1
|
Georgiou P, Postle AF, Mou TCM, Potter LE, An X, Zanos P, Patton MS, Pultorak KJ, Clark SM, Ngyuyen V, Powels CF, Prokai-Tatrai K, Kirmizis A, Merchenthaler I, Prokai L, McCarthy MM, Mathur BN, Gould TD. Estradiol, via estrogen receptor β signaling, mediates stress-susceptibility in the male brain. Mol Psychiatry 2025:10.1038/s41380-025-03027-8. [PMID: 40269188 DOI: 10.1038/s41380-025-03027-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/03/2025] [Accepted: 04/08/2025] [Indexed: 04/25/2025]
Abstract
Dysregulation of normal reward processing via psychological stress contributes to the development of psychiatric disorders. Estrogen is involved in reward processing in females, but this effect has not been well studied in males despite the abundant conversion of androgens to estrogens in the male brain. Here, we used a combination of genetic deletions, behavioral assays, pharmacology, circuit dissection, electrophysiology, in vivo fiber photometry, and optogenetics/chemogenetics to determine the role of the most prevalent and potent estrogen, 17β-estradiol, in male stress-induced reward processing dysfunction. We found that absence of estrogen receptor (ER) β renders male but not female mice susceptible to stress-induced maladaptive reward-processing behaviors. We demonstrated that activation of ERβ-projecting neurons from the basolateral amygdala to nucleus accumbens induced rewarding effects in male, but not female mice. Moreover, we show that the activity of ERβ-expressing neurons projecting from the basolateral amygdala to nucleus accumbens is reduced in hypogonadal male mice subjected to stress, while activation of this circuit reverses stress-induced maladaptive reward processing behaviors and inhibition induces stress susceptibility. We identified that absence of estradiol, but not testosterone per se, underlies susceptibility to stress-mediated dysfunction of rewarding behaviors and that brain-selective delivery of estradiol and intra-basolateral amygdala administration of an ERβ-specific agonist prevent maladaptive reward-processing behaviors in hypogonadal male mice. These findings delineate an estrogen-based mechanism underlying stress susceptibility and provide a novel therapeutic strategy for the treatment of reward-related disorders associated with hypogonadal conditions.
Collapse
Affiliation(s)
- Polymnia Georgiou
- Veterans Affairs Maryland Health Care System, Baltimore, MD, 21201, USA.
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus.
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA.
| | - Abagail F Postle
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ta-Chung M Mou
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Liam E Potter
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Xiaoxian An
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Panos Zanos
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Psychology, University of Cyprus, Nicosia, Cyprus
- Department of Pharmacology and Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Michael S Patton
- Department of Pharmacology and Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Katherine J Pultorak
- Department of Pharmacology and Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Sarah M Clark
- Veterans Affairs Maryland Health Care System, Baltimore, MD, 21201, USA
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Vien Ngyuyen
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Chris F Powels
- Veterans Affairs Maryland Health Care System, Baltimore, MD, 21201, USA
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Katalin Prokai-Tatrai
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Antonis Kirmizis
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Istvan Merchenthaler
- Department of Epidemiology and Public Health, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Laszlo Prokai
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Margaret M McCarthy
- Department of Pharmacology and Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Brian N Mathur
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Todd D Gould
- Veterans Affairs Maryland Health Care System, Baltimore, MD, 21201, USA.
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Pharmacology and Physiology, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Molina Calistro L, Arancibia Y, Olivera MA, Domke S, Torres RF. Interaction of GPER-1 with the endocrine signaling axis in breast cancer. Front Endocrinol (Lausanne) 2025; 16:1494411. [PMID: 39936103 PMCID: PMC11811623 DOI: 10.3389/fendo.2025.1494411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/06/2025] [Indexed: 02/13/2025] Open
Abstract
G Protein-Coupled Estrogen Receptor 1 (GPER-1) is a membrane estrogen receptor that has emerged as a key player in breast cancer development and progression. In addition to its direct influence on estrogen signaling, a crucial interaction between GPER-1 and the hypothalamic-pituitary-gonadal (HPG) axis has been evidenced. The novel and complex relationship between GPER-1 and HPG implies a hormonal regulation with important homeostatic effects on general organ development and reproductive tissues, but also on the pathophysiology of cancer, especially breast cancer. Recent research points to a great versatility of GPER-1, interacting with classical estrogen receptors and with signaling pathways related to inflammation. Importantly, through its activation by environmental and synthetic estrogens, GPER-1 is associated with hormone therapy resistance in breast cancer. These findings open new perspectives in the understanding of breast tumor development and raise the possibility of future applications in the design of more personalized and effective therapeutic approaches.
Collapse
Affiliation(s)
| | - Yennyfer Arancibia
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Puerto Montt, Chile
| | | | - Sigrid Domke
- Facultad de Ciencias para el cuidado de la salud, Universidad San Sebastián, Puerto Montt, Chile
| | | |
Collapse
|
3
|
Mariana SM, Brenda RP, Heriberto PG, Cristina L, David B, Guadalupe ÁL. GPER1 activation by estrogenic compounds in the inflammatory profile of breast cancer cells. J Steroid Biochem Mol Biol 2025; 245:106639. [PMID: 39571822 DOI: 10.1016/j.jsbmb.2024.106639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/28/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Breast cancer (BC) is the most frequent female neoplasm worldwide. Its establishment and development have been related to inflammatory cytokine expression. Steroid hormones such as estradiol (E2) can regulate proinflammatory cytokine secretion through interaction with its nuclear receptors. However, little is known regarding the activation of its membrane estrogen receptor (GPER1) and the inflammatory cytokine environment in BC. We have studied the synthesis and biological effects of molecules analogs to E2 for hormone replacement therapy (HRT), such as pentolame. Nevertheless, its interaction with GPER1 and the modulation of inflammatory cytokines in different BC types has been barely studied and deserves deeper investigation. In this research, the role of GPER1 in the proliferation and modulation of inflammatory cytokines involved in carcinogenesis and metastatic processes in different BC cell lines was assessed by binding to various compounds. To achieve this goal, the presence of GPER1 was identified in different BC cell lines. Subsequently, cell proliferation after exposure to E2, pentolame and GPER1 agonist, G1, was subsequently determined alone or in combination with the GPER1 antagonist, G15. Finally, the pro-inflammatory cytokine secretion derived from the supernatants of BC cells exposed to the previous treatments was also assessed. Interestingly, GPER1 activation or inhibition has significant effects on the cytokine regulation associated with invasion in BC. Notably, pentolame did not induce cell proliferation or increase the proinflammatory cytokine expression compared to E2 in BC cell lines. In addition, pentolame did not induce the presence of the cell adhesion molecule PECAM-1. In contrast, E2 treatment weakly induced the expression of PECAM-1 in MCF-7 and HCC1937 cells, and G1 treatment showed this effect only in MCF-7 cells. The results suggest that GPER1 might be a significant inflammatory modulator with angiogenic-related effects in BC cells. In addition, pentolame might represent an HRT alternative in patients with BC predisposition.
Collapse
Affiliation(s)
- Segovia-Mendoza Mariana
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| | - Reyes-Plata Brenda
- Facultad de Estudios Superiores Zaragoza. Universidad Nacional Autónoma de México,Ciudad de México, Mexico
| | - Prado-Garcia Heriberto
- Laboratorio de Onco-Inmunobiología, Departamento de Enfermedades Crónico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias, "Ismael Cosio Villegas" Calzada de Tlalpan 4502, Col. Sección XVI, Ciudad de México 14080, Mexico
| | - Lemini Cristina
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Barrera David
- Departamento de Biología de la Reproducción "Dr. Carlos Gual Castro", Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga No. 15, Col. Belisario Domínguez, Sección XVI, Ciudad de México 14080, Mexico
| | - Ángeles-López Guadalupe
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.
| |
Collapse
|
4
|
Agbana S, McIlroy M. Extra-nuclear and cytoplasmic steroid receptor signalling in hormone dependent cancers. J Steroid Biochem Mol Biol 2024; 243:106559. [PMID: 38823459 DOI: 10.1016/j.jsbmb.2024.106559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/03/2024]
Abstract
Steroid hormone receptors are key mediators in the execution of hormone action through a combination of genomic and non-genomic action. Since their isolation and characterisation in the early 20th Century much of our understanding of the biological actions of steroid hormones are underpinned by their activated receptor activity. Over the past two decades there has been an acceleration of more omics-based research which has resulted in a major uptick in our comprehension of genomic steroid action. However, it is well understood that steroid hormones can induce very rapid signalling events in tandem with their genomic actions wherein they exert their influence through alterations in gene expression. Thus the totality of genomic and non-genomic steroid action occurs in a simultaneous and reciprocal manner and a greater appreciation of whole cell action is required to fully evaluate steroid hormone activity in vivo. In this mini-review we outline the most recent developments in non-genomic steroid action and cytoplasmic steroid hormone receptor biology in endocrine-related cancers with a focus on the 3-keto steroid receptors, in particular the androgen receptor.
Collapse
Affiliation(s)
- Stephanie Agbana
- Androgens in Health and Disease research group, RCSI University of Medicine and Health Sciences, Dublin, Ireland; Department of Surgery, RCSI University of Medicine and Health Sciences, Ireland
| | - Marie McIlroy
- Androgens in Health and Disease research group, RCSI University of Medicine and Health Sciences, Dublin, Ireland; Department of Surgery, RCSI University of Medicine and Health Sciences, Ireland.
| |
Collapse
|
5
|
Mohammad-Sadeghipour M, Nematollahi MH, Ahmadinia H, Hajizadeh MR, Mahmoodi M. The activation of the G-protein-coupled estrogen receptor promotes the aggressiveness of MDA-MB231 cells by targeting the IRE1α/TXNIP pathway. Res Pharm Sci 2024; 19:606-621. [PMID: 39691302 PMCID: PMC11648343 DOI: 10.4103/rps.rps_96_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/02/2024] [Accepted: 08/21/2024] [Indexed: 12/19/2024] Open
Abstract
Background and purpose This study investigated modulating the G protein-coupled estrogen receptor (GPER) on the IRElα/TXNIP pathway and its role in drug resistance in MDA-MB231 cells. Experimental approach To determine the optimal concentrations of G1 and 4-hydroxytamoxifen (TAM), GPER expression and ERK1/2 phosphorylation were analyzed using qRT-PCR and western blotting, respectively. Cells were treated with individual concentrations of G1 (1000 nM), G15 (1000 nM), and TAM (2000 nM), as well as combinations of these treatments (G1 + G15, TAM + G15, and G1 + TAM) for 24 and 48 h. The expression levels of GPER, IRE1α, miR-17-5p, TXNIP, ABCB1, and ABCC1 genes and TXNIP protein expression were evaluated. Finally, apoptosis and cell migration were examined using flow cytometry and the wound-healing assay, respectively. Findings/Results Activating GPER with its specific agonist G1 and TAM significantly increased IRE1α levels in MDA-MB231 cells. IRE1α through splicing XBP1 led to unfolded protein response. In addition, decreased TXNIP gene and protein expression reduced apoptosis, increased migration, and upregulated the genes associated with drug resistance. Conclusion and implication Our investigation revealed that blocking the GPER/IRE1α/TXNIP pathway in MDA-MB231 cells could enhance treatment efficacy and improve chemotherapy responsiveness. The distinct unfolded protein response observed in MDA-MB231 cells may stem from the unique characteristics of these cells, which lack receptors for estrogen, progesterone, and HER2/neu hormones, possessing only the GPER receptor (ER-/PR-/HER2-/GPER+). This study introduced a new pathway in TNBC cells, indicating that targeting GPER could be crucial in comprehensive therapeutic strategies in TNBC cells.
Collapse
Affiliation(s)
- Maryam Mohammad-Sadeghipour
- Department of Clinical Biochemistry, Afzalipoor Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Hassan Ahmadinia
- Department of Epidemiology and Biostatistics, School of Health, Occupational Environment Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mohammad Reza Hajizadeh
- Molecular Medicine Research Center, Institute of Basic Medical Sciences Research, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Mehdi Mahmoodi
- Department of Clinical Biochemistry, Afzalipoor Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Molecular Medicine Research Center, Institute of Basic Medical Sciences Research, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
6
|
Tirado-Garibay AC, Ruiz-Barcenas B, Rescala-Ponce de León JI, Ochoa-Zarzosa A, López-Meza JE. The GPR30 Receptor Is Involved in IL-6-Induced Metastatic Properties of MCF-7 Luminal Breast Cancer Cells. Int J Mol Sci 2024; 25:8988. [PMID: 39201674 PMCID: PMC11354767 DOI: 10.3390/ijms25168988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/12/2024] [Accepted: 08/17/2024] [Indexed: 09/03/2024] Open
Abstract
Luminal breast cancer has a high incidence worldwide and poses a severe health threat. Estrogen receptor alpha (ER-α) is activated by 17β-estradiol (E2), and its overexpression promotes cancerous characteristics. Luminal breast cancer is an epithelial type; however, the cytokine IL-6, secreted by cells within the tumor microenvironment, stimulates the epithelial-to-mesenchymal transition (EMT) and promotes metastasis. Also, IL-6 decreases ER-α levels, favoring the tamoxifen (TMX) resistance development. However, genes under E2 regulation continue to be expressed even though this receptor is absent. GPR30 is an alternative E2 receptor present in both luminal and aggressive triple-negative breast cancer and is related to TMX resistance and cancer progression. The roles of GPR30 and IL-6 in metastasis have been individually established; however, their interplay remains unexplored. This study aims to elucidate the role of GPR30 in IL-6-induced metastatic properties of MCF-7 luminal breast cancer cells. Results showed that GPR30 contributes to the E2-induced MCF-7 proliferation because its inhibition with the antagonist G15 and the Pertussis toxin (PTX) reduced it. Besides, GPR30 upregulated vimentin and downregulated E-cadherin levels in MCF-7 and TMX-resistant (R-TMX) cells and is also involved in the IL-6-induced migration, invasion, and TMX resistance in MCF-7 cells. In addition, in MDA-MB-231 triple-negative cells, both basal and IL-6-induced metastatic properties were related to GPR30 activity. These results indicate that the GPR30 receptor regulates the EMT induced by IL-6 in breast cancer cells.
Collapse
Affiliation(s)
| | | | | | | | - Joel E. López-Meza
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Km 9.5 Carretera Morelia-Zinapécuaro, Posta Veterinaria, Morelia 58893, Michoacán, Mexico; (A.C.T.-G.); (B.R.-B.); (J.I.R.-P.d.L.); (A.O.-Z.)
| |
Collapse
|
7
|
Prestegui Martel B, Chávez-Blanco AD, Domínguez-Gómez G, Dueñas González A, Gaona-Aguas P, Flores-Mejía R, Somilleda-Ventura SA, Rodríguez-Cortes O, Morales-Bárcena R, Martínez Muñoz A, Mejia Barradas CM, Mendieta Wejebe JE, Correa Basurto J. N-(2-Hydroxyphenyl)-2-Propylpentanamide (HO-AAVPA) Induces Apoptosis and Cell Cycle Arrest in Breast Cancer Cells, Decreasing GPER Expression. Molecules 2024; 29:3509. [PMID: 39124913 PMCID: PMC11314247 DOI: 10.3390/molecules29153509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/13/2024] [Accepted: 07/14/2024] [Indexed: 08/12/2024] Open
Abstract
In this work, we performed anti-proliferative assays for the compound N-(2-hydroxyphenyl)-2-propylpentanamide (HO-AAVPA) on breast cancer (BC) cells (MCF-7, SKBR3, and triple-negative BC (TNBC) MDA-MB-231 cells) to explore its pharmacological mechanism regarding the type of cell death associated with G protein-coupled estrogen receptor (GPER) expression. The results show that HO-AAVPA induces cell apoptosis at 5 h or 48 h in either estrogen-dependent (MCF-7) or -independent BC cells (SKBR3 and MDA-MB-231). At 5 h, the apoptosis rate for MCF-7 cells was 68.4% and that for MDA-MB-231 cells was 56.1%; at 48 h, that for SKBR3 was 61.6%, that for MCF-7 cells was 54.9%, and that for MDA-MB-231 (TNBC) was 43.1%. HO-AAVPA increased the S phase in MCF-7 cells and reduced the G2/M phase in MCF-7 and MDA-MB-231 cells. GPER expression decreased more than VPA in the presence of HO-AAVPA. In conclusion, the effects of HO-AAVPA on cell apoptosis could be modulated by epigenetic effects through a decrease in GPER expression.
Collapse
Affiliation(s)
- Berenice Prestegui Martel
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional (IPN), Plan de San Luis y Díaz Mirón, Ciudad de México 11340, México; (B.P.M.); (A.M.M.); (C.M.M.B.)
| | - Alma Delia Chávez-Blanco
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México 14080, México; (A.D.C.-B.); (G.D.-G.); (A.D.G.); (R.M.-B.)
| | - Guadalupe Domínguez-Gómez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México 14080, México; (A.D.C.-B.); (G.D.-G.); (A.D.G.); (R.M.-B.)
| | - Alfonso Dueñas González
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México 14080, México; (A.D.C.-B.); (G.D.-G.); (A.D.G.); (R.M.-B.)
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México/Instituto Nacional de Cancerología, Ciudad de México 04510, México
| | - Patricia Gaona-Aguas
- Laboratorio de Inflamación y Obesidad, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, México; (P.G.-A.); (R.F.-M.); (O.R.-C.)
| | - Raúl Flores-Mejía
- Laboratorio de Inflamación y Obesidad, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, México; (P.G.-A.); (R.F.-M.); (O.R.-C.)
| | - Selma Alin Somilleda-Ventura
- Centro de Investigación Biomédica, Fundación Hospital Nuestra Señora de la Luz I.A.P., Ezequiel Montes 135, Tabacalera, Ciudad de México 06030, México;
- Centro Interdisciplinario de Ciencias de la Salud-Instituto Politécnico Nacional (CICS-IPN), Ciudad de México 11340, México
| | - Octavio Rodríguez-Cortes
- Laboratorio de Inflamación y Obesidad, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, México; (P.G.-A.); (R.F.-M.); (O.R.-C.)
| | - Rocío Morales-Bárcena
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Ciudad de México 14080, México; (A.D.C.-B.); (G.D.-G.); (A.D.G.); (R.M.-B.)
| | - Alberto Martínez Muñoz
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional (IPN), Plan de San Luis y Díaz Mirón, Ciudad de México 11340, México; (B.P.M.); (A.M.M.); (C.M.M.B.)
| | - Cesar Miguel Mejia Barradas
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional (IPN), Plan de San Luis y Díaz Mirón, Ciudad de México 11340, México; (B.P.M.); (A.M.M.); (C.M.M.B.)
| | - Jessica Elena Mendieta Wejebe
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional (IPN), Plan de San Luis y Díaz Mirón, Ciudad de México 11340, México; (B.P.M.); (A.M.M.); (C.M.M.B.)
| | - José Correa Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional (IPN), Plan de San Luis y Díaz Mirón, Ciudad de México 11340, México; (B.P.M.); (A.M.M.); (C.M.M.B.)
| |
Collapse
|
8
|
Perri A, Rago V, Maya-Núñez G. Editorial: New insights into prostate cancer: new biomarkers, molecular mechanisms, and therapeutic approaches. Front Endocrinol (Lausanne) 2024; 15:1453065. [PMID: 39114292 PMCID: PMC11303285 DOI: 10.3389/fendo.2024.1453065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Affiliation(s)
- Anna Perri
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Vittoria Rago
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende (CS), Italy
| | - Guadalupe Maya-Núñez
- Unidad de Investigación Médica en Medicina Reproductiva, Coordinación de Investigación en Salud, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| |
Collapse
|
9
|
Abbas MA, Al-Kabariti AY, Sutton C. Comprehensive understanding of the role of GPER in estrogen receptor-alpha negative breast cancer. J Steroid Biochem Mol Biol 2024; 241:106523. [PMID: 38636681 DOI: 10.1016/j.jsbmb.2024.106523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/01/2023] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
G protein-coupled estrogen receptor (GPER) plays a prominent role in facilitating the rapid, non-genomic signaling of estrogens in breast cancer cells. Herein, a comprehensive overview of the role of GPER in ER-ɑ-negative breast cancer is provided. Activation of GPER affected proliferation, metastasis and epithelial mesenchymal transition in ER-ɑ negative breast cancer cells. Clinical studies have demonstrated that GPER positivity was strongly correlated with larger tumor size and advanced clinical stage, suggesting that GPER/ERK signaling may play a role in promoting tumor progression. Strong evidence existed that environmental contaminants like bisphenol A have a carcinogenic potential mediated by GPER activation. The complexity of the cross talk between GPER and other receptors including ER-β, ER-α36, Estrogen-related receptor α (ERRα) and androgen receptor has been discussed. The potential utility of small molecules and phytoestrogens targeting GPER, adds valuable insights into its therapeutic potential. This review holds promises in advancing our understanding of GPER role in ER-ɑ-negative breast cancer. Overall, the consequences of GPER activation are still an area of active research and the implication are not entirely clear.
Collapse
Affiliation(s)
- Manal A Abbas
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan; Pharmacological and Diagnostic Research Centre, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Aya Y Al-Kabariti
- Department of Biopharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan; Pharmacological and Diagnostic Research Centre, Al-Ahliyya Amman University, Amman 19328, Jordan.
| | - Chris Sutton
- School of Chemistry and Biosciences, University of Bradford, Bradford BD7 1DP, UK
| |
Collapse
|
10
|
Talia M, Cirillo F, Scordamaglia D, Di Dio M, Zicarelli A, De Rosis S, Miglietta AM, Capalbo C, De Francesco EM, Belfiore A, Grande F, Rizzuti B, Occhiuzzi MA, Fortino G, Guzzo A, Greco G, Maggiolini M, Lappano R. The G Protein Estrogen Receptor (GPER) is involved in the resistance to the CDK4/6 inhibitor palbociclib in breast cancer. J Exp Clin Cancer Res 2024; 43:171. [PMID: 38886784 PMCID: PMC11184778 DOI: 10.1186/s13046-024-03096-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND The cyclin D1-cyclin dependent kinases (CDK)4/6 inhibitor palbociclib in combination with endocrine therapy shows remarkable efficacy in the management of estrogen receptor (ER)-positive and HER2-negative advanced breast cancer (BC). Nevertheless, resistance to palbociclib frequently arises, highlighting the need to identify new targets toward more comprehensive therapeutic strategies in BC patients. METHODS BC cell lines resistant to palbociclib were generated and used as a model system. Gene silencing techniques and overexpression experiments, real-time PCR, immunoblotting and chromatin immunoprecipitation studies as well as cell viability, colony and 3D spheroid formation assays served to evaluate the involvement of the G protein-coupled estrogen receptor (GPER) in the resistance to palbociclib in BC cells. Molecular docking simulations were also performed to investigate the potential interaction of palbociclib with GPER. Furthermore, BC cells co-cultured with cancer-associated fibroblasts (CAFs) isolated from mammary carcinoma, were used to investigate whether GPER signaling may contribute to functional cell interactions within the tumor microenvironment toward palbociclib resistance. Finally, by bioinformatics analyses and k-means clustering on clinical and expression data of large cohorts of BC patients, the clinical significance of novel mediators of palbociclib resistance was explored. RESULTS Dissecting the molecular events that characterize ER-positive BC cells resistant to palbociclib, the down-regulation of ERα along with the up-regulation of GPER were found. To evaluate the molecular events involved in the up-regulation of GPER, we determined that the epidermal growth factor receptor (EGFR) interacts with the promoter region of GPER and stimulates its expression toward BC cells resistance to palbociclib treatment. Adding further cues to these data, we ascertained that palbociclib does induce pro-inflammatory transcriptional events via GPER signaling in CAFs. Of note, by performing co-culture assays we demonstrated that GPER contributes to the reduced sensitivity to palbociclib also facilitating the functional interaction between BC cells and main components of the tumor microenvironment named CAFs. CONCLUSIONS Overall, our results provide novel insights on the molecular events through which GPER may contribute to palbociclib resistance in BC cells. Additional investigations are warranted in order to assess whether targeting the GPER-mediated interactions between BC cells and CAFs may be useful in more comprehensive therapeutic approaches of BC resistant to palbociclib.
Collapse
Affiliation(s)
- Marianna Talia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Francesca Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Domenica Scordamaglia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Marika Di Dio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Azzurra Zicarelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Salvatore De Rosis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Anna Maria Miglietta
- Breast and General Surgery Unit, Regional Hospital Cosenza, Cosenza, 87100, Italy
| | - Carlo Capalbo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
- Complex Operative Oncology Unit, Regional Hospital Cosenza, Cosenza, 87100, Italy
| | | | - Antonino Belfiore
- Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, Catania, 95122, Italy
| | - Fedora Grande
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy
| | - Bruno Rizzuti
- Department of Physics, CNR-NANOTEC, SS Rende (CS), University of Calabria, Rende, CS, 87036, Italy
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, University of Zaragoza, Zaragoza, 50018, Spain
| | | | - Giancarlo Fortino
- Department of Informatics, Modeling, Electronic, and System Engineering, University of Calabria, Rende, 87036, Italy
| | - Antonella Guzzo
- Department of Informatics, Modeling, Electronic, and System Engineering, University of Calabria, Rende, 87036, Italy
| | - Gianluigi Greco
- Department of Mathematics and Computer Science, University of Calabria, Cosenza, Italy
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy.
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, 87036, Italy.
| |
Collapse
|
11
|
Warrier AV, Vg M, R L N, Krishnan N, Kumari P, Ittycheria SS, Srinivas P. Xenoestrogen and Its Interaction with Human Genes and Cellular Proteins: An In-Silico Study. Asian Pac J Cancer Prev 2024; 25:2077-2087. [PMID: 38918670 PMCID: PMC11382847 DOI: 10.31557/apjcp.2024.25.6.2077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Breast cancer represents one of the leading causes of death worldwide. Apart from genetic factors, the sex hormone estrogen plays a pivotal role in breast cancer development. We are exposed to a plethora of estrogen mimics on a daily basis via various routes. Nevertheless, how xenoestrogens, the exogenous estrogen mimics, modulate cancer-associated signaling pathways and interact with specific genes is still underexplored. Hence, this study aims to explore the direct or indirect binding partners of xenoestrogens and their expression upon exposure to these estrogenic compounds. METHODS The collection of genes linked to the xenoestrogens Octylphenol, Nonylphenol, Bisphenol-A, and 2,2-bis(4-hydroxyphenyl)-1,1,1-trichloroethane were gathered from the Comparative Toxicogenomics Database. Venny 2.1 was utilized to pinpoint the genes shared by these xenoestrogens. Subsequently, the shared genes underwent Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis using the Database for Annotation, Visualization, and Integrated Discovery bioinformatics resource. A xenoestrogen-protein interaction network was constructed using Search Tool for Interactions of Chemicals. The expressions of common genes were studied with the microarray dataset GSE5200 from the Gene Expression Omnibus database. Also, the expression of a common gene set within different breast cancer subtypes was identified using the University of California, Santa Cruz Xena. RESULTS The genes linked to xenoestrogens were identified, and 13 genes were found to interact with all four xenoestrogens. Through DAVID analysis, the genes chosen are found to be enriched for various functions and pathways, including pathways in cancer, chemical carcinogenesis-receptor activation, and estrogen signaling pathways. The results of the Comparative Toxicogenomics Database and the chemical-protein interaction network derived from STITCH were similar. Microarray data analysis showed significantly high expression of all 13 genes in another study, with Bisphenol-A and Nonylphenol treated MCF-7 cells, most of the genes are expressed in luminal A or basal breast cancer subtype. CONCLUSION In summary, the genes associated with the four xenoestrogens were mostly linked to pathways related to tumorigenesis, and the expression of these genes was found to be higher in breast cancer.
Collapse
Affiliation(s)
- Arathy V Warrier
- Cancer Research Program 6, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Manasa Vg
- Cancer Research Program 6, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Neetha R L
- Cancer Research Program 6, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Neethu Krishnan
- Cancer Research Program 6, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Prianka Kumari
- Cancer Research Program 6, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Shreya Sara Ittycheria
- Cancer Research Program 6, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Priya Srinivas
- Cancer Research Program 6, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
12
|
Yan S, Ji J, Zhang Z, Imam M, Chen H, Zhang D, Wang J. Targeting the crosstalk between estrogen receptors and membrane growth factor receptors in breast cancer treatment: Advances and opportunities. Biomed Pharmacother 2024; 175:116615. [PMID: 38663101 DOI: 10.1016/j.biopha.2024.116615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/06/2024] [Accepted: 04/17/2024] [Indexed: 06/03/2024] Open
Abstract
Estrogens play a critical role in the initiation and progression of breast cancer. Estrogen receptor (ER)α, ERβ, and G protein-coupled estrogen receptor are the primary receptors for estrogen in breast cancer. These receptors are mainly activated by binding with estrogens. The crosstalk between ERs and membrane growth factor receptors creates additional pathways that amplify the effects of their ligands and promote tumor growth. This crosstalk may cause endocrine therapy resistance in ERα-positive breast cancer. Furthermore, this may explain the resistance to anti-human epidermal growth factor receptor-2 (HER2) treatment in ERα-/HER2-positive breast cancer and chemotherapy resistance in triple-negative breast cancer. Accordingly, it is necessary to understand the complex crosstalk between ERs and growth factor receptors. In this review, we delineate the crosstalk between ERs and membrane growth factor receptors in breast cancer. Moreover, this review highlights the current progress in clinical treatment and discusses how pharmaceuticals target the crosstalk. Lastly, we discuss the current challenges and propose potential solutions regarding the implications of targeting crosstalk via pharmacological inhibition. Overall, the present review provides a landscape of the crosstalk between ERs and membrane growth factor receptors in breast cancer, along with valuable insights for future studies and clinical treatments using a chemotherapy-sparing regimen to improve patient quality of life.
Collapse
Affiliation(s)
- Shunchao Yan
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, China.
| | - Jiale Ji
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Zhijie Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Murshid Imam
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Hong Chen
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Duo Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Jinpeng Wang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110022, China
| |
Collapse
|
13
|
Zhang D, Chen H, Wang J, Ji J, Imam M, Zhang Z, Yan S. Current progress and prospects for G protein-coupled estrogen receptor in triple-negative breast cancer. Front Cell Dev Biol 2024; 12:1338448. [PMID: 38476263 PMCID: PMC10928007 DOI: 10.3389/fcell.2024.1338448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/08/2024] [Indexed: 03/14/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is a biologically and clinically heterogeneous disease. The G protein-coupled estrogen receptor (GPER) plays a crucial role in mediating the effect of estrogen and estrogen-like compounds in TNBC cells. Compared with other subtypes, GPER has a higher expression in TNBC. The GPER mechanisms have been thoroughly characterized and analyzed in estrogen receptor α (ERα) positive breast cancer, but not in TNBC. Our previous work revealed that a higher expression of GPER mRNA indicates a better prognosis for ERα-positive breast cancer; however, its effects in TNBC differ. Whether GPER could serve as a predictive prognostic marker or therapeutic target for TNBC remains unclear. In this review, we provide a detailed introduction to the subcellular localization of GPER, the different effects of various ligands, and the interactions between GPER and closely associated factors in TNBC. We focused on the internal molecular mechanisms specific to TNBC and thoroughly explored the role of GPER in promoting tumor development. We also discussed the interaction of GPER with specific cytokines and chemokines, and the relationship between GPER and immune evasion. Additionally, we discussed the feasibility of using GPER as a therapeutic target in the context of existing studies. This comprehensive review highlights the effects of GPER on TNBC, providing a framework and directions for future research.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shunchao Yan
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
14
|
Rico-Fuentes C, López-Pulido EI, Pérez-Guerrero EE, Godínez-Rubí M, Villegas-Pineda JC, Villanueva-Pérez MA, Sierra-Díaz E, Zepeda-Nuño JS, Pereira-Suárez AL, Ramírez-de-Arellano A. Positive correlation between the nuclear expression of GPER and pGLI3 in prostate cancer tissues from patients with different Gleason scores. Front Endocrinol (Lausanne) 2024; 15:1333284. [PMID: 38370352 PMCID: PMC10870147 DOI: 10.3389/fendo.2024.1333284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 01/11/2024] [Indexed: 02/20/2024] Open
Abstract
Prostate cancer (PCa) is the most prevalent cause of death in the male population worldwide. The G Protein-Coupled Estrogen Receptor (GPER) has been gaining relevance in the development of PCa. Hedgehog (Hh) pathway activation is associated with aggressiveness, metastasis, and relapse in PCa patients. To date, no studies have evaluated the crosstalk between the GPER and the Hh pathway along different group grades in PCa. We conducted an analysis of paraffin-embedded tissues derived from patients with different prognostic grade of PCa using immunohistochemistry. Expression and correlation between GPER and glioma associated oncogene homologue (GLI) transcriptional factors in the parenchyma and stroma of PCa tumors were evaluated. Our results indicate that GPER is highly expressed in the nucleus and increases with higher grade groups. Additionally, GPER's expression correlates with pGLI3 nuclear expression across different grade groups in PCa tissues; however, whether the receptor induces the activation of GLI transcriptional factors, or the latter modulate the expression of GPER is yet to be discovered, as well as the functional consequence of this correlation.
Collapse
Affiliation(s)
- Cecilia Rico-Fuentes
- Doctorado en Biociencias, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco, Mexico
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Edgar Iván López-Pulido
- Doctorado en Biociencias, Centro Universitario de los Altos, Universidad de Guadalajara, Tepatitlán de Morelos, Jalisco, Mexico
| | - Edsaúl Emilio Pérez-Guerrero
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Marisol Godínez-Rubí
- Laboratorio de Patología Diagnóstica e Inmunohistoquimica, Centro de Investigación y Diagnóstico en Patología, Departamento de Microbiología y Patologia, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
- Departamento de Morfología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Julio César Villegas-Pineda
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | | | - Erick Sierra-Díaz
- Departamento de Salud Pública, Centro Universitario de Ciencias de la Salud, División de Epidemiología, Unidad Médica de Alta Especialidad, Hospital de Especialidades, Centro Médico Nacional de Occidente, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - José Sergio Zepeda-Nuño
- Laboratorio de Patología Diagnóstica e Inmunohistoquimica, Centro de Investigación y Diagnóstico en Patología, Departamento de Microbiología y Patologia, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Ana Laura Pereira-Suárez
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
- Laboratorio de Patología Diagnóstica e Inmunohistoquimica, Centro de Investigación y Diagnóstico en Patología, Departamento de Microbiología y Patologia, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Adrián Ramírez-de-Arellano
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| |
Collapse
|
15
|
Crespo B, Illera JC, Silvan G, Lopez-Plaza P, Herrera de la Muela M, de la Puente Yagüe M, Diaz del Arco C, Illera MJ, Caceres S. Androgen and Estrogen β Receptor Expression Enhances Efficacy of Antihormonal Treatments in Triple-Negative Breast Cancer Cell Lines. Int J Mol Sci 2024; 25:1471. [PMID: 38338747 PMCID: PMC10855276 DOI: 10.3390/ijms25031471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/10/2024] [Accepted: 01/20/2024] [Indexed: 02/12/2024] Open
Abstract
The triple-negative breast cancer (TNBC) subtype is characterized by the lack of expression of ERα (estrogen receptor α), PR (progesterone receptor) and no overexpression of HER-2. However, TNBC can express the androgen receptor (AR) or estrogen receptor β (ERβ). Also, TNBC secretes steroid hormones and is influenced by hormonal fluctuations, so the steroid inhibition could exert a beneficial effect in TNBC treatment. The aim of this study was to evaluate the effect of dutasteride, anastrozole and ASP9521 in in vitro processes using human TNBC cell lines. For this, immunofluorescence, sensitivity, proliferation and wound healing assays were performed, and hormone concentrations were studied. Results revealed that all TNBC cell lines expressed AR and ERβ; the ones that expressed them most intensely were more sensitive to antihormonal treatments. All treatments reduced cell viability, highlighting MDA-MB-453 and SUM-159. Indeed, a decrease in androgen levels was observed in these cell lines, which could relate to a reduction in cell viability. In addition, MCF-7 and SUM-159 increased cell migration under treatments, increasing estrogen levels, which could favor cell migration. Thus, antihormonal treatments could be beneficial for TNBC therapies. This study clarifies the importance of steroid hormones in AR and ERβ-positive cell lines of TNBC.
Collapse
Affiliation(s)
- Belen Crespo
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain; (B.C.); (G.S.); (P.L.-P.); (M.J.I.); (S.C.)
| | - Juan Carlos Illera
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain; (B.C.); (G.S.); (P.L.-P.); (M.J.I.); (S.C.)
| | - Gema Silvan
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain; (B.C.); (G.S.); (P.L.-P.); (M.J.I.); (S.C.)
| | - Paula Lopez-Plaza
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain; (B.C.); (G.S.); (P.L.-P.); (M.J.I.); (S.C.)
| | - María Herrera de la Muela
- Obstetrics and Gynecology Department, Hospital Clinico San Carlos, Instituto de Salud de la Mujer, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IsISSC), 28040 Madrid, Spain;
| | - Miriam de la Puente Yagüe
- Department of Public and Maternal Child Health University, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain;
| | | | - Maria Jose Illera
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain; (B.C.); (G.S.); (P.L.-P.); (M.J.I.); (S.C.)
| | - Sara Caceres
- Department Animal Physiology, Veterinary Medicine School, Complutense University of Madrid (UCM), 28040 Madrid, Spain; (B.C.); (G.S.); (P.L.-P.); (M.J.I.); (S.C.)
| |
Collapse
|
16
|
Pacheco JHL, Elizondo G. Interplay between Estrogen, Kynurenine, and AHR Pathways: An immunosuppressive axis with therapeutic potential for breast cancer treatment. Biochem Pharmacol 2023; 217:115804. [PMID: 37716620 DOI: 10.1016/j.bcp.2023.115804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
Breast cancer is one of the most common malignancies among women worldwide. Estrogen exposure via endogenous and exogenous sources during a lifetime, together with environmental exposure to estrogenic compounds, represent the most significant risk factor for breast cancer development. As breast tumors establish, multiple pathways are deregulated. Among them is the aryl hydrocarbon receptor (AHR) signaling pathway. AHR, a ligand-activated transcription factor associated with the metabolism of polycyclic aromatic hydrocarbons and estrogens, is overexpressed in breast cancer. Furthermore, AHR and estrogen receptor (ER) cross-talk pathways have been observed. Additionally, the Tryptophan (Trp) catabolizing enzymes indolamine-2,3-dioxygenase (IDO) and tryptophan-2,3-dioxygenase (TDO) are overexpressed in breast cancer. IDO/TDO catalyzes the formation of Kynurenine (KYN) and other tryptophan-derived metabolites, which are ligands of AHR. Once KYN activates AHR, it stimulates the expression of the IDO enzyme, increases the level of KYN, and activates non-canonical pathways to control inflammation and immunosuppression in breast tumors. The interplay between E2, AHR, and IDO/TDO/KYN pathways and their impact on the immune system represents an immunosuppressive axis on breast cancer. The potential modulation of the immunosuppressive E2-AHR-IDO/TDO/KYN axis has aroused great expectations in oncotherapy. The present article will review the mechanisms implicated in generating the immunosuppressive axis E2-AHR-IDO/TDO/KYN in breast cancer and the current state of knowledge as a potential therapeutic target.
Collapse
Affiliation(s)
| | - Guillermo Elizondo
- Departamento de Biología Celular, CINVESTAV-IPN, Av. IPN 2508, C.P. 07360 Ciudad de México, México.
| |
Collapse
|
17
|
Yan S, Wang J, Chen H, Zhang D, Imam M. Divergent features of ERβ isoforms in triple negative breast cancer: progress and implications for further research. Front Cell Dev Biol 2023; 11:1240386. [PMID: 37936981 PMCID: PMC10626554 DOI: 10.3389/fcell.2023.1240386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/11/2023] [Indexed: 11/09/2023] Open
Abstract
Estrogen receptor β (ERβ) was discovered more than 20 years ago. However, the extent and role of ERβ expression in breast cancer remain controversial, especially in the context of triple-negative breast cancer (TNBC). ERβ exists as multiple isoforms, and a series of studies has revealed an inconsistent role of ERβ isoforms in TNBC. Our recent results demonstrated contrasting functions of ERβ1 and ERβ2/β5 in TNBC. Additional research should be conducted to explore the functions of individual ERβ isoforms and develop targeted drugs according to the relevant mechanisms. Consequently, a systematic review of ERβ isoforms is necessary. In this review, we overview the structure of ERβ isoforms and detail what is known about the function of ERβ isoforms in normal mammary tissue and breast cancer. Moreover, this review highlights the divergent features of ERβ isoforms in TNBC. This review also provides insights into the implications of targeting ERβ isoforms for clinical treatment. In conclusion, this review provides a framework delineating the roles and mechanisms of different ERβ isoforms in TNBC and sheds light on future directions for basic and clinical research.
Collapse
Affiliation(s)
- Shunchao Yan
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | | | | | | | | |
Collapse
|
18
|
Hall KA, Filardo EJ. The G Protein-Coupled Estrogen Receptor (GPER): A Critical Therapeutic Target for Cancer. Cells 2023; 12:2460. [PMID: 37887304 PMCID: PMC10605794 DOI: 10.3390/cells12202460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023] Open
Abstract
Estrogens have been implicated in the pathogenesis of various cancers, with increasing concern regarding the overall rising incidence of disease and exposure to environmental estrogens. Estrogens, both endogenous and environmental, manifest their actions through intracellular and plasma membrane receptors, named ERα, ERβ, and GPER. Collectively, they act to promote a broad transcriptional response that is mediated through multiple regulatory enhancers, including estrogen response elements (EREs), serum response elements (SREs), and cyclic AMP response elements (CREs). Yet, the design and rational assignment of antiestrogen therapy for breast cancer has strictly relied upon an endogenous estrogen-ER binary rubric that does not account for environmental estrogens or GPER. New endocrine therapies have focused on the development of drugs that degrade ER via ER complex destabilization or direct enzymatic ubiquitination. However, these new approaches do not broadly treat all cancer-involved receptors, including GPER. The latter is concerning since GPER is directly associated with tumor size, distant metastases, cancer stem cell activity, and endocrine resistance, indicating the importance of targeting this receptor to achieve a more complete therapeutic response. This review focuses on the critical importance and value of GPER-targeted therapeutics as part of a more holistic approach to the treatment of estrogen-driven malignancies.
Collapse
|
19
|
Moisand A, Madéry M, Boyer T, Domblides C, Blaye C, Larmonier N. Hormone Receptor Signaling and Breast Cancer Resistance to Anti-Tumor Immunity. Int J Mol Sci 2023; 24:15048. [PMID: 37894728 PMCID: PMC10606577 DOI: 10.3390/ijms242015048] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/02/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Breast cancers regroup many heterogeneous diseases unevenly responding to currently available therapies. Approximately 70-80% of breast cancers express hormone (estrogen or progesterone) receptors. Patients with these hormone-dependent breast malignancies benefit from therapies targeting endocrine pathways. Nevertheless, metastatic disease remains a major challenge despite available treatments, and relapses frequently ensue. By improving patient survival and quality of life, cancer immunotherapies have sparked considerable enthusiasm and hope in the last decade but have led to only limited success in breast cancers. In addition, only patients with hormone-independent breast cancers seem to benefit from these immune-based approaches. The present review examines and discusses the current literature related to the role of hormone receptor signaling (specifically, an estrogen receptor) and the impact of its modulation on the sensitivity of breast cancer cells to the effector mechanisms of anti-tumor immune responses and on the capability of breast cancers to escape from protective anti-cancer immunity. Future research prospects related to the possibility of promoting the efficacy of immune-based interventions using hormone therapy agents are considered.
Collapse
Affiliation(s)
- Alexandra Moisand
- CNRS UMR 5164, ImmunoConcEpT, Biological and Medical Sciences Department, University of Bordeaux, 33076 Bordeaux, France; (A.M.); (M.M.); (T.B.); (C.D.)
- Cancer Biology Graduate Program, UB Grad 2.0, University of Bordeaux, 33076 Bordeaux, France
| | - Mathilde Madéry
- CNRS UMR 5164, ImmunoConcEpT, Biological and Medical Sciences Department, University of Bordeaux, 33076 Bordeaux, France; (A.M.); (M.M.); (T.B.); (C.D.)
- Cancer Biology Graduate Program, UB Grad 2.0, University of Bordeaux, 33076 Bordeaux, France
| | - Thomas Boyer
- CNRS UMR 5164, ImmunoConcEpT, Biological and Medical Sciences Department, University of Bordeaux, 33076 Bordeaux, France; (A.M.); (M.M.); (T.B.); (C.D.)
- Cancer Biology Graduate Program, UB Grad 2.0, University of Bordeaux, 33076 Bordeaux, France
| | - Charlotte Domblides
- CNRS UMR 5164, ImmunoConcEpT, Biological and Medical Sciences Department, University of Bordeaux, 33076 Bordeaux, France; (A.M.); (M.M.); (T.B.); (C.D.)
- Department of Medical Oncology, University Hospital of Bordeaux, 33000 Bordeaux, France
| | - Céline Blaye
- CNRS UMR 5164, ImmunoConcEpT, Biological and Medical Sciences Department, University of Bordeaux, 33076 Bordeaux, France; (A.M.); (M.M.); (T.B.); (C.D.)
| | - Nicolas Larmonier
- CNRS UMR 5164, ImmunoConcEpT, Biological and Medical Sciences Department, University of Bordeaux, 33076 Bordeaux, France; (A.M.); (M.M.); (T.B.); (C.D.)
- Cancer Biology Graduate Program, UB Grad 2.0, University of Bordeaux, 33076 Bordeaux, France
| |
Collapse
|
20
|
Tirado-Garibay AC, Falcón-Ruiz EA, Ochoa-Zarzosa A, López-Meza JE. GPER: An Estrogen Receptor Key in Metastasis and Tumoral Microenvironments. Int J Mol Sci 2023; 24:14993. [PMID: 37834441 PMCID: PMC10573234 DOI: 10.3390/ijms241914993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/02/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
Estrogens and their role in cancer are well-studied, and some cancer types are classified in terms of their response to them. In recent years, a G protein-coupled estrogen receptor (GPER) has been described with relevance in cancer. GPER is a pleiotropic receptor with tissue-specific activity; in normal tissues, its activation is related to correct development and homeostasis, while in cancer cells, it can be pro- or anti-tumorigenic. Also, GPER replaces estrogen responsiveness in estrogen receptor alpha (ERα)-lacking cancer cell lines. One of the most outstanding activities of GPER is its role in epithelial-mesenchymal transition (EMT), which is relevant for metastasis development. In addition, the presence of this receptor in tumor microenvironment cells contributes to the phenotypic plasticity required for the dissemination and maintenance of tumors. These characteristics suggest that GPER could be a promising therapeutic target for regulating cancer development. This review focuses on the role of GPER in EMT in tumorigenic and associated cells, highlighting its role in relation to the main hallmarks of cancer and possible therapeutic options.
Collapse
Affiliation(s)
| | | | | | - Joel E. López-Meza
- Centro Multidisciplinario de Estudios en Biotecnología—FMVZ, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58893, Mexico; (A.C.T.-G.); (E.A.F.-R.); (A.O.-Z.)
| |
Collapse
|
21
|
Cirillo F, Talia M, Santolla MF, Pellegrino M, Scordamaglia D, Spinelli A, De Rosis S, Giordano F, Muglia L, Zicarelli A, Di Dio M, Rigiracciolo DC, Miglietta AM, Filippelli G, De Francesco EM, Belfiore A, Lappano R, Maggiolini M. GPER deletion triggers inhibitory effects in triple negative breast cancer (TNBC) cells through the JNK/c-Jun/p53/Noxa transduction pathway. Cell Death Discov 2023; 9:353. [PMID: 37749101 PMCID: PMC10520078 DOI: 10.1038/s41420-023-01654-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/28/2023] [Accepted: 09/18/2023] [Indexed: 09/27/2023] Open
Abstract
The G protein-coupled estrogen receptor (GPER) mediates estrogen action in different pathophysiological conditions, including cancer. GPER expression and signaling have been found to join in the progression of triple-negative breast cancer (TNBC), even though controversial data have been reported. In present study, we aimed at providing new mechanistic and biological discoveries knocking out (KO) GPER expression by CRISPR/Cas9 technology in MDA-MB-231 TNBC cells. GPER KO whole transcriptome respect to wild type (WT) MDA-MB-231 cells was determined through total RNA sequencing (RNA-Seq) and gene ontology (GO) enrichment analysis. We ascertained that anti-proliferative and pro-apoptotic gene signatures characterize GPER KO MDA-MB-231 cells. Thereafter, we determined that these cells exhibit a reduced proliferative, clonogenic and self-renewal potential along with an increased mitochondria-dependent apoptosis phenotype. In addition, we recognized that decreased cAMP levels trigger the JNK/c-Jun/p53/Noxa axis, which in turn orchestrates the pro-apoptotic effects observed in GPER KO cells. In accordance with these data, survival analyses in TNBC patients of the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) dataset indicated that high Noxa expression correlates with improved outcomes in TNBC patients. Furthermore, we demonstrated that GPER KO in TNBC cells impairs the expression and secretion of the well-acknowledged GPER target gene named CTGF, thus resulting in the inhibition of migratory effects in cancer-associated fibroblasts (CAFs). Overall, the present study provides novel mechanistic and biological insights on GPER KO in TNBC cells suggesting that GPER may be considered as a valuable target in comprehensive therapeutic approaches halting TNBC progression.
Collapse
Affiliation(s)
- Francesca Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Marianna Talia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Maria Francesca Santolla
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Michele Pellegrino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Domenica Scordamaglia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Asia Spinelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Salvatore De Rosis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Francesca Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Lucia Muglia
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Azzurra Zicarelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Marika Di Dio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy
| | - Damiano Cosimo Rigiracciolo
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Via Adamello 16, 20139, Milano, Italy
| | - Anna Maria Miglietta
- Breast and General Surgery Unit, Regional Hospital Cosenza, 87100, Cosenza, Italy
| | | | - Ernestina Marianna De Francesco
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122, Catania, Italy
| | - Antonino Belfiore
- Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Hospital, 95122, Catania, Italy
| | - Rosamaria Lappano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy.
| | - Marcello Maggiolini
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy.
| |
Collapse
|
22
|
Clusan L, Ferrière F, Flouriot G, Pakdel F. A Basic Review on Estrogen Receptor Signaling Pathways in Breast Cancer. Int J Mol Sci 2023; 24:ijms24076834. [PMID: 37047814 PMCID: PMC10095386 DOI: 10.3390/ijms24076834] [Citation(s) in RCA: 125] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 04/08/2023] Open
Abstract
Breast cancer is the most common cancer and the deadliest among women worldwide. Estrogen signaling is closely associated with hormone-dependent breast cancer (estrogen and progesterone receptor positive), which accounts for two-thirds of tumors. Hormone therapy using antiestrogens is the gold standard, but resistance to these treatments invariably occurs through various biological mechanisms, such as changes in estrogen receptor activity, mutations in the ESR1 gene, aberrant activation of the PI3K pathway or cell cycle dysregulations. All these factors have led to the development of new therapies, such as selective estrogen receptor degraders (SERDs), or combination therapies with cyclin-dependent kinases (CDK) 4/6 or PI3K inhibitors. Therefore, understanding the estrogen pathway is essential for the treatment and new drug development of hormone-dependent cancers. This mini-review summarizes current literature on the signalization, mechanisms of action and clinical implications of estrogen receptors in breast cancer.
Collapse
Affiliation(s)
- Léa Clusan
- Université de Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)—UMR_S 1085, F-35000 Rennes, France
| | - François Ferrière
- Université de Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)—UMR_S 1085, F-35000 Rennes, France
| | - Gilles Flouriot
- Université de Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)—UMR_S 1085, F-35000 Rennes, France
| | - Farzad Pakdel
- Université de Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)—UMR_S 1085, F-35000 Rennes, France
| |
Collapse
|
23
|
Huang S, Qi B, Yang L, Wang X, Huang J, Zhao Y, Hu Y, Xiao W. Phytoestrogens, novel dietary supplements for breast cancer. Biomed Pharmacother 2023; 160:114341. [PMID: 36753952 DOI: 10.1016/j.biopha.2023.114341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/08/2023] Open
Abstract
While endocrine therapy is considered as an effective way to treat breast cancer, it still faces many challenges, such as drug resistance and individual discrepancy. Therefore, novel preventive and therapeutic modalities are still in great demand to decrease the incidence and mortality rate of breast cancer. Numerous studies suggested that G protein-coupled estrogen receptor (GPER), a membrane estrogen receptor, is a potential target for breast cancer prevention and treatment. It was also shown that not only endogenous estrogens can activate GPERs, but many phytoestrogens can also function as selective estrogen receptor modulators (SERMs) to interact GPERs. In this review, we discussed the possible mechanisms of GPERs pathways and shed a light of developing novel phytoestrogens based dietary supplements against breast cancers.
Collapse
Affiliation(s)
- Shuo Huang
- School of Clinical Medicine, Chengdu University of TCM, Chengdu 610072, Sichuan, China
| | - Baowen Qi
- South China Hospital of Shenzhen University, No. 1, Fuxin Road, Longgang District, Shenzhen, 518116, P. R. China; BioCangia Inc., 205 Torbay Road, Markham, ON L3R 3W4, Canada
| | - Ling Yang
- School of Clinical Medicine, Chengdu University of TCM, Chengdu 610072, Sichuan, China
| | - Xue Wang
- School of Clinical Medicine, Chengdu University of TCM, Chengdu 610072, Sichuan, China
| | - Jing Huang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Ya Zhao
- School of Clinical Medicine, Chengdu University of TCM, Chengdu 610072, Sichuan, China
| | - Yonghe Hu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; Department of Pharmacy, The General Hospital of Western Theater Command, Chengdu 610083, Sichuan, China.
| | - Wenjing Xiao
- Department of Pharmacy, The General Hospital of Western Theater Command, Chengdu 610083, Sichuan, China.
| |
Collapse
|
24
|
Subbamanda YD, Bhargava A. Intercommunication between Voltage-Gated Calcium Channels and Estrogen Receptor/Estrogen Signaling: Insights into Physiological and Pathological Conditions. Cells 2022; 11:cells11233850. [PMID: 36497108 PMCID: PMC9739980 DOI: 10.3390/cells11233850] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Voltage-gated calcium channels (VGCCs) and estrogen receptors are important cellular proteins that have been shown to interact with each other across varied cells and tissues. Estrogen hormone, the ligand for estrogen receptors, can also exert its effects independent of estrogen receptors that collectively constitute non-genomic mechanisms. Here, we provide insights into the VGCC regulation by estrogen and the possible mechanisms involved therein across several cell types. Notably, most of the interaction is described in neuronal and cardiovascular tissues given the importance of VGCCs in these electrically excitable tissues. We describe the modulation of various VGCCs by estrogen known so far in physiological conditions and pathological conditions. We observed that in most in vitro studies higher concentrations of estrogen were used while a handful of in vivo studies used meager concentrations resulting in inhibition or upregulation of VGCCs, respectively. There is a need for more relevant physiological assays to study the regulation of VGCCs by estrogen. Additionally, other interacting receptors and partners need to be identified that may be involved in exerting estrogen receptor-independent effects of estrogen.
Collapse
|