characteristics. The purpose of this work was to develop an antibacterial and neuroprotective coating based on a conducting polymer - poly(3,4-ethylenedioxypyrrole) (PEDOP), loaded with an antibiotic agent - tetracycline (Tc). Employing an electrochemical technique to immobilize Tc within a growing polymer matrix allowed to fabricate robust PEDOP/Tc coatings with a high charge storage capacity (63.65 ± 6.05 mC/cm2), drug release efficiency (629.4 µg/cm2 ± 62.7 µg/cm2), and low charge transfer resistance (2.4 ± 0.1 kΩ), able to deliver a stable electrical signal. PEDOP/Tc were found to exhibit strong antimicrobial effects against Gram-negative bacteria Escherichia coli, expressed through negligible adhesion, reduction in viability, and a characteristic elongation of bacterial cells. Cytocompatibility and neuroprotective effects were evaluated using a rat neuroblastoma B35 cell line, and were analyzed using MTT, cell cycle, and Annexin-V apoptosis assays. The presence of Tc was found to enhance neural cell viability and neurite outgrowth. The results confirmed that PEDOP/Tc can serve as an efficient neural electrode coating able to enhance charge transfer, as well as to exhibit bifunctional biological characteristics, different for eukaryotic and prokaryotic cells.
Collapse
Affiliation(s)
- Dominika Czerwińska-Główka
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M.Strzody 9, 44-100 Gliwice, Poland
| | - Magdalena Skonieczna
- Department of Systems Biology and Engineering, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland; Biotechnology Centre, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland
| | - Adrian Barylski
- Institute of Materials Engineering, University of Silesia, 75 Pulku Piechoty, 41-500 Chorzow, Poland
| | - Sylwia Golba
- Institute of Materials Engineering, University of Silesia, 75 Pulku Piechoty, 41-500 Chorzow, Poland
| | - Wioletta Przystaś
- Biotechnology Centre, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland; Department of Air Protection, Faculty of Energy and Environmental Engineering, Silesian University of Technology, S. Konarskiego 22B, 44-100 Gliwice, Poland
| | - Ewa Zabłocka-Godlewska
- Biotechnology Centre, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland; Department of Air Protection, Faculty of Energy and Environmental Engineering, Silesian University of Technology, S. Konarskiego 22B, 44-100 Gliwice, Poland
| | - Sebastian Student
- Department of Systems Biology and Engineering, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland; Biotechnology Centre, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland
| | - Beata Cwalina
- Biotechnology Centre, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland; Department of Environmental Biotechnology, Faculty of Energy and Environmental Engineering, Silesian University of Technology, S.Konarskiego 18, 44-100 Gliwice, Poland
| | - Katarzyna Krukiewicz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, M.Strzody 9, 44-100 Gliwice, Poland.
| |
Collapse
|
12
|
Pitsalidis C, Pappa AM, Boys AJ, Fu Y, Moysidou CM, van Niekerk D, Saez J, Savva A, Iandolo D, Owens RM. Organic Bioelectronics for In Vitro Systems. Chem Rev 2021; 122:4700-4790. [PMID: 34910876 DOI: 10.1021/acs.chemrev.1c00539] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bioelectronics have made strides in improving clinical diagnostics and precision medicine. The potential of bioelectronics for bidirectional interfacing with biology through continuous, label-free monitoring on one side and precise control of biological activity on the other has extended their application scope to in vitro systems. The advent of microfluidics and the considerable advances in reliability and complexity of in vitro models promise to eventually significantly reduce or replace animal studies, currently the gold standard in drug discovery and toxicology testing. Bioelectronics are anticipated to play a major role in this transition offering a much needed technology to push forward the drug discovery paradigm. Organic electronic materials, notably conjugated polymers, having demonstrated technological maturity in fields such as solar cells and light emitting diodes given their outstanding characteristics and versatility in processing, are the obvious route forward for bioelectronics due to their biomimetic nature, among other merits. This review highlights the advances in conjugated polymers for interfacing with biological tissue in vitro, aiming ultimately to develop next generation in vitro systems. We showcase in vitro interfacing across multiple length scales, involving biological models of varying complexity, from cell components to complex 3D cell cultures. The state of the art, the possibilities, and the challenges of conjugated polymers toward clinical translation of in vitro systems are also discussed throughout.
Collapse
Affiliation(s)
- Charalampos Pitsalidis
- Department of Physics, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi 127788, UAE.,Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Anna-Maria Pappa
- Department of Biomedical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi 127788, UAE
| | - Alexander J Boys
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Ying Fu
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.,Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow G1 1RD, U.K
| | - Chrysanthi-Maria Moysidou
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Douglas van Niekerk
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Janire Saez
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.,Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Avenida Miguel de Unamuno, 3, 01006 Vitoria-Gasteiz, Spain.,Ikerbasque, Basque Foundation for Science, E-48011 Bilbao, Spain
| | - Achilleas Savva
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Donata Iandolo
- INSERM, U1059 Sainbiose, Université Jean Monnet, Mines Saint-Étienne, Université de Lyon, 42023 Saint-Étienne, France
| | - Róisín M Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| |
Collapse
|
13
|
Lindsay SE, Lindsay HG, Kallet J, Weaver MR, Curran-Everett D, Crapo JD, Regan EA. MnTE-2-PyP disrupts Staphylococcus aureus biofilms in a novel fracture model. J Orthop Res 2021; 39:2439-2445. [PMID: 33347639 DOI: 10.1002/jor.24967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 12/05/2020] [Accepted: 12/16/2020] [Indexed: 02/04/2023]
Abstract
Biofilm-associated infections in orthopedic surgery lead to worse clinical outcomes and greater morbidity and mortality. The scope of the problem encompasses infected total joints, internally fixed fractures, and implanted devices. Diagnosis is difficult. Cultures are often negative, and antibiotic treatments are ineffective. The infections resist killing by the immune system and antibiotics. The organized matrix structure of extracellular polymeric substances within the biofilm shields and protects the bacteria from identification and immune cell action. Bacteria in biofilms actively modulate their redox environment and can enhance the matrix structure by creating an oxidizing environment. We postulated that a potent redox-active metalloporphyrin MnTE-2-PyP (chemical name: manganese (II) meso-tetrakis-(N-methylpyridinium-2-yl) porphyrin) that scavenges reactive species and modulates the redox state to a reduced state, would improve the effect of antibiotic treatment for a biofilm-associated infection. An infected fracture model with a midshaft femoral osteotomy was created in C57B6 mice, internally fixed with an intramedullary 23-gauge needle and seeded with a biofilm-forming variant of Staphylococcus aureus. Animals were divided into three treatment groups: control, antibiotic alone, and combined antibioticplus MnTE-2-PyP. The combined treatment group had significantly decreased bacterial counts in harvested bone, compared with antibiotic alone. In vitro crystal violet assay of biofilm structure and corresponding nitroblue tetrazolium assay for reactive oxygen species (ROS) demonstrated that MnTE-2-PyP decreased the biofilm structure and reduced ROS in a correlated and dose-dependent manner. The biofilm structure is redox-sensitive in S. aureus and an ROS scavenger improved the effect of antibiotic therapy in model of biofilm-associated infections.
Collapse
|
14
|
Czerwińska-Główka D, Przystaś W, Zabłocka-Godlewska E, Student S, Cwalina B, Łapkowski M, Krukiewicz K. Electrically-responsive antimicrobial coatings based on a tetracycline-loaded poly(3,4-ethylenedioxythiophene) matrix. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 123:112017. [PMID: 33812635 DOI: 10.1016/j.msec.2021.112017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/09/2021] [Accepted: 03/02/2021] [Indexed: 11/17/2022]
Abstract
The growth of bacteria and the formation of complex bacterial structures on biomedical devices is a major challenge in modern medicine. The aim of this study was to develop a biocompatible, conducting and antibacterial polymer coating applicable in biomedical engineering. Since conjugated polymers have recently aroused strong interest as controlled delivery systems for biologically active compounds, we decided to employ a poly(3,4-ethylenedioxythiophene) (PEDOT) matrix to immobilize a powerful, first-line antibiotic: tetracycline (Tc). Drug immobilization was carried out simultaneously with the electrochemical polymerization process, allowing to obtain a polymer coating with good electrochemical behaviour (charge storage capacity of 19.15 ± 6.09 mC/cm2) and high drug loading capacity (194.7 ± 56.2 μg/cm2). Biological activity of PEDOT/Tc matrix was compared with PEDOT matrix and a bare Pt surface against a model Gram-negative bacteria strain of Escherichia coli with the use of LIVE/DEAD assay and SEM microscopy. Finally, PEDOT/Tc was shown to serve as a robust electroactive coating exhibiting antibacterial activity.
Collapse
Affiliation(s)
- Dominika Czerwińska-Główka
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Gliwice, Poland
| | - Wioletta Przystaś
- Department of Environmental Biotechnology, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Gliwice, Poland; Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland
| | - Ewa Zabłocka-Godlewska
- Department of Environmental Biotechnology, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Gliwice, Poland; Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland
| | - Sebastian Student
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland; Department of Systems Biology and Engineering, Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, Gliwice, Poland
| | - Beata Cwalina
- Department of Environmental Biotechnology, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Gliwice, Poland; Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland
| | - Mieczysław Łapkowski
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Gliwice, Poland; Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie-Sklodowskiej 34, Zabrze, Poland
| | - Katarzyna Krukiewicz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, Gliwice, Poland.
| |
Collapse
|
15
|
Sengupta A, Das S, Dasgupta S, Sengupta P, Datta P. Flexible Nanogenerator from Electrospun PVDF-Polycarbazole Nanofiber Membranes for Human Motion Energy-Harvesting Device Applications. ACS Biomater Sci Eng 2021; 7:1673-1685. [PMID: 33683096 DOI: 10.1021/acsbiomaterials.0c01730] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Poly(vinylidene difluoride) (PVDF) has become the polymer matrix of choice for fabrication of wearable electronics and physiological monitoring devices. Despite possessing a high piezoelectric constant, additives are required to increase the charge transfer from PVDF matrix to connected signal readout units. Many of these additives also stabilize the β-phase of PVDF, which is associated with highest piezoelectric coefficients. However, most of the additives used are often brittle ceramic-phase materials resulting in decreased flexibility of the devices and offsetting the gain in β-phase content. Intrinsically conducting polymers (ICP), on the other hand, are ideal candidates to improve the device-related properties of PVDF, due to their higher flexibility than ceramic fillers as well as ability to form conducting network in PVDF membranes. This work reports the performance and device feasibility of PVDF-polycarbazole (PCZ) electrospun nanofiber membranes. A higher β-phase was observed by FTIR spectroscopy in PVDF/PCZ compared to other PVDF phases. Moreover, a higher open-circuit potential was recorded over PVDF/polyaniline composites, which were studied for comparison. The addition of PCZ reduced the flexibility of pure PVDF nanofibers by 20% only. Besides, the work investigated the bacterial biofouling and cell compatibility of the matrix, as essential properties to examine any putative medical device application. PVDF/PCZ membranes were then used to develop a nanogenerator, which was capable of instantly lighting an entire LED array employing the rectified output power, and charged up a 2.2 μF capacitors using a bridge rectifier through a vertical compressive force applied periodically. Finally, the nanogenerator demonstrated electrical energy harvesting from movements of various parts of the human body, such as toe and heel movement and wrist bending. In conclusion, PCZ can be considered as an attractive, biocompatible, and anti-biofouling conducting polymer for electrical actuation and flexible electronic device applications.
Collapse
Affiliation(s)
- Aditya Sengupta
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, P.O. Botanic Garden, Howrah 711103, WB, India
| | - Soumen Das
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, P.O. Botanic Garden, Howrah 711103, WB, India
| | - Shalini Dasgupta
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, P.O. Botanic Garden, Howrah 711103, WB, India
| | - Pavel Sengupta
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, P.O. Botanic Garden, Howrah 711103, WB, India
| | - Pallab Datta
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, P.O. Botanic Garden, Howrah 711103, WB, India
| |
Collapse
|
16
|
Zhou X, Lv F, Huang Y, Liu L, Wang S. Biohybrid Conjugated Polymer Materials for Augmenting Energy Conversion of Bioelectrochemical Systems. Chemistry 2020; 26:15065-15073. [PMID: 32428308 DOI: 10.1002/chem.202002041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Indexed: 12/22/2022]
Abstract
Bioelectrochemical systems (BESs) provide favorable opportunities for the sustainable conversion of energy from biological metabolism. Biological photovoltaics (BPVs) and microbial fuel cells (MFCs) respectively realize the conversion of renewable solar energy and bioenergy into electrical energy by utilizing electroactive biological extracellular electron transfer, however, along with this energy conversion progress, relatively poor durability and low output performance are challenges as well as opportunities. Advances in improving bio-electrode interface compatibility will help to solve the problem of insufficient performance and further have a far-reaching impact on the development of bioelectronics. Conjugated polymers (CPs) with specific optical and electrical properties (absorption and emission spectra, energy band structure and electrical conductivity) afforded by π-conjugated backbones are conducive to enhancing the electron generation and output capacity of electroactive organisms. Furthermore, the water solubility, functionality, biocompatibility and mechanical properties optimized through appropriate modification of side chain provide a more adaptive contact interface between biomaterials and electrodes. In this minireview, we summarize the prominent contributions of CPs in the aspect of augmenting the photovoltaic response of BPVs and power supply of MFCs, and specifically discussed the role of CPs with expectation to provide inspirations for the design of bioelectronic devices in the future.
Collapse
Affiliation(s)
- Xin Zhou
- Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Fengting Lv
- Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yiming Huang
- Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Libing Liu
- Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shu Wang
- Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
17
|
Löffler S, Antypas H, Choong FX, Nilsson KPR, Richter-Dahlfors A. Conjugated Oligo- and Polymers for Bacterial Sensing. Front Chem 2019; 7:265. [PMID: 31058140 PMCID: PMC6482434 DOI: 10.3389/fchem.2019.00265] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/01/2019] [Indexed: 11/29/2022] Open
Abstract
Fast and accurate detection of bacteria and differentiation between pathogenic and commensal colonization are important keys in preventing the emergence and spread of bacterial resistance toward antibiotics. As bacteria undergo major lifestyle changes during colonization, bacterial sensing needs to be achieved on different levels. In this review, we describe how conjugated oligo- and polymers are used to detect bacterial colonization. We summarize how oligothiophene derivatives have been tailor-made for detection of biopolymers produced by a wide range of bacteria upon entering the biofilm lifestyle. We further describe how these findings are translated into diagnostic approaches for biofilm-related infections. Collectively, this provides an overview on how synthetic biorecognition elements can be used to produce fast and easy diagnostic tools and new methods for infection control.
Collapse
Affiliation(s)
- Susanne Löffler
- Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Stockholm, Sweden
| | - Haris Antypas
- Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Stockholm, Sweden
| | - Ferdinand X. Choong
- Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Stockholm, Sweden
| | | | - Agneta Richter-Dahlfors
- Department of Neuroscience, Swedish Medical Nanoscience Center, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
18
|
Rhen M. Salmonella and Reactive Oxygen Species: A Love-Hate Relationship. J Innate Immun 2019; 11:216-226. [PMID: 30943492 DOI: 10.1159/000496370] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 12/19/2018] [Indexed: 12/22/2022] Open
Abstract
Salmonella enterica represents an enterobacterial species including numerous serovars that cause infections at, or initiated at, the intestinal epithelium. Many serovars also act as facultative intracellular pathogens with a tropism for phagocytic cells. These bacteria not only survive in phagocytes but also undergo de facto replication therein. Phagocytes, through the activities of phagocyte NADPH-dependent oxidase and inducible nitric oxide synthase, are very proficient in converting molecular oxygen to reactive oxygen (ROS) and nitrogen species (RNS). These compounds represent highly efficient effectors of the innate immune defense. Salmonella is by no means resistant to these effectors, which may stand in contrast to the host niches chosen. To cope with this paradox, these bacteria rely on an array of detoxification and repair systems. Combination these systems allows for a high enough tolerance to ROS and RNS to enable establishment of infection. In addition, salmonella possesses protein factors that have the potential to dampen the infection-associated inflammation, which evidently results in a reduced exposure to ROS and RNS. This review attempts to summarize the activities and strategies by which salmonella tries to cope with ROS and RNS and how the bacterium can make use of these innate defense factors.
Collapse
Affiliation(s)
- Mikael Rhen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden, .,Department of Molecular Biology, Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden, .,Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden,
| |
Collapse
|
19
|
da Silva FAG, Alcaraz-Espinoza JJ, da Costa MM, de Oliveira HP. Low intensity electric field inactivation of Gram-positive and Gram-negative bacteria via metal-free polymeric composite. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:827-837. [PMID: 30889757 DOI: 10.1016/j.msec.2019.02.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/01/2019] [Accepted: 02/10/2019] [Indexed: 12/30/2022]
Abstract
The adhesion of pathogenic bacteria in medical implants and surfaces is a health-related problem that requires strong inhibition against bacterial growth and attachment. In this work, we have explored the enhancement in the antibacterial activity of metal free-based composites under external electric field. It affects the oxidation degree of polypyrrole-based electrodes and consequently the antibacterial activity of the material. A conductive layer of carbon nanotubes (graphite) was deposited on porous substrate of polyurethane (sandpaper) and covered by polypyrrole, providing highly conductive electrodes characterized by intrinsic antibacterial activity and reinforced by electro-enhanced effect due to the external electric field. The bacterial inhibition of composites was monitored from counting of viable cells at different voltage/time of treatment and determination of biofilm inhibition on electrodes and reactors. The external voltage on electrodes reduces the threshold time for complete bacterial inactivation of PPy-based composites to values in order of 30 min for Staphylococcus aureus and 60 min for Escherichia coli.
Collapse
Affiliation(s)
- Fernando A G da Silva
- Institute of Materials Science, Federal University of Sao Francisco Valley, 48920-310 Juazeiro, BA, Brazil
| | | | - Mateus M da Costa
- Institute of Materials Science, Federal University of Sao Francisco Valley, 48920-310 Juazeiro, BA, Brazil
| | - Helinando P de Oliveira
- Institute of Materials Science, Federal University of Sao Francisco Valley, 48920-310 Juazeiro, BA, Brazil.
| |
Collapse
|
20
|
Sismaet HJ, Goluch ED. Electrochemical Probes of Microbial Community Behavior. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2018; 11:441-461. [PMID: 29490192 DOI: 10.1146/annurev-anchem-061417-125627] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Advances in next-generation sequencing technology along with decreasing costs now allow the microbial population, or microbiome, of a location to be determined relatively quickly. This research reveals that microbial communities are more diverse and complex than ever imagined. New and specialized instrumentation is required to investigate, with high spatial and temporal resolution, the dynamic biochemical environment that is created by microbes, which allows them to exist in every corner of the Earth. This review describes how electrochemical probes and techniques are being used and optimized to learn about microbial communities. Described approaches include voltammetry, electrochemical impedance spectroscopy, scanning electrochemical microscopy, separation techniques coupled with electrochemical detection, and arrays of complementary metal-oxide-semiconductor circuits. Microbial communities also interact with and influence their surroundings; therefore, the review also includes a discussion of how electrochemical probes optimized for microbial analysis are utilized in healthcare diagnostics and environmental monitoring applications.
Collapse
Affiliation(s)
- Hunter J Sismaet
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, USA;
| | - Edgar D Goluch
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, USA;
- Department of Bioengineering, Department of Biology, and Department of Civil and Environmental Engineering, Northeastern University, Boston, Massachusetts 02115, USA
| |
Collapse
|