1
|
Schwartz FR, Sodickson AD, Pickhardt PJ, Sahani DV, Lev MH, Gupta R. Photon-Counting CT: Technology, Current and Potential Future Clinical Applications, and Overview of Approved Systems and Those in Various Stages of Research and Development. Radiology 2025; 314:e240662. [PMID: 40067107 PMCID: PMC11950899 DOI: 10.1148/radiol.240662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 03/30/2025]
Abstract
Photon-counting CT (PCCT) has emerged as a transformative technology, with the potential to herald a new era of clinical capabilities. This review provides an overview of the current status and potential future developments of PCCT, including basic physics principles and technical implementation by different vendors, with special attention to applications that have not, to date, been emphasized in the literature. The technologic underpinnings that distinguish PCCT scanners from traditional energy-integrating detector (EID) CT scanners with dual-energy capability are discussed. The inherent challenges of PCCT and the innovative breakthroughs that have enabled key PCCT features, such as enhanced image resolution, material discrimination, and radiation dose efficiency, are reviewed. Two categories of clinical applications are considered: (a) applications that are possible with current-generation EID CT but may be improved with the higher spatial, temporal, and contrast resolution of PCCT (eg, CT angiographic vasculitis imaging with high spatial, contrast, and temporal resolution and ultra-high-spatial-resolution "opportunistic" osseous imaging) and (b) potential future applications that are not currently feasible with EID CT but that may become possible and practical with PCCT (eg, reduced need for serial follow-up imaging with advanced CT or MRI because of more complete, definitive imaging evaluation with PCCT at first presentation).
Collapse
Affiliation(s)
- Fides R. Schwartz
- From the Department of Radiology, Brigham and Women’s
Hospital, Boston, Mass (F.R.S., A.D.S.); Department of Radiology, University of
Wisconsin School of Medicine and Public Health, Madison, Wis (P.J.P.);
Department of Radiology, University of Washington Medicine, Seattle, Wash
(D.V.S.); and Department of Radiology, Massachusetts General Hospital, 55 Fruit
St, Boston, MA 02114 (M.H.L., R.G.)
| | - Aaron D. Sodickson
- From the Department of Radiology, Brigham and Women’s
Hospital, Boston, Mass (F.R.S., A.D.S.); Department of Radiology, University of
Wisconsin School of Medicine and Public Health, Madison, Wis (P.J.P.);
Department of Radiology, University of Washington Medicine, Seattle, Wash
(D.V.S.); and Department of Radiology, Massachusetts General Hospital, 55 Fruit
St, Boston, MA 02114 (M.H.L., R.G.)
| | - Perry J. Pickhardt
- From the Department of Radiology, Brigham and Women’s
Hospital, Boston, Mass (F.R.S., A.D.S.); Department of Radiology, University of
Wisconsin School of Medicine and Public Health, Madison, Wis (P.J.P.);
Department of Radiology, University of Washington Medicine, Seattle, Wash
(D.V.S.); and Department of Radiology, Massachusetts General Hospital, 55 Fruit
St, Boston, MA 02114 (M.H.L., R.G.)
| | - Dushyant V. Sahani
- From the Department of Radiology, Brigham and Women’s
Hospital, Boston, Mass (F.R.S., A.D.S.); Department of Radiology, University of
Wisconsin School of Medicine and Public Health, Madison, Wis (P.J.P.);
Department of Radiology, University of Washington Medicine, Seattle, Wash
(D.V.S.); and Department of Radiology, Massachusetts General Hospital, 55 Fruit
St, Boston, MA 02114 (M.H.L., R.G.)
| | - Michael H. Lev
- From the Department of Radiology, Brigham and Women’s
Hospital, Boston, Mass (F.R.S., A.D.S.); Department of Radiology, University of
Wisconsin School of Medicine and Public Health, Madison, Wis (P.J.P.);
Department of Radiology, University of Washington Medicine, Seattle, Wash
(D.V.S.); and Department of Radiology, Massachusetts General Hospital, 55 Fruit
St, Boston, MA 02114 (M.H.L., R.G.)
| | - Rajiv Gupta
- From the Department of Radiology, Brigham and Women’s
Hospital, Boston, Mass (F.R.S., A.D.S.); Department of Radiology, University of
Wisconsin School of Medicine and Public Health, Madison, Wis (P.J.P.);
Department of Radiology, University of Washington Medicine, Seattle, Wash
(D.V.S.); and Department of Radiology, Massachusetts General Hospital, 55 Fruit
St, Boston, MA 02114 (M.H.L., R.G.)
| |
Collapse
|
2
|
Bette S, Risch F, Becker J, Popp D, Decker JA, Kaufmann D, Friedrich L, Scheurig-Münkler C, Schwarz F, Kröncke TJ. Photon-counting detector CT - first experiences in the field of musculoskeletal radiology. ROFO-FORTSCHR RONTG 2025; 197:34-43. [PMID: 38788741 DOI: 10.1055/a-2312-6914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
The introduction of photon-counting detector CT (PCD-CT) marks a remarkable leap in innovation in CT imaging. The new detector technology allows X-rays to be converted directly into an electrical signal without an intermediate step via a scintillation layer and allows the energy of individual photons to be measured. Initial data show high spatial resolution, complete elimination of electronic noise, and steady availability of spectral image data sets. In particular, the new technology shows promise with respect to the imaging of osseous structures. Recently, PCD-CT was implemented in the clinical routine. The aim of this review was to summarize recent studies and to show our first experiences with photon-counting detector technology in the field of musculoskeletal radiology.We performed a literature search using Medline and included a total of 90 articles and reviews that covered recent experimental and clinical experiences with the new technology.In this review, we focus on (1) spatial resolution and delineation of fine anatomic structures, (2) reduction of radiation dose, (3) electronic noise, (4) techniques for metal artifact reduction, and (5) possibilities of spectral imaging. This article provides insight into our first experiences with photon-counting detector technology and shows results and images from experimental and clinical studies. · This review summarizes recent experimental and clinical studies in the field of photon-counting detector CT and musculoskeletal radiology.. · The potential of photon-counting detector technology in the field of musculoskeletal radiology includes improved spatial resolution, reduction in radiation dose, metal artifact reduction, and spectral imaging.. · PCD-CT enables imaging at lower radiation doses while maintaining or even enhancing spatial resolution, crucial for reducing patient exposure, especially in repeated or prolonged imaging scenarios.. · It offers promising results in reducing metal artifacts commonly encountered in orthopedic or dental implants, enhancing the interpretability of adjacent structures in postoperative and follow-up imaging.. · With its ability to routinely acquire spectral data, PCD-CT scans allow for material classification, such as detecting urate crystals in suspected gout or visualizing bone marrow edema, potentially reducing reliance on MRI in certain cases.. Bette S, Risch F, Becker J et al. Photon-counting detector CT - first experiences in the field of musculoskeletal radiology. Fortschr Röntgenstr 2024; DOI 10.1055/a-2312-6914.
Collapse
Affiliation(s)
- Stefanie Bette
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Augsburg, Germany
| | - Franka Risch
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Augsburg, Germany
| | - Judith Becker
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Augsburg, Germany
| | - Daniel Popp
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Augsburg, Germany
| | - Josua A Decker
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Augsburg, Germany
| | - David Kaufmann
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Augsburg, Germany
| | - Lena Friedrich
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Augsburg, Germany
| | - Christian Scheurig-Münkler
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Augsburg, Germany
| | - Florian Schwarz
- Institute of Conventional and Interventional Radiology, Donauisar Hospital Deggendorf, Deggendorf, Germany
| | - Thomas J Kröncke
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Augsburg, Augsburg, Germany
- Centre for Advanced Analytics and Predictive Sciences (CAAPS), University of Augsburg, Augsburg, Germany
| |
Collapse
|
3
|
Bregoli C, Biffi CA, Tuissi A, Buccino F. Effect of trabecular architectures on the mechanical response in osteoporotic and healthy human bone. Med Biol Eng Comput 2024; 62:3263-3281. [PMID: 38822996 PMCID: PMC11485120 DOI: 10.1007/s11517-024-03134-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/18/2024] [Indexed: 06/03/2024]
Abstract
Research at the mesoscale bone trabeculae arrangement yields intriguing results that, due to their clinical resolution, can be applied in clinical field, contributing significantly to the diagnosis of bone-related diseases. While the literature offers quantitative morphometric parameters for a thorough characterization of the mesoscale bone network, there is a gap in understanding relationships among them, particularly in the context of various bone pathologies. This research aims to bridge these gaps by offering a quantitative evaluation of the interplay among morphometric parameters and mechanical response at mesoscale in osteoporotic and non-osteoporotic bones. Bone mechanical response, dependent on trabecular arrangement, is defined by apparent stiffness, computationally calculated using the Gibson-Ashby model. Key findings indicate that: (i) in addition to bone density, measured using X-ray absorptiometry, trabecular connectivity density, trabecular spacing and degree of anisotropy are crucial parameters for characterize osteoporosis state; (ii) apparent stiffness values exhibit strong correlations with bone density and connectivity density; (iii) connectivity density and degree of anisotropy result the best predictors of mechanical response. Despite the inherent heterogeneity in bone structure, suggesting the potential benefit of a larger sample size in the future, this approach presents a valuable method to enhance discrimination between osteoporotic and non-osteoporotic samples.
Collapse
Affiliation(s)
- Chiara Bregoli
- National Research Council, CNR-ICMTE, Lecco, Italy.
- Mechanical Engineering Department, Politecnico Di Milano, Milano, Italy.
| | | | | | - Federica Buccino
- Mechanical Engineering Department, Politecnico Di Milano, Milano, Italy
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| |
Collapse
|
4
|
Vosshenrich J, O'Donnell T, Fritz J. Photon-Counting CT in Musculoskeletal Imaging-10 Key Questions Answered. Semin Roentgenol 2024; 59:378-386. [PMID: 39490034 DOI: 10.1053/j.ro.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/24/2024] [Accepted: 05/20/2024] [Indexed: 11/05/2024]
Affiliation(s)
- Jan Vosshenrich
- Department of Radiology, New York University Grossman School of Medicine, New York, NY; Department of Radiology, University Hospital Basel, Basel, Switzerland
| | | | - Jan Fritz
- Department of Radiology, New York University Grossman School of Medicine, New York, NY.
| |
Collapse
|
5
|
Mourad C, Gallego Manzano L, Viry A, Booij R, Oei EHG, Becce F, Omoumi P. Chances and challenges of photon-counting CT in musculoskeletal imaging. Skeletal Radiol 2024; 53:1889-1902. [PMID: 38441616 PMCID: PMC11303444 DOI: 10.1007/s00256-024-04622-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/12/2024] [Accepted: 02/12/2024] [Indexed: 08/09/2024]
Abstract
In musculoskeletal imaging, CT is used in a wide range of indications, either alone or in a synergistic approach with MRI. While MRI is the preferred modality for the assessment of soft tissues and bone marrow, CT excels in the imaging of high-contrast structures, such as mineralized tissue. Additionally, the introduction of dual-energy CT in clinical practice two decades ago opened the door for spectral imaging applications. Recently, the advent of photon-counting detectors (PCDs) has further advanced the potential of CT, at least in theory. Compared to conventional energy-integrating detectors (EIDs), PCDs provide superior spatial resolution, reduced noise, and intrinsic spectral imaging capabilities. This review briefly describes the technical advantages of PCDs. For each technical feature, the corresponding applications in musculoskeletal imaging will be discussed, including high-spatial resolution imaging for the assessment of bone and crystal deposits, low-dose applications such as whole-body CT, as well as spectral imaging applications including the characterization of crystal deposits and imaging of metal hardware. Finally, we will highlight the potential of PCD-CT in emerging applications, underscoring the need for further preclinical and clinical validation to unleash its full clinical potential.
Collapse
Affiliation(s)
- Charbel Mourad
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Department of Diagnostic Imaging and Interventional Therapeutics, Hôpital Libanais Geitaoui-CHU, Beyrouth, Lebanon
| | - Lucia Gallego Manzano
- Institute of Radiation Physics (IRA), Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Anaïs Viry
- Institute of Radiation Physics (IRA), Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Ronald Booij
- Department of Radiology & Nuclear Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Edwin H G Oei
- Department of Radiology & Nuclear Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Fabio Becce
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Patrick Omoumi
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
6
|
Quintiens J, van Lenthe GH. Photon-Counting Computed Tomography for Microstructural Imaging of Bone and Joints. Curr Osteoporos Rep 2024; 22:387-395. [PMID: 38833188 DOI: 10.1007/s11914-024-00876-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/29/2024] [Indexed: 06/06/2024]
Abstract
PURPOSE OF REVIEW Recently, photon-counting computed tomography (PCCT) has been introduced in clinical research and diagnostics. This review describes the technological advances and provides an overview of recent applications with a focus on imaging of bone. RECENT FINDINGS PCCT is a full-body scanner with short scanning times that provides better spatial and spectral resolution than conventional energy-integrating-detector CT (EID-CT), along with an up to 50% reduced radiation dose. It can be used to quantify bone mineral density, to perform bone microstructural analyses and to assess cartilage quality with adequate precision and accuracy. Using a virtual monoenergetic image reconstruction, metal artefacts can be greatly reduced when imaging bone-implant interfaces. Current PCCT systems do not allow spectral imaging in ultra-high-resolution (UHR) mode. Given its improved resolution, reduced noise and spectral imaging capabilities PCCT has diagnostic capacities in both qualitative and quantitative imaging that outperform those of conventional CT. Clinical use in monitoring bone health has already been demonstrated. The full potential of PCCT systems will be unlocked when UHR spectral imaging becomes available.
Collapse
Affiliation(s)
- Jilmen Quintiens
- Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
7
|
Zanon C, Quaia E, Crimì F. Introduction to Special Issue Imaging in Cancer Diagnosis. Tomography 2024; 10:101-104. [PMID: 38250955 PMCID: PMC10820471 DOI: 10.3390/tomography10010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
In the field of oncology, the precision of cancer imaging is the cornerstone of oncological patient care [...].
Collapse
Affiliation(s)
| | | | - Filippo Crimì
- Institute of Radiology, Department of Medicine—DIMED, University of Padua, 35128 Padua, Italy; (C.Z.); (E.Q.)
| |
Collapse
|
8
|
Hagen F, Soschynski M, Weis M, Hagar MT, Krumm P, Ayx I, Taron J, Krauss T, Hein M, Ruile P, von Zur Muehlen C, Schlett CL, Neubauer J, Tsiflikas I, Russe MF, Arnold P, Faby S, Froelich MF, Weiß J, Stein T, Overhoff D, Bongers M, Nikolaou K, Schönberg SO, Bamberg F, Horger M. Photon-counting computed tomography - clinical application in oncological, cardiovascular, and pediatric radiology. ROFO-FORTSCHR RONTG 2024; 196:25-35. [PMID: 37793417 DOI: 10.1055/a-2119-5802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
BACKGROUND Photon-counting detector computed tomography (PCD-CT) is a promising new technology with the potential to fundamentally change workflows in the daily routine and provide new quantitative imaging information to improve clinical decision-making and patient management. METHOD The contents of this review are based on an unrestricted literature search of PubMed and Google Scholar using the search terms "photon-counting CT", "photon-counting detector", "spectral CT", "computed tomography" as well as on the authors' own experience. RESULTS The fundamental difference with respect to the currently established energy-integrating CT detectors is that PCD-CT allows for the counting of every single photon at the detector level. Based on the identified literature, PCD-CT phantom measurements and initial clinical studies have demonstrated that the new technology allows for improved spatial resolution, reduced image noise, and new possibilities for advanced quantitative image postprocessing. CONCLUSION For clinical practice, the potential benefits include fewer beam hardening artifacts, a radiation dose reduction, and the use of new or combinations of contrast agents. In particular, critical patient groups such as oncological, cardiovascular, lung, and head & neck as well as pediatric patient collectives benefit from the clinical advantages. KEY POINTS · Photon-counting computed tomography (PCD-CT) is being used for the first time in routine clinical practice, enabling a significant dose reduction in critical patient populations such as oncology, cardiology, and pediatrics.. · Compared to conventional CT, PCD-CT enables a reduction in electronic image noise.. · Due to the spectral data sets, PCD-CT enables fully comprehensive post-processing applications.. CITATION FORMAT · Hagen F, Soschynski M, Weis M et al. Photon-counting computed tomography - clinical application in oncological, cardiovascular, and pediatric radiology. Fortschr Röntgenstr 2024; 196: 25 - 34.
Collapse
Affiliation(s)
- Florian Hagen
- Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany
| | - Martin Soschynski
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Meike Weis
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Muhammad Taha Hagar
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Patrick Krumm
- Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany
| | - Isabelle Ayx
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Jana Taron
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tobias Krauss
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Manuel Hein
- Department of Cardiology & Angiology, University Heart Center Freiburg - Bad Krozingen, University Hospital Freiburg, Faculty of medicine, 79106 Freiburg, Germany
| | - Philipp Ruile
- Department of Cardiology & Angiology, University Heart Center Freiburg - Bad Krozingen, University Hospital Freiburg, Faculty of medicine, 79106 Freiburg, Germany
| | - Constantin von Zur Muehlen
- Department of Cardiology & Angiology, University Heart Center Freiburg - Bad Krozingen, University Hospital Freiburg, Faculty of medicine, 79106 Freiburg, Germany
| | - Christopher L Schlett
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jakob Neubauer
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ilias Tsiflikas
- Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany
| | - Maximilian Frederik Russe
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp Arnold
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sebastian Faby
- Computed Tomography, Siemens Healthcare GmbH, Forchheim, Germany
| | - Matthias F Froelich
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Jakob Weiß
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thomas Stein
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daniel Overhoff
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Malte Bongers
- Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany
| | - Konstantin Nikolaou
- Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany
| | - Stefan O Schönberg
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Fabian Bamberg
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marius Horger
- Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
9
|
Horst KK, Yu L, McCollough CH, Esquivel A, Thorne JE, Rajiah PS, Baffour F, Hull NC, Weber NM, Thacker PG, Thomas KB, Binkovitz LA, Guerin JB, Fletcher JG. Potential benefits of photon counting detector computed tomography in pediatric imaging. Br J Radiol 2023; 96:20230189. [PMID: 37750939 PMCID: PMC10646626 DOI: 10.1259/bjr.20230189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/27/2023] Open
Abstract
Photon counting detector (PCD) CT represents the newest advance in CT technology, with improved radiation dose efficiency, increased spatial resolution, inherent spectral imaging capabilities, and the ability to eliminate electronic noise. Its design fundamentally differs from conventional energy integrating detector CT because photons are directly converted to electrical signal in a single step. Rather than converting X-rays to visible light and having an output signal that is a summation of energies, PCD directly counts each photon and records its individual energy information. The current commercially available PCD-CT utilizes a dual-source CT geometry, which allows 66 ms cardiac temporal resolution and high-pitch (up to 3.2) scanning. This can greatly benefit pediatric patients by facilitating high quality fast scanning to allow sedation-free imaging. The energy-resolving nature of the utilized PCDs allows "always-on" dual-energy imaging capabilities, such as the creation of virtual monoenergetic, virtual non-contrast, virtual non-calcium, and other material-specific images. These features may be combined with high-resolution imaging, made possible by the decreased size of individual detector elements and the absence of interelement septa. This work reviews the foundational concepts associated with PCD-CT and presents examples to highlight the benefits of PCD-CT in the pediatric population.
Collapse
Affiliation(s)
- Kelly K. Horst
- Pediatric Radiology Division, Department of Radiology, Mayo Clinic, Rochester, United States
| | - Lifeng Yu
- Department of Radiology, Mayo Clinic, Rochester, United States
| | | | - Andrea Esquivel
- Department of Radiology, Mayo Clinic, Rochester, United States
| | | | | | - Francis Baffour
- Department of Radiology, Mayo Clinic, Rochester, United States
| | - Nathan C. Hull
- Pediatric Radiology Division, Department of Radiology, Mayo Clinic, Rochester, United States
| | | | - Paul G. Thacker
- Pediatric Radiology Division, Department of Radiology, Mayo Clinic, Rochester, United States
| | - Kristen B. Thomas
- Pediatric Radiology Division, Department of Radiology, Mayo Clinic, Rochester, United States
| | - Larry A. Binkovitz
- Pediatric Radiology Division, Department of Radiology, Mayo Clinic, Rochester, United States
| | - Julie B. Guerin
- Department of Radiology, Mayo Clinic, Rochester, United States
| | | |
Collapse
|
10
|
Lofino L, Marin D. Photon Counting Computed Tomography-Applications. Radiol Clin North Am 2023; 61:1111-1115. [PMID: 37758360 DOI: 10.1016/j.rcl.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Photon-counting detector CT (PCCT) is a new technology that has recently emerged as a powerful tool for a more precise, patient-centered imaging. Ever since the FDA approved the first Photon-counting system on September 30, 2021, this new technology raised much interest all over the scientific community and numerous studies have been published in a short period of time. By the end of 2022, the first results of phantom and in-vivo studies started showing the great potential of this new imaging modality, with benefits that range from neuroradiology to abdominal imaging and the promise to push previous limits of both patient size and age as well as image resolution. In this article, we will provide a brief explanation of how commercially available photon-counting detector CTs work and how they differ from energy-integrating detector CT systems. Then we will focus on the different clinical applications of this new technology with an in-depth systematic approach based on the most recent evidence. Because nearly every subspecialty of radiology has had impressive results, we will delve into each of these subspecialties and explain how every single domain can undergo significant transformation. This includes a wide range of possibilities, from the opportunistic screening of many different pathologies to the ability of seeing small structures with unprecedented precision, as well as a new kind of multi-energy imaging that can provide much more information on tissue characteristics, all while maintaining a lighter workflow and post-processing burden compared to what has been observed in the past.
Collapse
Affiliation(s)
| | - Daniele Marin
- Radiology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
11
|
Srinivas-Rao S, Cao J, Marin D, Kambadakone A. Dual-Energy Computed Tomography to Photon Counting Computed Tomography: Emerging Technological Innovations. Radiol Clin North Am 2023; 61:933-944. [PMID: 37758361 DOI: 10.1016/j.rcl.2023.06.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Computed tomography (CT) has seen remarkable developments in the past several decades, radically transforming the role of imaging in day-to-day clinical practice. Dual-energy CT (DECT), an exciting innovation introduced in the early part of this century, has widened the scope of CT, opening new opportunities due to its ability to provide superior tissue characterization. The introduction of photon-counting CT (PCCT) heralds a paradigm shift in CT scanner technology representing another significant milestone in CT innovation. PCCT offers several advantages over DECT, such as improved spectral resolution, enhanced tissue characterization, reduced image artifacts, and improved image quality.
Collapse
Affiliation(s)
- Shravya Srinivas-Rao
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA 02114-2696, USA
| | - Jinjin Cao
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA 02114-2696, USA
| | - Daniele Marin
- Department of Radiology, Duke University Medical Center, Box 3808 Erwin Road, Durham, NC 27710, USA
| | - Avinash Kambadakone
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, White 270, Boston, MA 02114-2696, USA.
| |
Collapse
|
12
|
Douek PC, Boccalini S, Oei EHG, Cormode DP, Pourmorteza A, Boussel L, Si-Mohamed SA, Budde RPJ. Clinical Applications of Photon-counting CT: A Review of Pioneer Studies and a Glimpse into the Future. Radiology 2023; 309:e222432. [PMID: 37787672 PMCID: PMC10623209 DOI: 10.1148/radiol.222432] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 03/24/2023] [Accepted: 04/11/2023] [Indexed: 10/04/2023]
Abstract
CT systems equipped with photon-counting detectors (PCDs), referred to as photon-counting CT (PCCT), are beginning to change imaging in several subspecialties, such as cardiac, vascular, thoracic, and musculoskeletal radiology. Evidence has been building in the literature underpinning the many advantages of PCCT for different clinical applications. These benefits derive from the distinct features of PCDs, which are made of semiconductor materials capable of converting photons directly into electric signal. PCCT advancements include, among the most important, improved spatial resolution, noise reduction, and spectral properties. PCCT spatial resolution on the order of 0.25 mm allows for the improved visualization of small structures (eg, small vessels, arterial walls, distal bronchi, and bone trabeculations) and their pathologies, as well as the identification of previously undetectable anomalies. In addition, blooming artifacts from calcifications, stents, and other dense structures are reduced. The benefits of the spectral capabilities of PCCT are broad and include reducing radiation and contrast material dose for patients. In addition, multiple types of information can be extracted from a single data set (ie, multiparametric imaging), including quantitative data often regarded as surrogates of functional information (eg, lung perfusion). PCCT also allows for a novel type of CT imaging, K-edge imaging. This technique, combined with new contrast materials specifically designed for this modality, opens the door to new applications for imaging in the future.
Collapse
Affiliation(s)
| | | | - Edwin H. G. Oei
- From the University of Lyon, INSA-Lyon, Claude Bernard Lyon 1
University, UJM-Saint Etienne, CNRS, Inserm, Villeurbanne, France (P.C.D., L.B.,
S.A.S.M.); Department of Cardiovascular and Thoracic Radiology, Louis Pradel
Hospital, Hospices Civils de Lyon, 59 Boulevard Pinel, 69500 Bron, France
(P.C.D., S.B., L.B., S.A.S.M.); Claude Bernard Lyon 1 University, Villeurbanne,
France (S.B.); Department of Radiology and Nuclear Medicine, Erasmus Medical
Center, Rotterdam, the Netherlands (E.H.G.O., R.P.J.B.); Department of
Radiology, University of Pennsylvania, Philadelphia, Pa (D.P.C.); Department of
Radiology and Imaging Sciences, Emory University, Atlanta, Ga (A.P.); Department
of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Ga (A.P.);
and Winship Cancer Institute, Atlanta, Ga (A.P.)
| | - David P. Cormode
- From the University of Lyon, INSA-Lyon, Claude Bernard Lyon 1
University, UJM-Saint Etienne, CNRS, Inserm, Villeurbanne, France (P.C.D., L.B.,
S.A.S.M.); Department of Cardiovascular and Thoracic Radiology, Louis Pradel
Hospital, Hospices Civils de Lyon, 59 Boulevard Pinel, 69500 Bron, France
(P.C.D., S.B., L.B., S.A.S.M.); Claude Bernard Lyon 1 University, Villeurbanne,
France (S.B.); Department of Radiology and Nuclear Medicine, Erasmus Medical
Center, Rotterdam, the Netherlands (E.H.G.O., R.P.J.B.); Department of
Radiology, University of Pennsylvania, Philadelphia, Pa (D.P.C.); Department of
Radiology and Imaging Sciences, Emory University, Atlanta, Ga (A.P.); Department
of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Ga (A.P.);
and Winship Cancer Institute, Atlanta, Ga (A.P.)
| | - Amir Pourmorteza
- From the University of Lyon, INSA-Lyon, Claude Bernard Lyon 1
University, UJM-Saint Etienne, CNRS, Inserm, Villeurbanne, France (P.C.D., L.B.,
S.A.S.M.); Department of Cardiovascular and Thoracic Radiology, Louis Pradel
Hospital, Hospices Civils de Lyon, 59 Boulevard Pinel, 69500 Bron, France
(P.C.D., S.B., L.B., S.A.S.M.); Claude Bernard Lyon 1 University, Villeurbanne,
France (S.B.); Department of Radiology and Nuclear Medicine, Erasmus Medical
Center, Rotterdam, the Netherlands (E.H.G.O., R.P.J.B.); Department of
Radiology, University of Pennsylvania, Philadelphia, Pa (D.P.C.); Department of
Radiology and Imaging Sciences, Emory University, Atlanta, Ga (A.P.); Department
of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Ga (A.P.);
and Winship Cancer Institute, Atlanta, Ga (A.P.)
| | - Loic Boussel
- From the University of Lyon, INSA-Lyon, Claude Bernard Lyon 1
University, UJM-Saint Etienne, CNRS, Inserm, Villeurbanne, France (P.C.D., L.B.,
S.A.S.M.); Department of Cardiovascular and Thoracic Radiology, Louis Pradel
Hospital, Hospices Civils de Lyon, 59 Boulevard Pinel, 69500 Bron, France
(P.C.D., S.B., L.B., S.A.S.M.); Claude Bernard Lyon 1 University, Villeurbanne,
France (S.B.); Department of Radiology and Nuclear Medicine, Erasmus Medical
Center, Rotterdam, the Netherlands (E.H.G.O., R.P.J.B.); Department of
Radiology, University of Pennsylvania, Philadelphia, Pa (D.P.C.); Department of
Radiology and Imaging Sciences, Emory University, Atlanta, Ga (A.P.); Department
of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Ga (A.P.);
and Winship Cancer Institute, Atlanta, Ga (A.P.)
| | - Salim A. Si-Mohamed
- From the University of Lyon, INSA-Lyon, Claude Bernard Lyon 1
University, UJM-Saint Etienne, CNRS, Inserm, Villeurbanne, France (P.C.D., L.B.,
S.A.S.M.); Department of Cardiovascular and Thoracic Radiology, Louis Pradel
Hospital, Hospices Civils de Lyon, 59 Boulevard Pinel, 69500 Bron, France
(P.C.D., S.B., L.B., S.A.S.M.); Claude Bernard Lyon 1 University, Villeurbanne,
France (S.B.); Department of Radiology and Nuclear Medicine, Erasmus Medical
Center, Rotterdam, the Netherlands (E.H.G.O., R.P.J.B.); Department of
Radiology, University of Pennsylvania, Philadelphia, Pa (D.P.C.); Department of
Radiology and Imaging Sciences, Emory University, Atlanta, Ga (A.P.); Department
of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Ga (A.P.);
and Winship Cancer Institute, Atlanta, Ga (A.P.)
| | - Ricardo P. J. Budde
- From the University of Lyon, INSA-Lyon, Claude Bernard Lyon 1
University, UJM-Saint Etienne, CNRS, Inserm, Villeurbanne, France (P.C.D., L.B.,
S.A.S.M.); Department of Cardiovascular and Thoracic Radiology, Louis Pradel
Hospital, Hospices Civils de Lyon, 59 Boulevard Pinel, 69500 Bron, France
(P.C.D., S.B., L.B., S.A.S.M.); Claude Bernard Lyon 1 University, Villeurbanne,
France (S.B.); Department of Radiology and Nuclear Medicine, Erasmus Medical
Center, Rotterdam, the Netherlands (E.H.G.O., R.P.J.B.); Department of
Radiology, University of Pennsylvania, Philadelphia, Pa (D.P.C.); Department of
Radiology and Imaging Sciences, Emory University, Atlanta, Ga (A.P.); Department
of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Ga (A.P.);
and Winship Cancer Institute, Atlanta, Ga (A.P.)
| |
Collapse
|
13
|
McCollough CH, Rajendran K, Baffour FI, Diehn FE, Ferrero A, Glazebrook KN, Horst KK, Johnson TF, Leng S, Mileto A, Rajiah PS, Schmidt B, Yu L, Flohr TG, Fletcher JG. Clinical applications of photon counting detector CT. Eur Radiol 2023; 33:5309-5320. [PMID: 37020069 PMCID: PMC10330165 DOI: 10.1007/s00330-023-09596-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/13/2022] [Accepted: 02/03/2023] [Indexed: 04/07/2023]
Abstract
The X-ray detector is a fundamental component of a CT system that determines the image quality and dose efficiency. Until the approval of the first clinical photon-counting-detector (PCD) system in 2021, all clinical CT scanners used scintillating detectors, which do not capture information about individual photons in the two-step detection process. In contrast, PCDs use a one-step process whereby X-ray energy is converted directly into an electrical signal. This preserves information about individual photons such that the numbers of X-ray in different energy ranges can be counted. Primary advantages of PCDs include the absence of electronic noise, improved radiation dose efficiency, increased iodine signal and the ability to use lower doses of iodinated contrast material, and better spatial resolution. PCDs with more than one energy threshold can sort the detected photons into two or more energy bins, making energy-resolved information available for all acquisitions. This allows for material classification or quantitation tasks to be performed in conjunction with high spatial resolution, and in the case of dual-source CT, high pitch, or high temporal resolution acquisitions. Some of the most promising applications of PCD-CT involve imaging of anatomy where exquisite spatial resolution adds clinical value. These include imaging of the inner ear, bones, small blood vessels, heart, and lung. This review describes the clinical benefits observed to date and future directions for this technical advance in CT imaging. KEY POINTS: • Beneficial characteristics of photon-counting detectors include the absence of electronic noise, increased iodine signal-to-noise ratio, improved spatial resolution, and full-time multi-energy imaging. • Promising applications of PCD-CT involve imaging of anatomy where exquisite spatial resolution adds clinical value and applications requiring multi-energy data simultaneous with high spatial and/or temporal resolution. • Future applications of PCD-CT technology may include extremely high spatial resolution tasks, such as the detection of breast micro-calcifications, and quantitative imaging of native tissue types and novel contrast agents.
Collapse
Affiliation(s)
- Cynthia H McCollough
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| | - Kishore Rajendran
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Francis I Baffour
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Felix E Diehn
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Andrea Ferrero
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Katrina N Glazebrook
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Kelly K Horst
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Tucker F Johnson
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Shuai Leng
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Achille Mileto
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | | | - Bernhard Schmidt
- Computed Tomography, Siemens Healthineers, Siemensstrasse 3, Forchheim, 91301, Germany
| | - Lifeng Yu
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Thomas G Flohr
- Computed Tomography, Siemens Healthineers, Siemensstrasse 3, Forchheim, 91301, Germany
| | - Joel G Fletcher
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| |
Collapse
|
14
|
Hermans R, Boomgaert L, Cockmartin L, Binst J, De Stefanis R, Bosmans H. Photon-counting CT allows better visualization of temporal bone structures in comparison with current generation multi-detector CT. Insights Imaging 2023; 14:112. [PMID: 37395919 DOI: 10.1186/s13244-023-01467-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/14/2023] [Indexed: 07/04/2023] Open
Abstract
PURPOSE To compare photon-counting CT (PCCT) and multi-detector CT (MDCT) for visualization of temporal bone anatomic structures. METHODS Thirty-six exams of temporal bones without pathology were collected from consecutive patients on a MDCT, and another 35 exams on a PCCT scanner. Two radiologists independently scored visibility of 14 structures for the MDCT and PCCT dataset, using a 5-point Likert scale, with a 2-month wash-out period. For MDCT, the acquisition parameters were: 110 kV, 64 × 0.6 mm (slice thickness reconstructed to 0.4 mm), pitch 0.85, quality ref. mAs 150, and 1 s rotation time; for PCCT: 120 kV, 144 × 0.2 mm, pitch 0.35, IQ level 75, and 0.5 s rotation time. Patient doses were reported as dose length product values (DLP). Statistical analysis was done using the Mann-Whitney U test, visual grading characteristic (VGC) analysis, and ordinal regression. RESULTS Substantial agreement was found between readers (intraclass correlation coefficient 0.63 and 0.52 for MDCT and PCCT, resp.). All structures were scored higher for PCCT (p < 0.0001), except for Arnold's canal (p = 0.12). The area under the VGC curve was 0.76 (95% CI, 0.73-0.79), indicating a significantly better visualization on PCCT. Ordinal regression showed the odds for better visualization are 354 times higher (95% CI, 75-1673) in PCCT (p < 0.0001). Average (range) of DLP was 95 (79-127) mGy*cm for MDCT and 74 (50-95) mGy*cm for PCCT (p < 0.001). CONCLUSION PCCT provides a better depiction of temporal bone anatomy than MDCT, at a lower radiation dose. CRITICAL RELEVANCE STATEMENT PCCT provides a better depiction of temporal bone anatomy than MDCT, at a lower radiation dose. KEY POINTS 1. PCCT allows high-resolution imaging of temporal bone structures. 2. Compared to MDCT, the visibility of normal temporal bone structures is scored better with PCCT. 3. PCCT allows to obtain high-quality CT images of the temporal bones at lower radiation doses than MDCT.
Collapse
Affiliation(s)
- Robert Hermans
- Department of Radiology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium.
- Department of Imaging and Pathology, KU Leuven-University of Leuven, Leuven, Belgium.
| | - Lukas Boomgaert
- Department of Radiology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Lesley Cockmartin
- Department of Radiology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Joke Binst
- Department of Radiology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Rashèl De Stefanis
- Department of Radiology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Hilde Bosmans
- Department of Radiology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
- Department of Imaging and Pathology, KU Leuven-University of Leuven, Leuven, Belgium
| |
Collapse
|
15
|
Si-Mohamed SA, Boccalini S, Villien M, Yagil Y, Erhard K, Boussel L, Douek PC. First Experience With a Whole-Body Spectral Photon-Counting CT Clinical Prototype. Invest Radiol 2023; 58:459-471. [PMID: 36822663 PMCID: PMC10259214 DOI: 10.1097/rli.0000000000000965] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/20/2023] [Indexed: 02/25/2023]
Abstract
ABSTRACT Spectral photon-counting computed tomography (SPCCT) technology holds great promise for becoming the next generation of computed tomography (CT) systems. Its technical characteristics have many advantages over conventional CT imaging. For example, SPCCT provides better spatial resolution, greater dose efficiency for ultra-low-dose and low-dose protocols, and tissue contrast superior to that of conventional CT. In addition, SPCCT takes advantage of several known approaches in the field of spectral CT imaging, such as virtual monochromatic imaging and material decomposition imaging. In addition, SPCCT takes advantage of a new approach in this field, known as K-edge imaging, which allows specific and quantitative imaging of a heavy atom-based contrast agent. Hence, the high potential of SPCCT systems supports their ongoing investigation in clinical research settings. In this review, we propose an overview of our clinical research experience of a whole-body SPCCT clinical prototype, to give an insight into the potential benefits for clinical human imaging on image quality, diagnostic confidence, and new approaches in spectral CT imaging.
Collapse
Affiliation(s)
- Salim A. Si-Mohamed
- From the University Lyon, INSA-Lyon, University Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, Villeurbanne, France
- Department of Radiology, Louis Pradel Hospital, Hospices Civils de Lyon, Bron, France
| | - Sara Boccalini
- From the University Lyon, INSA-Lyon, University Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, Villeurbanne, France
- Department of Radiology, Louis Pradel Hospital, Hospices Civils de Lyon, Bron, France
| | | | | | | | - Loic Boussel
- From the University Lyon, INSA-Lyon, University Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, Villeurbanne, France
- Department of Radiology, Louis Pradel Hospital, Hospices Civils de Lyon, Bron, France
| | - Philippe C. Douek
- From the University Lyon, INSA-Lyon, University Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, Villeurbanne, France
- Department of Radiology, Louis Pradel Hospital, Hospices Civils de Lyon, Bron, France
| |
Collapse
|
16
|
van der Bie J, van Straten M, Booij R, Bos D, Dijkshoorn ML, Hirsch A, Sharma SP, Oei EHG, Budde RPJ. Photon-counting CT: Review of initial clinical results. Eur J Radiol 2023; 163:110829. [PMID: 37080060 DOI: 10.1016/j.ejrad.2023.110829] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/22/2023]
Abstract
Photon-counting computed tomography (PCCT) is a new technology that enables higher spatial resolution compared to conventional CT techniques, energy resolved imaging and spectral post-processing. This leads to improved contrast-to-noise ratio, artifact and potential dose reduction as well as elimination of electronic noise. Since the introduction of clinical PCCT in 2021, a shift has been observed from solely pre-clinical studies to clinical research (i.e. use of PCCT imaging in humans). This review article is focused on the initial clinical results of PCCT by explaining the current PCCT systems, the applications themselves and, the challenges of PCCT.
Collapse
Affiliation(s)
- Judith van der Bie
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Marcel van Straten
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Ronald Booij
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Daniel Bos
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Marcel L Dijkshoorn
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Alexander Hirsch
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Simran P Sharma
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Edwin H G Oei
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| | - Ricardo P J Budde
- Department of Radiology & Nuclear Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands.
| |
Collapse
|
17
|
Baffour FI, Glazebrook KN, Ferrero A, Leng S, McCollough CH, Fletcher JG, Rajendran K. Photon-Counting Detector CT for Musculoskeletal Imaging: A Clinical Perspective. AJR Am J Roentgenol 2023; 220:551-560. [PMID: 36259593 DOI: 10.2214/ajr.22.28418] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Photon-counting detector (PCD) CT has emerged as a novel imaging modality that represents a fundamental shift in the way that CT systems detect x-rays. After pre-clinical and clinical investigations showed benefits of PCD CT for a range of imaging tasks, the U.S. FDA in 2021 approved the first commercial PCD CT system for clinical use. The technologic features of PCD CT are particularly well suited for musculo-skeletal imaging applications. Advantages of PCD CT compared with conventional energy-integrating detector (EID) CT include smaller detector pixels and excellent geometric dose efficiency that enable imaging of large joints and central skeletal anatomy at ultrahigh spatial resolution; advanced multienergy spectral postprocessing that allows quantification of gout deposits and generation of virtual noncalcium images for visualization of bone edema; improved metal artifact reduction for imaging of orthopedic implants; and higher CNR and suppression of electronic noise. Given substantially improved cortical and trabecular detail, PCD CT images more clearly depict skeletal abnormalities, including fractures, lytic lesions, and mineralized tumor matrix. The purpose of this article is to review, by use of clinical examples comparing EID CT and PCD CT, the technical features of PCD CT and their associated impact on musculoskeletal imaging applications.
Collapse
Affiliation(s)
- Francis I Baffour
- Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905
| | | | - Andrea Ferrero
- Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905
| | - Shuai Leng
- Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905
| | | | - Joel G Fletcher
- Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905
| | - Kishore Rajendran
- Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN 55905
| |
Collapse
|
18
|
Sartoretti T, Wildberger JE, Flohr T, Alkadhi H. Photon-counting detector CT: early clinical experience review. Br J Radiol 2023:20220544. [PMID: 36744809 DOI: 10.1259/bjr.20220544] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Since its development in the 1970s, X-ray CT has emerged as a landmark diagnostic imaging modality of modern medicine. Technological advances have been crucial to the success of CT imaging, as they have increasingly enabled improvements in image quality and diagnostic value at increasing radiation dose efficiency. With recent advances in engineering and physics, a novel technology has emerged with the potential to surpass several shortcomings and limitations of current CT systems. Photon-counting detector (PCD)-CT might substantially improve and expand the applicability of CT imaging by offering intrinsic spectral capabilities, increased spatial resolution, reduced electronic noise and improved image contrast. In this review we sought to summarize the first clinical experience of PCD-CT. We focused on most recent prototype and first clinically approved PCD-CT systems thereby reviewing initial publications and presenting corresponding clinical cases.
Collapse
Affiliation(s)
- Thomas Sartoretti
- Diagnostic and Interventional Radiology, University Hospital Zürich, University of Zürich, Zürich, Switzerland.,Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands.,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Joachim E Wildberger
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center, Maastricht, The Netherlands.,Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Thomas Flohr
- Siemens Healthcare GmbH, Computed Tomography, Forchheim, Germany
| | - Hatem Alkadhi
- Diagnostic and Interventional Radiology, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| |
Collapse
|
19
|
Shi G, Quevedo Gonzalez FJ, Breighner RE, Carrino JA, Siewerdsen JH, Zbijewski W. Effects of non-stationary blur on texture biomarkers of bone using Ultra-High Resolution CT. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2023; 12468:1246813. [PMID: 38226358 PMCID: PMC10788132 DOI: 10.1117/12.2654304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Purpose To advance the development of radiomic models of bone quality using the recently introduced Ultra-High Resolution CT (UHR CT), we investigate inter-scan reproducibility of trabecular bone texture features to spatially-variant azimuthal and radial blurs associated with focal spot elongation and gantry rotation. Methods The UHR CT system features 250×250 μm detector pixels and an x-ray source with a 0.4×0.5 mm focal spot. Visualization of details down to ~150 μm has been reported for this device. A cadaveric femur was imaged on UHR CT at three radial locations within the field-of-view: 0 cm (isocenter), 9 cm from the isocenter, and 18 cm from the isocenter; we expect the non-stationary blurs to worsen with increasing radial displacement. Gray level cooccurrence (GLCM) and gray level run length (GLRLM) texture features were extracted from 237 trabecular regions of interest (ROIs, 5 cm diameter) placed at corresponding locations in the femoral head in scans obtained at the different shifts. We evaluated concordance correlation coefficient (CCC) between texture features at 0 cm (reference) and at 9 cm and 18 cm. We also investigated whether the spatially-variant blurs affect K-means clustering of trabecular bone ROIs based on their texture features. Results The average CCCs (against the 0 cm reference) for GLCM and GLRM features were ~0.7 at 9 cm. At 18 cm, the average CCCs were reduced to ~0.17 for GLCM and ~0.26 for GLRM. The non-stationary blurs are incorporated in radiomic features of cancellous bone, leading to inconsistencies in clustering of trabecular ROIs between different radial locations: an intersection-over-union overlap of corresponding (most similar) clusters between 0 cm and 9 cm shift was >70%, but dropped to <60% for the majority of corresponding clusters between 0 cm and 18 cm shift. Conclusion Non-stationary CT system blurs reduce inter-scan reproducibility of texture features of trabecular bone in UHR CT, especially for locations >15 cm from the isocenter. Radiomic models of bone quality derived from UHR CT measurements at isocenter might need to be revised before application in peripheral body sites such as the hips.
Collapse
Affiliation(s)
- G Shi
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD USA 21205
| | - F J Quevedo Gonzalez
- Department of Biomechanics, Hospital for Special Surgery, New York, NY USA 10021
| | - R E Breighner
- Department of Biomechanics, Hospital for Special Surgery, New York, NY USA 10021
| | - J A Carrino
- Hospital for Special Surgery, Radiology & Imaging, New York, NY USA 10021
| | | | - W Zbijewski
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD USA 21205
| |
Collapse
|
20
|
Improved visualization of the wrist at lower radiation dose with photon-counting-detector CT. Skeletal Radiol 2023; 52:23-29. [PMID: 35831718 DOI: 10.1007/s00256-022-04117-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/03/2022] [Accepted: 07/04/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To compare the image quality of ultra-high-resolution wrist CTs acquired on photon-counting detector CT versus conventional energy-integrating-detector CT systems. MATERIALS AND METHODS Participants were scanned on a photon-counting-detector CT system after clinical energy-integrating detector CTs. Energy-integrating-detector CT scan parameters: comb filter-based ultra-high-resolution mode, 120 kV, 250 mAs, Ur70 or Ur73 kernel, 0.4- or 0.6-mm section thickness. Photon-counting-detector CT scan parameters: non-comb-based ultra-high-resolution mode, 120 kV, 120 mAs, Br84 kernel, 0.4-mm section thickness. Two musculoskeletal radiologists blinded to CT system, scored specific osseous structures using a 5-point Likert scale (1 to 5). The Wilcoxon rank-sum test was used for statistical analysis of reader scores. Paired t-test was used to compare volume CT dose index, bone CT number, and image noise between CT systems. P-value < 0.05 was considered statistically significant. RESULTS Twelve wrists (mean participant age 55.3 ± 17.8, 6 females, 6 males) were included. The mean volume CT dose index was lower for photon-counting detector CT (9.6 ± 0.1 mGy versus 19.0 ± 6.7 mGy, p < .001). Photon-counting-detector CT images had higher Likert scores for visualization of osseous structures (median score = 4, p < 0.001). The mean bone CT number was higher in photon-counting-detector CT images (1946 ± 77 HU versus 1727 ± 49 HU, p < 0.001). Conversely, there was no difference in the mean image noise of the two CT systems (63 ± 6 HU versus 61 ± 6 HU, p = 0.13). CONCLUSION Ultra-high-resolution imaging with photon-counting-detector CT depicted wrist structures more clearly than conventional energy-integrating-detector CT despite a 49% radiation dose reduction.
Collapse
|
21
|
Kurz FT, Schlemmer HP. Imaging in translational cancer research. Cancer Biol Med 2022; 19:j.issn.2095-3941.2022.0677. [PMID: 36476372 PMCID: PMC9724222 DOI: 10.20892/j.issn.2095-3941.2022.0677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
This review is aimed at presenting some of the recent developments in translational cancer imaging research, with a focus on novel, recently established, or soon to be established cross-sectional imaging techniques for computed tomography (CT), magnetic resonance imaging (MRI), and positron-emission tomography (PET) imaging, including computational investigations based on machine-learning techniques.
Collapse
Affiliation(s)
- Felix T. Kurz
- Department of Radiology, German Cancer Research Center, Heidelberg 69120, Germany
| | | |
Collapse
|
22
|
Baffour FI, Rajendran K, Glazebrook KN, Thorne JE, Larson NB, Leng S, McCollough CH, Fletcher JG. Ultra-high-resolution imaging of the shoulder and pelvis using photon-counting-detector CT: a feasibility study in patients. Eur Radiol 2022; 32:7079-7086. [PMID: 35689699 PMCID: PMC9474720 DOI: 10.1007/s00330-022-08925-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/11/2022] [Accepted: 05/30/2022] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To evaluate ultra-high-resolution (UHR) imaging of large joints using an investigational photon-counting detector (PCD) CT. MATERIALS AND METHODS Patients undergoing clinical shoulder or pelvis energy-integrating-detector (EID) CT exam were scanned using the UHR mode of the PCD-CT system. Axial EID-CT images (1-mm sections) and PCD-CT images (0.6-mm sections) were reconstructed using Br62/Br64 and Br76 kernels, respectively. Two musculoskeletal radiologists rated visualization of anatomic structures using a 5-point Likert scale. Wilcoxon rank-sum test was used for statistical analysis of reader scores, and paired t-test was used for comparing bone CT numbers and image noise from PCD-CT and EID-CT. RESULTS Thirty-two patients (17 shoulders and 15 pelvis) were prospectively recruited for this feasibility study. Mean age for shoulder exams was 67.3 ± 15.5 years (11 females) and 47.2 ± 15.8 years (11 females) for pelvis exams. The mean volume CT dose index was lower on PCD-CT compared to that on EID-CT (shoulders: 18 mGy vs. 34 mGy, pelvis: 11.6 mGy vs. 16.7 mGy). PCD-CT was rated significantly better than EID-CT (p < 0.001) for anatomic-structure visualization. Trabecular delineation in shoulders (mean score = 4.24 ± 0.73) and femoroacetabular joint visualization in the pelvis (mean score = 3.67 ± 1.03) received the highest scores. PCD-CT demonstrated significant increase in bone CT number (p < 0.001) relative to EID-CT; no significant difference in image noise was found between PCD-CT and EID-CT. CONCLUSION The evaluated PCD-CT system provided improved visualization of osseous structures in the shoulders and pelvises at a 31-47% lower radiation dose compared to EID-CT. KEY POINTS • A full field-of-view PCD-CT with 0.151 mm × 0.176 mm detector pixel size (isocenter) facilitates bilateral, high-resolution imaging of shoulders and pelvis. • The evaluated investigational PCD-CT system was rated superior by two musculoskeletal radiologists for anatomic structure visualization in shoulders and pelvises despite a 31-47% lower radiation dose compared to EID-CT. • PCD-CT demonstrated significantly higher bone CT number compared to EID-CT, while no significant difference in image noise was observed between PCD-CT and EID-CT despite a 31-47% dose reduction on PCD-CT.
Collapse
Affiliation(s)
| | | | | | | | - Nicholas B Larson
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Shuai Leng
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | | |
Collapse
|
23
|
Utility of dual energy computed tomography in the evaluation of infiltrative skeletal lesions and metastasis: a literature review. Skeletal Radiol 2022; 51:1731-1741. [PMID: 35294599 DOI: 10.1007/s00256-022-04032-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/07/2022] [Accepted: 03/07/2022] [Indexed: 02/02/2023]
Abstract
Computed tomography (CT) is routinely used to diagnose and evaluate metastatic lesions in oncology. CT alone suffers from lack of sensitivity, especially for skeletal lesions in the bone marrow and lesions that have similar attenuation profiles to surrounding bone. Magnetic resonance imaging and nuclear medicine imaging remain the gold standard in evaluating skeletal lesions. However, compared to CT, these modalities are not as widely available or suitable for all patients. Dual energy computed tomography (DECT) exploits variations in linear attenuation coefficient of materials at different photon energy levels to reconstruct images based on material composition. DECT in musculoskeletal imaging is used in the imaging of crystal arthropathy and detecting subtle fractures, but it is not broadly utilized in evaluating infiltrative skeletal lesions. Malignant skeletal lesions have different tissue and molecular compositions compared to normal bone. DECT may exploit these physical differences to delineate infiltrative skeletal lesions from surrounding bone better than conventional monoenergetic CT. Studies so far have examined the utility of DECT in evaluating skeletal metastases, multiple myeloma lesions, pathologic fractures, and performing image-guided biopsies with promising results. These studies were mostly retrospective analyses and case reports containing small samples sizes. As DECT becomes more widely used clinically and more scientific studies evaluating the performance of DECT are published, DECT may eventually become an important modality in the work-up of infiltrative skeletal lesions. It may even challenge MRI and nuclear medicine because of relatively faster scanning times and ease of access.
Collapse
|
24
|
Wehrse E, Klein L, Rotkopf LT, Stiller W, Finke M, Echner G, Glowa C, Heinze S, Ziener CH, Schlemmer HP, Kachelrieß M, Sawall S. Ultrahigh resolution whole body photon counting computed tomography as a novel versatile tool for translational research from mouse to man. Z Med Phys 2022:S0939-3889(22)00066-6. [PMID: 35868888 DOI: 10.1016/j.zemedi.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/18/2022] [Accepted: 06/19/2022] [Indexed: 11/19/2022]
Abstract
X-ray computed tomography (CT) is a cardinal tool in clinical practice. It provides cross-sectional images within seconds. The recent introduction of clinical photon-counting CT allowed for an increase in spatial resolution by more than a factor of two resulting in a pixel size in the center of rotation of about 150 µm. This level of spatial resolution is in the order of dedicated preclinical micro-CT systems. However so far, the need for different dedicated clinical and preclinical systems often hinders the rapid translation of early research results to applications in men. This drawback might be overcome by ultra-high resolution (UHR) clinical photon-counting CT unifying preclinical and clinical research capabilities in a single machine. Herein, the prototype of a clinical UHR PCD CT (SOMATOM CounT, Siemens Healthineers, Forchheim, Germany) was used. The system comprises a conventional energy-integrating detector (EID) and a novel photon-counting detector (PCD). While the EID provides a pixel size of 0.6 mm in the centre of rotation, the PCD provides a pixel size of 0.25 mm. Additionally, it provides a quantification of photon energies by sorting them into up to four distinct energy bins. This acquisition of multi-energy data allows for a multitude of applications, e.g. pseudo-monochromatic imaging. In particular, we examine the relation between spatial resolution, image noise and administered radiation dose for a multitude of use-cases. These cases include ultra-high resolution and multi-energy acquisitions of mice administered with a prototype bismuth-based contrast agent (nanoPET Pharma, Berlin, Germany) as well as larger animals and actual patients. The clinical EID provides a spatial resolution of about 9 lp/cm (modulation transfer function at 10%, MTF10%) while UHR allows for the acquisition of images with up to 16 lp/cm allowing for the visualization of all relevant anatomical structures in preclinical and clinical specimen. The spectral capabilities of the system enable a variety of applications previously not available in preclinical research such as pseudo-monochromatic images. Clinical ultra-high resolution photon-counting CT has the potential to unify preclinical and clinical research on a single system enabling versatile imaging of specimens and individuals ranging from mice to man.
Collapse
Affiliation(s)
- E Wehrse
- Division of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Medical Faculty, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - L Klein
- Department of Physics and Astronomy, Heidelberg University, Heidelberg, Germany; Division of X-ray Imaging and CT, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - L T Rotkopf
- Division of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - W Stiller
- Diagnostic and Interventional Radiology (DIR), Heidelberg University Hospital, Heidelberg, Germany
| | - M Finke
- Diagnostic and Interventional Radiology (DIR), Heidelberg University Hospital, Heidelberg, Germany
| | - G Echner
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - C Glowa
- Division of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Radiation Oncology and Radiotherapy, University Hospital Heidelberg, Heidelberg, Germany; Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
| | - S Heinze
- Institute of Forensic and Traffic Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - C H Ziener
- Division of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - H-P Schlemmer
- Division of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - M Kachelrieß
- Medical Faculty, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany; Division of X-ray Imaging and CT, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - S Sawall
- Medical Faculty, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany; Division of X-ray Imaging and CT, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
25
|
Tortora M, Gemini L, D’Iglio I, Ugga L, Spadarella G, Cuocolo R. Spectral Photon-Counting Computed Tomography: A Review on Technical Principles and Clinical Applications. J Imaging 2022; 8:jimaging8040112. [PMID: 35448239 PMCID: PMC9029331 DOI: 10.3390/jimaging8040112] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 01/01/2023] Open
Abstract
Photon-counting computed tomography (CT) is a technology that has attracted increasing interest in recent years since, thanks to new-generation detectors, it holds the promise to radically change the clinical use of CT imaging. Photon-counting detectors overcome the major limitations of conventional CT detectors by providing very high spatial resolution without electronic noise, providing a higher contrast-to-noise ratio, and optimizing spectral images. Additionally, photon-counting CT can lead to reduced radiation exposure, reconstruction of higher spatial resolution images, reduction of image artifacts, optimization of the use of contrast agents, and create new opportunities for quantitative imaging. The aim of this review is to briefly explain the technical principles of photon-counting CT and, more extensively, the potential clinical applications of this technology.
Collapse
Affiliation(s)
- Mario Tortora
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, Via Sergio Pansini 5, 80131 Naples, Italy; (M.T.); (L.G.); (I.D.); (L.U.); (G.S.)
| | - Laura Gemini
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, Via Sergio Pansini 5, 80131 Naples, Italy; (M.T.); (L.G.); (I.D.); (L.U.); (G.S.)
| | - Imma D’Iglio
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, Via Sergio Pansini 5, 80131 Naples, Italy; (M.T.); (L.G.); (I.D.); (L.U.); (G.S.)
| | - Lorenzo Ugga
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, Via Sergio Pansini 5, 80131 Naples, Italy; (M.T.); (L.G.); (I.D.); (L.U.); (G.S.)
| | - Gaia Spadarella
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, Via Sergio Pansini 5, 80131 Naples, Italy; (M.T.); (L.G.); (I.D.); (L.U.); (G.S.)
| | - Renato Cuocolo
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, Via Sergio Pansini 5, 80131 Naples, Italy
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via Salvador Allende 43, 84081 Baronissi, Italy
- Correspondence:
| |
Collapse
|
26
|
Effective Spatial Resolution of Photon Counting CT for Imaging of Trabecular Structures is Superior to Conventional Clinical CT and Similar to High Resolution Peripheral CT. Invest Radiol 2022; 57:620-626. [PMID: 35318968 DOI: 10.1097/rli.0000000000000873] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Photon counting computed tomography (PCCT) might offer an effective spatial resolution that is significantly improved compared with conventional state-of-the-art computed tomography (CT) and even provide a microstructural level of detail similar to high-resolution peripheral CT (HR-pQCT). The aim of this study was to evaluate the volumetric effective spatial resolution of clinically approved PCCT as an alternative to HR-pQCT for ex vivo or preclinical high-resolution imaging of bone microstructure. MATERIALS AND METHODS The experiment contained 5 human vertebrae embedded in epoxy resin, which were scanned 3 times each, and on 3 different clinical CT scanners: a PCCT (Naeotom Alpha), a dual-energy CT (Somatom Force [SF]), and a single-energy CT (Somatom Sensation 40 [S40]), all manufactured by Siemens Healthineers (Erlangen, Germany). Scans were performed with a tube voltage of 120 kVp and, to provide maximum scan performance and minimum noise deterioration, with exposures of 1500 mAs (SF), 2400 mAs (S40), and 4500 mAs (PCCT) and low slice increments of 0.1 (PCCT) and 0.3 mm (SF, S40). Images were reconstructed with sharp and very sharp bone kernels, Br68 and Br76 (PCCT), Br64 (SF), and B65s and B75h (S40). Ground truth information was obtained from an XtremeCT scanner (Scanco, Brüttisellen, Switzerland). Voxel-wise comparison was performed after registration, calibration, and resampling of the volumes to isotropic voxel size of 0.164 mm. Three-dimensional point spread- and modulation-transfer functions were calculated with Wiener's deconvolution in the anatomical trabecular structure, allowing optimum estimation of device- and kernel-specific smoothing properties as well as specimen-related diffraction effects on the measurement. RESULTS At high contrast (modulation transfer function [MTF] of 10%), radial effective resolutions of PCCT were 10.5 lp/cm (minimum resolvable object size 476 μm) for kernel Br68 and 16.9 lp/cm (295 μm) for kernel Br76. At low contrast (MTF 5%), radial effective spatial resolutions were 10.8 lp/cm (464 μm) for kernel Br68 and 30.5 lp/cm (164 μm) for kernel Br76. Axial effective resolutions of PCCT for both kernels were between 27.0 (185 μm) and 29.9 lp/cm (167 μm). Spatial resolutions with kernel Br76 might possibly be still higher but were technically limited by the isotropic voxel size of 164 μm. The effective volumetric resolutions of PCCT with kernel Br76 ranged between 61.9 (MTF 10%) and 222.4 (MTF 5%) elements per cubic mm. Photon counting CT improved the effective volumetric resolution by factor 5.5 (MTF 10%) and 18 (MTF 5%) compared with SF and by a factor of 8.7 (MTF 10%) and 20 (MTF 5%) compared with S40. Photon counting CT allowed obtaining similar structural information as HR-pQCT. CONCLUSIONS The effective spatial resolution of PCCT in trabecular bone imaging was comparable with that of HR-pQCT and more than 5 times higher compared with conventional CT. For ex vivo samples and when patient radiation dose can be neglected, PCCT allows imaging bone microstructure at a preclinical level of detail.
Collapse
|
27
|
Schlemmer HP. The Eye of the CT Scanner: The story of learning to see the invisible or from the fluorescent screen to the photon-counting detector. ROFO-FORTSCHR RONTG 2021; 193:1034-1049. [PMID: 33735934 DOI: 10.1055/a-1308-2693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Roentgen's photographs with the "new kind of rays" triggered a worldwide storm of enthusiasm in all social circles. It was a stroke of luck that the photographic dry plates available to him were also sensitive to invisible X-rays. The discovery, research and utilization of X-rays are based on methods for making them visible, from fluorescent screens to photographic plates and digital X-ray detectors. From this point of view, this paper aims to outline the 125-year success story of X-ray imaging from its discovery to the recent development of photon-counting detectors. The scientific-historical view during the transition from the 19th to the 20th century reveals an impressive period of profound scientific and social upheaval in which revolutionary discoveries and technological developments led to enormous progress in medicine. The cross-fertilization of physics and medicine and their combination with inventiveness, engineering and entrepreneurial spirit created the impressive possibilities of today's imaging diagnostics. This contribution accompanies the Roentgen Lecture the author gave on November 13, 2020 in Roentgen's birth house as part of its inauguration and the closing ceremony of the 101st Congress of the German Roentgen Society in Remscheid-Lennep. KEY POINTS:: · The development of computed tomography was a milestone in the methodological advancement of imaging with X-rays.. · In the detector pixel invisible X-rays are converted into digital electrical impulses, which the computer uses to create images.. · Photon-counting detectors could have significant diagnostic advantages for clinical applications.. CITATION FORMAT: · Schlemmer H, The Eye of the CT Scanner: The story of learning to see the invisible or from the fluorescent screen to the photon-counting detector. Fortschr Röntgenstr 2021; 193: 1034 - 1048.
Collapse
|