1
|
Akiba T, Shimada S, Imai K, Takahashi S. A case of CDKL5 deficiency disorder with a novel intragenic multi-exonic duplication. Hum Genome Var 2024; 11:40. [PMID: 39511144 PMCID: PMC11544015 DOI: 10.1038/s41439-024-00296-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 11/15/2024] Open
Abstract
We present a case of suspected CDKL5 deficiency disorder (CDD) in which a novel intragenic multi-exonic duplication in the CDKL5 gene was identified using next-generation sequencing and multiple ligation-dependent probe amplification. This duplication was assumed to result in a shift of the reading frame and the introduction of a premature stop codon. This case highlights the importance of careful phenotyping and comprehensive genetic testing to detect rare structural variants in CDD patients.
Collapse
Affiliation(s)
- Takato Akiba
- NHO Shizuoka Institute of Epilepsy and Neurological Disorders, National Epilepsy Center, Shizuoka, Japan
- Pediatrics and Adolescent Medicine, Juntendo University, Graduate School of Medicine, Tokyo, Japan
| | - Shino Shimada
- NHO Shizuoka Institute of Epilepsy and Neurological Disorders, National Epilepsy Center, Shizuoka, Japan
- Pediatrics and Adolescent Medicine, Juntendo University, Graduate School of Medicine, Tokyo, Japan
- Department of Clinical Genetics, Juntendo University, Graduate School of Medicine, Tokyo, Japan
| | - Katsumi Imai
- NHO Shizuoka Institute of Epilepsy and Neurological Disorders, National Epilepsy Center, Shizuoka, Japan.
| | - Satoru Takahashi
- Department of Pediatrics, Asahikawa Medical University, Asahikawa, Japan
| |
Collapse
|
2
|
Schot R, Ferraro F, Geeven G, Diderich KEM, Barakat TS. Re-analysis of whole genome sequencing ends a diagnostic odyssey: Case report of an RNU4-2 related neurodevelopmental disorder. Clin Genet 2024; 106:512-517. [PMID: 38859706 DOI: 10.1111/cge.14574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024]
Abstract
Despite increasing knowledge of disease-causing genes in human genetics, approximately half of the individuals affected by neurodevelopmental disorders remain genetically undiagnosed. Part of this missing heritability might be caused by genetic variants outside of protein-coding genes, which are not routinely diagnostically investigated. A recent preprint identified de novo variants in the non-coding spliceosomal snRNA gene RNU4-2 as a cause of a frequent novel syndromic neurodevelopmental disorder. Here we mined 164 whole genome sequencing (WGS) trios from individuals with neurodevelopmental or multiple congenital anomaly disorders that received diagnostic genomic investigations at our clinic. We identify a recurrent de novo RNU4-2 variant (NR_003137.2(RNU4-2):n.64_65insT) in a 5-year-old girl with severe global developmental delay, hypotonia, microcephaly, and seizures that likely explains her phenotype, given that extensive previous genetic investigations failed to identify an alternative cause. We present detailed phenotyping of the individual obtained during a 5-year follow-up. This includes photographs showing recognizable facial features for this novel disorder, which might allow prioritizing other currently unexplained affected individuals sharing similar facial features for targeted investigations of RNU4-2. This case illustrates the power of re-analysis to solve previously unexplained cases even when a diagnostic genome remains negative.
Collapse
Affiliation(s)
- Rachel Schot
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Discovery Unit, Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Federico Ferraro
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Geert Geeven
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Karin E M Diderich
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Discovery Unit, Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
3
|
Paulet A, Bennett-Ness C, Ageorges F, Trost D, Green A, Goudie D, Jewell R, Kraatari-Tiri M, Piard J, Coubes C, Lam W, Lynch SA, Groeschel S, Ramond F, Fluss J, Fagerberg C, Brasch Andersen C, Varvagiannis K, Kleefstra T, Gérard B, Fradin M, Vitobello A, Tenconi R, Denommé-Pichon AS, Vincent-Devulder A, Haack T, Marsh JA, Laulund LW, Grimmel M, Riess A, de Boer E, Padilla-Lopez S, Bakhtiari S, Ostendorf A, Zweier C, Smol T, Willems M, Faivre L, Scala M, Striano P, Bagnasco I, Koboldt D, Iascone M, Suerink M, Kruer MC, Levy J, Verloes A, Abbott CM, Ruaud L. Expansion of the neurodevelopmental phenotype of individuals with EEF1A2 variants and genotype-phenotype study. Eur J Hum Genet 2024; 32:1144-1149. [PMID: 38355961 PMCID: PMC11369172 DOI: 10.1038/s41431-024-01560-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 01/10/2024] [Accepted: 02/01/2024] [Indexed: 02/16/2024] Open
Abstract
Translation elongation factor eEF1A2 constitutes the alpha subunit of the elongation factor-1 complex, responsible for the enzymatic binding of aminoacyl-tRNA to the ribosome. Since 2012, 21 pathogenic missense variants affecting EEF1A2 have been described in 42 individuals with a severe neurodevelopmental phenotype including epileptic encephalopathy and moderate to profound intellectual disability (ID), with neurological regression in some patients. Through international collaborative call, we collected 26 patients with EEF1A2 variants and compared them to the literature. Our cohort shows a significantly milder phenotype. 83% of the patients are walking (vs. 29% in the literature), and 84% of the patients have language skills (vs. 15%). Three of our patients do not have ID. Epilepsy is present in 63% (vs. 93%). Neurological examination shows a less severe phenotype with significantly less hypotonia (58% vs. 96%), and pyramidal signs (24% vs. 68%). Cognitive regression was noted in 4% (vs. 56% in the literature). Among individuals over 10 years, 56% disclosed neurocognitive regression, with a mean age of onset at 2 years. We describe 8 novel missense variants of EEF1A2. Modeling of the different amino-acid sites shows that the variants associated with a severe phenotype, and the majority of those associated with a moderate phenotype, cluster within the switch II region of the protein and thus may affect GTP exchange. In contrast, variants associated with milder phenotypes may impact secondary functions such as actin binding. We report the largest cohort of individuals with EEF1A2 variants thus far, allowing us to expand the phenotype spectrum and reveal genotype-phenotype correlations.
Collapse
Affiliation(s)
- Alix Paulet
- Département de Génétique, Hôpital Robert-Debré, Paris, France.
| | - Cavan Bennett-Ness
- Centre for Genomic and Experimental Medicine and Simons Initiative for the Developing Brain, Institute of Genetics and Cancer, Edinburgh, Scotland, UK
| | | | | | - Andrew Green
- UCD School of Medicine and Medical Science Consultant in Clinical Genetics, Dublin, Ireland
| | - David Goudie
- Regional Genetics Service, NHS Tayside, Dundee, Scotland, UK
| | - Rosalyn Jewell
- Yorkshire Regional Genetics Service, Leeds Teaching Hospitals NHS Trust, Leeds, England, UK
| | - Minna Kraatari-Tiri
- Department of Clinical Genetics, Research unit of Clinical Medicine, Medical Research Center Oulu, Oulu, Finland
- Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Juliette Piard
- Centre de Génétique Humaine, CHU Besançon, Besançon, France
| | - Christine Coubes
- Service de Génétique Médicale, CHU de Montpellier, Montpellier, France
| | - Wayne Lam
- South-East of Scotland Clinical Genetics Service, General Hospital, Edinburgh, Scotland, UK
| | - Sally Ann Lynch
- Clinical Genetics, Children's Health Ireland, Dublin, Ireland
| | - Samuel Groeschel
- Department of Neuropediatrics, University Children's Hospital, Tuebingen, Germany
| | - Francis Ramond
- Service de Génétique, CHU Saint-Etienne - Hôpital Nord, Saint-Etienne, France
| | - Joël Fluss
- University Hospitals of Geneva, Geneva, Switzerland
| | - Christina Fagerberg
- Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | | | | | - Tjitske Kleefstra
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Center of Excellence for Neuropsychiatry, Vincent van Gogh Institute for Psychiatry, Venray, The Netherlands
| | | | - Mélanie Fradin
- Service de Génétique Médicale, Hôpital Sud, CHU de Rennes, Rennes, France
| | - Antonio Vitobello
- UMR-Inserm, Génétique des Anomalies du développement, Université de Bourgogne Franche-Comté, Dijon, France
| | - Romano Tenconi
- Servizio di Genetica Medica, Dipartimento di Pediatra, Padova, Italia
| | - Anne-Sophie Denommé-Pichon
- Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU-TRANSLAD, CHU Dijon Bourgogne, Dijon, France
- UMR1231 GAD, Inserm - Université Bourgogne-Franche Comté, Dijon, France
| | | | - Tobias Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Joseph A Marsh
- MRC Human Genetics Unit, Western General Hospital, University of Edinburgh, Edinburgh, Scotland, UK
| | | | - Mona Grimmel
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Angelika Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Elke de Boer
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Sergio Padilla-Lopez
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Somayeh Bakhtiari
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Adam Ostendorf
- Steve and Cindy Rasmussen Institute for Genomic Medicine Nationwide Children's Hospital, Colombus, Ohio, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Colombus, USA
| | - Christiane Zweier
- Department of Human Genetics, Inselspital Bern, University of Bern, 3010, Bern, Switzerland
- Institute of Human Genetics, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Thomas Smol
- University of Lille, EA7364-RADEME, Medical Genetics Institute, Chu Lille, Lille, France
| | - Marjolaine Willems
- Medical Genetic Department for Rare Diseases and Personalized Medicine, Reference Center AD SOOR, AnDDI-RARE, Groupe DI, Inserm U1298, INM, Montpellier University, Montpellier, France
- Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Laurence Faivre
- UMR1231 GAD, Inserm, Université de Bourgogne-Franche Comté, Dijon, France
- Centre de Référence Maladies Rares « Anomalies du développement et syndromes malformatifs », Centre de Génétique, FHU-TRANSLAD et Institut GIMI, CHU dijon, Bourgogne, Dijon, France
| | - Marcello Scala
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Irene Bagnasco
- Division of Child Neuropsychiatry, Martini Hospital, Torino, Italy
| | - Daniel Koboldt
- Steve and Cindy Rasmussen Institute for Genomic Medicine Nationwide Children's Hospital, Colombus, Ohio, USA
| | | | - Manon Suerink
- Department of Clinical Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Michael C Kruer
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Jonathan Levy
- Département de Génétique, Hôpital Robert-Debré, Paris, France
| | - Alain Verloes
- Département de Génétique, Hôpital Robert-Debré, Paris, France
| | - Catherine M Abbott
- Centre for Genomic and Experimental Medicine and Simons Initiative for the Developing Brain, Institute of Genetics and Cancer, Edinburgh, Scotland, UK
| | - Lyse Ruaud
- Département de Génétique, Hôpital Robert-Debré, Paris, France
| |
Collapse
|
4
|
Feng BJ, Boyle JL, Wei J, Carroll C, Snyder NA, Shi Z, Zheng SL, Xu J, Isaacs WB, Cooney KA. Using gene and gene-set association tests to identify lethal prostate cancer genes. Prostate Cancer Prostatic Dis 2024:10.1038/s41391-024-00879-z. [PMID: 39154125 DOI: 10.1038/s41391-024-00879-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Recent advances in the detection and treatment of prostate cancer (PCa) have reduced morbidity and mortality from this common cancer. Despite these improvements, PCa remains the second leading cause of cancer death in men in the United States. Further understanding of the genetic underpinnings of lethal PCa is required to drive risk detection and prevention and ultimately reduce mortality. We therefore set out to identify germline variants associated with cases of lethal prostate cancer (LPCa). METHODS Using a two-stage study design, we compared whole-exome sequencing data of 550 LPCa patients to 488 healthy male controls. Men were classified as having LPCa based on medical record review. Candidate genes were identified using gene- and gene-set-based rare truncating variant association tests. Case-control burden testing through Firth's penalized logistic regression and case-gnomAD allelic burden testing through a one-sided mid-p Fisher's exact test were conducted. Each gene's p-values from these tests were combined into an omnibus p-value for candidate gene selection. In the subsequent validation stage, genes were assessed using the UK Biobank and Firth's penalized logistic regression for each ancestry, combined through meta-analysis. RESULTS Gene-based rare variant association tests identified 12 genes nominally associated with LPCa. Rare-variant association tests identified a gene set with a significantly higher burden of truncating germline mutations in LPCa patients than controls. Combining gene- and gene-set test results, four nominally significant genes (PPP1R3A, TG, PPFIBP2, and BTN3A3) were selected as candidates. Subsequent validation using the UK Biobank found that PPP1R3A was significantly associated with LPCa risk (odds ratio 2.34, CI 1.20-4.59). Specifically, pGln662ArgfsTer7 was identified as the predominant variant in PPP1R3A among LPCa patients in our dataset. CONCLUSIONS Both individual gene and gene-set analyses identified candidates associated with LPCa. The novel association of PPP1R3A and LPCa risk merits further investigation.
Collapse
Affiliation(s)
- Bing-Jian Feng
- Department of Dermatology, University of Utah, Salt Lake City, UT, USA
| | - Julie L Boyle
- Department of Family and Preventative Medicine, University of Utah, Salt Lake City, UT, USA
| | - Jun Wei
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois, USA
| | - Courtney Carroll
- Department of Family and Preventative Medicine, University of Utah, Salt Lake City, UT, USA
| | - Nathan A Snyder
- Department of Medicine and the Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA
| | - Zhuqing Shi
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois, USA
| | - S Lilly Zheng
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois, USA
| | - Jianfeng Xu
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois, USA
| | - William B Isaacs
- Department of Urology and the James Buchanan Brady Urologic Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kathleen A Cooney
- Department of Medicine and the Duke Cancer Institute, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
5
|
Poon JYY, Mok MTS, Ho SKL, Cheng SSW, Lo IFM, Luk HM. A de novo pathogenic variant in neuronal differentiation factor 2 in a Chinese patient with early infantile epileptic encephalopathy. Clin Dysmorphol 2024; 33:128-133. [PMID: 38818821 DOI: 10.1097/mcd.0000000000000498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
|
6
|
Rodrigues Alves Barbosa V, Maroilley T, Diao C, Colvin-James L, Perrier R, Tarailo-Graovac M. Single variant, yet "double trouble": TSC and KBG syndrome because of a large de novo inversion. Life Sci Alliance 2024; 7:e202302115. [PMID: 38253421 PMCID: PMC10803213 DOI: 10.26508/lsa.202302115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Despite the advances in high-throughput sequencing, many rare disease patients remain undiagnosed. In particular, the patients with well-defined clinical phenotypes and established clinical diagnosis, yet missing or partial genetic diagnosis, may hold a clue to more complex genetic mechanisms of a disease that could be missed by available clinical tests. Here, we report a patient with a clinical diagnosis of Tuberous sclerosis, combined with unusual secondary features, but negative clinical tests including TSC1 and TSC2 Short-read whole-genome sequencing combined with advanced bioinformatics analyses were successful in uncovering a de novo pericentric 87-Mb inversion with breakpoints in TSC2 and ANKRD11, which explains the TSC clinical diagnosis, and confirms a second underlying monogenic disorder, KBG syndrome. Our findings illustrate how complex variants, such as large inversions, may be missed by clinical tests and further highlight the importance of well-defined clinical diagnoses in uncovering complex molecular mechanisms of a disease, such as complex variants and "double trouble" effects.
Collapse
Affiliation(s)
- Victoria Rodrigues Alves Barbosa
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Tatiana Maroilley
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Catherine Diao
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Leslie Colvin-James
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Renee Perrier
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Maja Tarailo-Graovac
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| |
Collapse
|
7
|
Bagger FO, Borgwardt L, Jespersen AS, Hansen AR, Bertelsen B, Kodama M, Nielsen FC. Whole genome sequencing in clinical practice. BMC Med Genomics 2024; 17:39. [PMID: 38287327 PMCID: PMC10823711 DOI: 10.1186/s12920-024-01795-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/01/2024] [Indexed: 01/31/2024] Open
Abstract
Whole genome sequencing (WGS) is becoming the preferred method for molecular genetic diagnosis of rare and unknown diseases and for identification of actionable cancer drivers. Compared to other molecular genetic methods, WGS captures most genomic variation and eliminates the need for sequential genetic testing. Whereas, the laboratory requirements are similar to conventional molecular genetics, the amount of data is large and WGS requires a comprehensive computational and storage infrastructure in order to facilitate data processing within a clinically relevant timeframe. The output of a single WGS analyses is roughly 5 MIO variants and data interpretation involves specialized staff collaborating with the clinical specialists in order to provide standard of care reports. Although the field is continuously refining the standards for variant classification, there are still unresolved issues associated with the clinical application. The review provides an overview of WGS in clinical practice - describing the technology and current applications as well as challenges connected with data processing, interpretation and clinical reporting.
Collapse
Affiliation(s)
- Frederik Otzen Bagger
- Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Line Borgwardt
- Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Sand Jespersen
- Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Anna Reimer Hansen
- Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Bertelsen
- Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Miyako Kodama
- Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Finn Cilius Nielsen
- Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
8
|
Vetri L, Calì F, Saccone S, Vinci M, Chiavetta NV, Carotenuto M, Roccella M, Costanza C, Elia M. Whole Exome Sequencing as a First-Line Molecular Genetic Test in Developmental and Epileptic Encephalopathies. Int J Mol Sci 2024; 25:1146. [PMID: 38256219 PMCID: PMC10816140 DOI: 10.3390/ijms25021146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/11/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
Developmental and epileptic encephalopathies (DEE) are severe neurodevelopmental disorders characterized by recurrent, usually early-onset, epileptic seizures accompanied by developmental impairment often related to both underlying genetic etiology and abnormal epileptiform activity. Today, next-generation sequencing technologies (NGS) allow us to sequence large portions of DNA quickly and with low costs. The aim of this study is to evaluate the use of whole-exome sequencing (WES) as a first-line molecular genetic test in a sample of subjects with DEEs characterized by early-onset drug-resistant epilepsies, associated with global developmental delay and/or intellectual disability (ID). We performed 82 WESs, identifying 35 pathogenic variants with a detection rate of 43%. The identified variants were highlighted on 29 different genes including, 3 new candidate genes (KCNC2, STXBP6, DHRS9) for DEEs never identified before. In total, 23 out of 35 (66%) de novo variants were identified. The most frequently identified type of inheritance was autosomal dominant de novo (60%) followed by autosomal recessive in homozygosity (17%) and heterozygosity (11%), autosomal dominant inherited from parental mosaicism (6%) and X-linked dominant de novo (6%). The most frequent mutations identified were missense (75%) followed by frameshift deletions (16%), frameshift duplications (5%), and splicing mutations (3%). Considering the results obtained in the present study we support the use of WES as a form of first-line molecular genetic testing in DEEs.
Collapse
Affiliation(s)
- Luigi Vetri
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (L.V.); (M.V.); (N.V.C.); (M.E.)
| | - Francesco Calì
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (L.V.); (M.V.); (N.V.C.); (M.E.)
| | - Salvatore Saccone
- Department Biological, Geological and Environmental Sciences, University of Catania, Via Androne 81, 95124 Catania, Italy
| | - Mirella Vinci
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (L.V.); (M.V.); (N.V.C.); (M.E.)
| | | | - Marco Carotenuto
- Clinic of Child and Adolescent Neuropsychiatry, Department of Mental Health, Physical and Preventive Medicine, University of Campania “Luigi Vanvitelli”, 80131 Naples, Italy;
| | - Michele Roccella
- Department of Psychology, Educational Science and Human Movement, University of Palermo, 90141 Palermo, Italy; (M.R.); (C.C.)
| | - Carola Costanza
- Department of Psychology, Educational Science and Human Movement, University of Palermo, 90141 Palermo, Italy; (M.R.); (C.C.)
| | - Maurizio Elia
- Oasi Research Institute-IRCCS, 94018 Troina, Italy; (L.V.); (M.V.); (N.V.C.); (M.E.)
| |
Collapse
|
9
|
Zeibich R, Kwan P, J. O’Brien T, Perucca P, Ge Z, Anderson A. Applications for Deep Learning in Epilepsy Genetic Research. Int J Mol Sci 2023; 24:14645. [PMID: 37834093 PMCID: PMC10572791 DOI: 10.3390/ijms241914645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/11/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Epilepsy is a group of brain disorders characterised by an enduring predisposition to generate unprovoked seizures. Fuelled by advances in sequencing technologies and computational approaches, more than 900 genes have now been implicated in epilepsy. The development and optimisation of tools and methods for analysing the vast quantity of genomic data is a rapidly evolving area of research. Deep learning (DL) is a subset of machine learning (ML) that brings opportunity for novel investigative strategies that can be harnessed to gain new insights into the genomic risk of people with epilepsy. DL is being harnessed to address limitations in accuracy of long-read sequencing technologies, which improve on short-read methods. Tools that predict the functional consequence of genetic variation can represent breaking ground in addressing critical knowledge gaps, while methods that integrate independent but complimentary data enhance the predictive power of genetic data. We provide an overview of these DL tools and discuss how they may be applied to the analysis of genetic data for epilepsy research.
Collapse
Affiliation(s)
- Robert Zeibich
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3800, Australia; (R.Z.); (P.K.); (T.J.O.); (P.P.)
| | - Patrick Kwan
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3800, Australia; (R.Z.); (P.K.); (T.J.O.); (P.P.)
- Department of Neurology, Alfred Health, Melbourne, VIC 3004, Australia
- Department of Neurology, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3052, Australia
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Terence J. O’Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3800, Australia; (R.Z.); (P.K.); (T.J.O.); (P.P.)
- Department of Neurology, Alfred Health, Melbourne, VIC 3004, Australia
- Department of Neurology, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3052, Australia
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Piero Perucca
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3800, Australia; (R.Z.); (P.K.); (T.J.O.); (P.P.)
- Department of Neurology, Alfred Health, Melbourne, VIC 3004, Australia
- Department of Neurology, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3052, Australia
- Epilepsy Research Centre, Department of Medicine, Austin Health, The University of Melbourne, Melbourne, VIC 3084, Australia
- Bladin-Berkovic Comprehensive Epilepsy Program, Department of Neurology, Austin Health, The University of Melbourne, Melbourne, VIC 3084, Australia
| | - Zongyuan Ge
- Faculty of Engineering, Monash University, Melbourne, VIC 3800, Australia;
- Monash-Airdoc Research, Monash University, Melbourne, VIC 3800, Australia
| | - Alison Anderson
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC 3800, Australia; (R.Z.); (P.K.); (T.J.O.); (P.P.)
- Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3052, Australia
| |
Collapse
|
10
|
Cheng H, Miao P, Wang Y, Guo Y, Gao L, Lou Y, Yang F, Liang M, Feng J. A Heterozygous Variant of FGF13 Caused X-Linked Developmental and Epileptic Encephalopathy 90 in a Chinese Family. Cytogenet Genome Res 2023; 163:36-41. [PMID: 37536293 DOI: 10.1159/000531932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 04/25/2023] [Indexed: 08/05/2023] Open
Abstract
Developmental and epileptic encephalopathy (DEE) refers to a group of severe epilepsy encephalopathy and development disorders, and its typical clinical features include seizures, drug resistance, and developmental delay or regression. To date, limited studies have reported DEEs driven by FGF13. Here, we reported a girl with developmental and epileptic encephalopathy 90 caused by variant of FGF13. Her electroencephalogram (EEG) showed discontinuous hypsarrhythmia, and a heterozygous nonsynonymous variant in FGF13 [NM_004114.4: c.5C>G, p.(Ala2Gly)] was identified from the proband. The variant was not reported in public databases such as gnomAD and Exome Aggregation Consortium (ExAC), and was predicted to be damaging to proteins and classified as likely pathogenic according to the ACMG guidelines. The seizure was finally controlled by a combination of ACTH + zonisamide (10 mg/kg.d) + levetiracetam (52 mg/kg.d) + clonazepam (0.7 mg/kg.d).
Collapse
Affiliation(s)
- Haiying Cheng
- Department of Paediatrics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Pu Miao
- Department of Paediatrics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ye Wang
- Department of Paediatrics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yufan Guo
- Department of Paediatrics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Liuyan Gao
- Department of Paediatrics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuting Lou
- Department of Paediatrics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | | | | | - Jianhua Feng
- Department of Paediatrics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
Bayanova M, Bolatov AK, Bazenova A, Nazarova L, Nauryzbayeva A, Tanko NM, Rakhimova S, Satvaldina N, Samatkyzy D, Kozhamkulov U, Kairov U, Akilzhanova A, Sarbassov D. Whole-Genome Sequencing Among Kazakhstani Children with Early-Onset Epilepsy Revealed New Gene Variants and Phenotypic Variability. Mol Neurobiol 2023; 60:4324-4335. [PMID: 37095367 PMCID: PMC10293429 DOI: 10.1007/s12035-023-03346-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/12/2023] [Indexed: 04/26/2023]
Abstract
In Kazakhstan, there is insufficient data on genetic epilepsy, which has its own clinical and management implications. Thus, this study aimed to use whole genome sequencing to identify and evaluate genetic variants and genetic structure of early onset epilepsy in the Kazakhstani pediatric population. In this study, for the first time in Kazakhstan, whole genome sequencing was carried out among epilepsy diagnosed children. The study involved 20 pediatric patients with early onset epilepsy and no established cause of the disease during the July-December, 2021. The average age at enrolment was 34.5 months, with a mean age at seizure onset of 6 months. Six patients (30%) were male, and 7 were familial cases. We identified pathogenic and likely pathogenic variants in 14 (70%) cases, among them, 6 novel disease gene variants (KCNQ2, CASK, WWOX, MT-CO3, GRIN2D, and SLC12A5). Other genes associated with the disease were SCN1A (x2), SLC2A1, ARX, CACNA1B, PCDH19, KCNT1, and CHRNA2. Identification of the genetic causes in 70% of cases confirms the general structure of the etiology of early onset epilepsy and the necessity of using NGS in diagnostics. Moreover, the study describes new genotype-phenotypic correlations in genetic epilepsy. Despite certain limitations of the study, it can be concluded that the genetic etiology of pediatric epilepsy in Kazakhstan is very broad and requires further research.
Collapse
Affiliation(s)
- Mirgul Bayanova
- University Medical Center CF, Kerey-Zhanibek Handar St. 5/1, Z05P3Y4, Astana, Kazakhstan
| | - Aidos K Bolatov
- University Medical Center CF, Kerey-Zhanibek Handar St. 5/1, Z05P3Y4, Astana, Kazakhstan.
- Astana Medical University, Beybitshilik St. 49A, Z10K9D9, Astana, Kazakhstan.
| | - Assiya Bazenova
- University Medical Center CF, Kerey-Zhanibek Handar St. 5/1, Z05P3Y4, Astana, Kazakhstan
| | - Lyazzat Nazarova
- University Medical Center CF, Kerey-Zhanibek Handar St. 5/1, Z05P3Y4, Astana, Kazakhstan
| | - Alissa Nauryzbayeva
- University Medical Center CF, Kerey-Zhanibek Handar St. 5/1, Z05P3Y4, Astana, Kazakhstan
| | - Naanlep Matthew Tanko
- University Medical Center CF, Kerey-Zhanibek Handar St. 5/1, Z05P3Y4, Astana, Kazakhstan
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana, Kazakhstan, 010000
| | - Saule Rakhimova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Kabanbay batyr Ave 53, Astana, Kazakhstan, 010000
| | - Nazerke Satvaldina
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Kabanbay batyr Ave 53, Astana, Kazakhstan, 010000
| | - Diana Samatkyzy
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Kabanbay batyr Ave 53, Astana, Kazakhstan, 010000
| | - Ulan Kozhamkulov
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Kabanbay batyr Ave 53, Astana, Kazakhstan, 010000
| | - Ulykbek Kairov
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Kabanbay batyr Ave 53, Astana, Kazakhstan, 010000
| | - Ainur Akilzhanova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Kabanbay batyr Ave 53, Astana, Kazakhstan, 010000
| | - Dos Sarbassov
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Kabanbay batyr Ave 53, Astana, Kazakhstan, 010000
- School of Sciences and Humanities, Nazarbayev University, Kabanbay batyr Ave 53, Astana, Kazakhstan, 010000
| |
Collapse
|
12
|
Boonsimma P, Ittiwut C, Kamolvisit W, Ittiwut R, Chetruengchai W, Phokaew C, Srichonthong C, Poonmaksatit S, Desudchit T, Suphapeetiporn K, Shotelersuk V. Exome sequencing as first-tier genetic testing in infantile-onset pharmacoresistant epilepsy: diagnostic yield and treatment impact. Eur J Hum Genet 2023; 31:179-187. [PMID: 36198807 PMCID: PMC9905506 DOI: 10.1038/s41431-022-01202-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/06/2022] [Accepted: 09/20/2022] [Indexed: 11/09/2022] Open
Abstract
Pharmacoresistant epilepsy presenting during infancy poses both diagnostic and therapeutic challenges. We aim to identify diagnostic yield and treatment implications of exome sequencing (ES) as first-tier genetic testing for infantile-onset pharmacoresistant epilepsy. From June 2016 to December 2020, we enrolled patients with infantile-onset (age ≤ 12 months) pharmacoresistant epilepsy. 103 unrelated patients underwent ES. Clinical characteristics and changes in management due to the molecular diagnosis were studied. 42% (43/103) had epilepsy onset within the first month of life. After ES as first-tier genetic testing, 62% (64/103) of the cases were solved. Two partially solved cases (2%; 2/103) with heterozygous variants identified in ALDH7A1 known to cause autosomal recessive pyridoxine dependent epilepsy underwent genome sequencing (GS). Two novel large deletions in ALDH7A1 were detected in both cases. ES identified 66 pathogenic and likely pathogenic single nucleotide variants (SNVs) in 27 genes. 19 variants have not been previously reported. GS identified two additional copy number variations (CNVs). The most common disease-causing genes are SCN1A (13%; 13/103) and KCNQ2 (8%; 8/103). Eight percent (8/103) of the patients had treatable disorders and specific treatments were provided resulting in seizure freedom. Pyridoxine dependent epilepsy was the most common treatable epilepsy (6%; 6/103). Furthermore, 35% (36/103) had genetic defects which guided gene-specific treatments. Altogether, the diagnostic yield is 64%. Molecular diagnoses change management in 43% of the cases. This study substantiates the use of next generation sequencing (NGS) as the first-tier genetic investigation in infantile-onset pharmacoresistant epilepsy.
Collapse
Affiliation(s)
- Ponghatai Boonsimma
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Chupong Ittiwut
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Wuttichart Kamolvisit
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Rungnapa Ittiwut
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Wanna Chetruengchai
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Chureerat Phokaew
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Chalurmpon Srichonthong
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Sathida Poonmaksatit
- Division of Neurology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Tayard Desudchit
- Division of Neurology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kanya Suphapeetiporn
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, 10330, Thailand.
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Medical Genomics Cluster, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok, 10330, Thailand
| |
Collapse
|
13
|
Maroilley T, Flibotte S, Jean F, Rodrigues Alves Barbosa V, Galbraith A, Chida AR, Cotra F, Li X, Oncea L, Edgley M, Moerman D, Tarailo-Graovac M. Genome sequencing of C. elegans balancer strains reveals previously unappreciated complex genomic rearrangements. Genome Res 2023; 33:154-167. [PMID: 36617680 PMCID: PMC9977149 DOI: 10.1101/gr.276988.122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Genetic balancers in Caenorhabditis elegans are complex variants that allow lethal or sterile mutations to be stably maintained in a heterozygous state by suppressing crossover events. Balancers constitute an invaluable tool in the C. elegans scientific community and have been widely used for decades. The first/traditional balancers were created by applying X-rays, UV, or gamma radiation on C. elegans strains, generating random genomic rearrangements. Their structures have been mostly explored with low-resolution genetic techniques (e.g., fluorescence in situ hybridization or PCR), before genomic mapping and molecular characterization through sequencing became feasible. As a result, the precise nature of most chromosomal rearrangements remains unknown, whereas, more recently, balancers have been engineered using the CRISPR-Cas9 technique for which the structure of the chromosomal rearrangement has been predesigned. Using short-read whole-genome sequencing (srWGS) and tailored bioinformatic analyses, we previously interpreted the structure of four chromosomal balancers randomly created by mutagenesis processes. Here, we have extended our analyses to five CRISPR-Cas9 balancers and 17 additional traditional balancing rearrangements. We detected and experimentally validated their breakpoints and have interpreted the balancer structures. Many of the balancers were found to be more intricate than previously described, being composed of complex genomic rearrangements (CGRs) such as chromoanagenesis-like events. Furthermore, srWGS revealed additional structural variants and CGRs not known to be part of the balancer genomes. Altogether, our study provides a comprehensive resource of complex genomic variations in C. elegans and highlights the power of srWGS to study the complexity of genomes by applying tailored analyses.
Collapse
Affiliation(s)
- Tatiana Maroilley
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Alberta T2N 4N1, Canada;,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Stephane Flibotte
- UBC/LSI Bioinformatics Facility, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Francesca Jean
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Alberta T2N 4N1, Canada;,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Victoria Rodrigues Alves Barbosa
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Alberta T2N 4N1, Canada;,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Andrew Galbraith
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Alberta T2N 4N1, Canada;,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Afiya Razia Chida
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Alberta T2N 4N1, Canada;,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Filip Cotra
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Alberta T2N 4N1, Canada;,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Xiao Li
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Alberta T2N 4N1, Canada;,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Larisa Oncea
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Alberta T2N 4N1, Canada;,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Mark Edgley
- Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Don Moerman
- Department of Zoology, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Maja Tarailo-Graovac
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Alberta T2N 4N1, Canada;,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
14
|
Lee S, Jang S, Kim JI, Chae JH, Kim KJ, Lim BC. Whole genomic approach in mutation discovery of infantile spasms patients. Front Neurol 2022; 13:944905. [PMID: 35937050 PMCID: PMC9354570 DOI: 10.3389/fneur.2022.944905] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/27/2022] [Indexed: 11/19/2022] Open
Abstract
Infantile spasms (IS) are a clinically and genetically heterogeneous group of epilepsy disorders in early infancy. The genetic backgrounds of IS have been gradually unraveled along with the increased application of next-generation sequencing (NGS). However, to date, only selected genomic regions have been sequenced using a targeted approach in most cases of IS, and the genetic etiologies of the majority of patients remain unknown. We conducted a proof-of-concept study using whole-genome sequencing (WGS) for the genetic diagnosis of IS. We included 16 patients with IS for this study, and WGS was applied as a first-tier test for genetic diagnosis. In total, we sequenced the whole genomes of 28 participants, including the genomes of six patients, which were sequenced with those of their parents. Among variants identified, we focused on those located in epilepsy or seizure-associated genes. We used two different methods to call relevant large deletions from WGS results. We found pathogenic or likely pathogenic variants in four patients (25.0%); a de novo variant in HDAC4, compound heterozygous variants in GRM7, and heterozygous variants in CACNA1E and KMT2E. We also selected two more candidate variants in SOX5 and SHROOM4 intronic regions. Although there are currently several difficulties in applying WGS for genetic diagnosis, especially in clinical interpretation of non-coding variants, we believe that developing sequencing technologies would overcome these hurdles in the near future. Considering the vast genetic heterogeneity and the substantial portion of patients with unknown etiologies, further studies using whole genomic approaches are necessary for patients with IS.
Collapse
Affiliation(s)
- Seungbok Lee
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, South Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children's Hospital, Seoul, South Korea
| | - Sesong Jang
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children's Hospital, Seoul, South Korea
| | - Jong-Il Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
- Medical Research Center, Genomic Medicine Institute (GMI), Seoul National University, Seoul, South Korea
| | - Jong Hee Chae
- Department of Genomic Medicine, Seoul National University Hospital, Seoul, South Korea
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children's Hospital, Seoul, South Korea
| | - Ki Joong Kim
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children's Hospital, Seoul, South Korea
| | - Byung Chan Lim
- Department of Pediatrics, Seoul National University College of Medicine, Seoul National University Children's Hospital, Seoul, South Korea
| |
Collapse
|
15
|
Kalra V, Viswanathan V, Shah H. A Review of the Prevalence, Etiology, Diagnosis, and Management of Pediatric Epilepsies in India. JOURNAL OF PEDIATRIC NEUROLOGY 2022; 20:153-163. [DOI: 10.1055/s-0042-1742689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractPediatric seizures are one of the most common neurological manifestations seen in pediatrics. Unravelling the etiology, timely and appropriate investigations followed by suitable therapies are essential for improving quality of life. During the pandemic, focused group discussions were conducted among 50 pediatric neurologists across five cities in India to gather insights on treatment practices in pediatric epilepsy and to optimize therapeutic strategies and alternative approaches for rational use of antiepileptic medications. These discussions were mainly aimed at reviewing current literature on prevalence, etiology, diagnosis, and management of epilepsy in children and subsequently rationalizing diagnostic and treatment approaches in routine clinical practice. Epileptic encephalopathies comprise of childhood epilepsy with progressive cerebral dysfunction. Genomics plays a vital role in identifying the underlying genetic associations, empowering precision therapy. Currently, the ketogenic diet has become a well-recognized modality for reducing severity of seizures. To overcome the high incidence of adverse effects due to older antiepileptic drugs, newer drugs are being developed to improve ease of use, diminish drug interactions, decrease adverse effects, and identify drugs with unique mechanisms of action. Common lacunae in practice include information gaps, educating parents, or caregivers about rational drug use and ensuring compliance to antiepileptic medications. This article discussed the consensus clinical viewpoint of expert clinicians, as well as insights on optimized treatment of pediatric epilepsies in both infancy and childhood. It also discusses aspects, like reducing drug burden, emerging therapies in the identification of the genetic basis of epilepsies, and targeted therapy alternatives, for pediatric populations in the Indian scenario.
Collapse
Affiliation(s)
- Veena Kalra
- Department of Pediatric Neurology, Indraprastha Apollo Hospitals, New Delhi, India
| | | | - Harshuti Shah
- Department of Pediatric Neurology, Rajvee Child Neuro and Ortho-Spine Hospital, Ahmedabad, India
| |
Collapse
|
16
|
Searching thousands of genomes to classify somatic and novel structural variants using STIX. Nat Methods 2022; 19:445-448. [PMID: 35396485 PMCID: PMC9007735 DOI: 10.1038/s41592-022-01423-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 02/13/2022] [Indexed: 11/29/2022]
Abstract
Structural variants are associated with cancers and developmental disorders, but challenges with estimating population frequency remain a barrier to prioritizing mutations over inherited variants. In particular, variability in variant calling heuristics and filtering limits the use of current structural variant catalogs. We present STIX, a method that, instead of relying on variant calls, indexes and searches the raw alignments from thousands of samples to enable more comprehensive allele frequency estimation. This work describes a strategy for estimating the population frequency of structural variations by searching the raw alignments of large population sequencing samples using the STIX framework.
Collapse
|
17
|
Austin-Tse CA, Jobanputra V, Perry DL, Bick D, Taft RJ, Venner E, Gibbs RA, Young T, Barnett S, Belmont JW, Boczek N, Chowdhury S, Ellsworth KA, Guha S, Kulkarni S, Marcou C, Meng L, Murdock DR, Rehman AU, Spiteri E, Thomas-Wilson A, Kearney HM, Rehm HL. Best practices for the interpretation and reporting of clinical whole genome sequencing. NPJ Genom Med 2022; 7:27. [PMID: 35395838 PMCID: PMC8993917 DOI: 10.1038/s41525-022-00295-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 02/17/2022] [Indexed: 01/19/2023] Open
Abstract
Whole genome sequencing (WGS) shows promise as a first-tier diagnostic test for patients with rare genetic disorders. However, standards addressing the definition and deployment practice of a best-in-class test are lacking. To address these gaps, the Medical Genome Initiative, a consortium of leading health care and research organizations in the US and Canada, was formed to expand access to high quality clinical WGS by convening experts and publishing best practices. Here, we present best practice recommendations for the interpretation and reporting of clinical diagnostic WGS, including discussion of challenges and emerging approaches that will be critical to harness the full potential of this comprehensive test.
Collapse
Affiliation(s)
- Christina A Austin-Tse
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Laboratory for Molecular Medicine, Mass General Brigham Personalized Medicine, Cambridge, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Vaidehi Jobanputra
- Molecular Diagnostics Laboratory, New York Genome Center, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | | | - David Bick
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | | | - Eric Venner
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Richard A Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Ted Young
- Genome Diagnostics, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON, Canada
| | - Sarah Barnett
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Nicole Boczek
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Center for Individualized Medicine, College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Shimul Chowdhury
- Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | | | - Saurav Guha
- Molecular Diagnostics Laboratory, New York Genome Center, New York, NY, USA
| | - Shashikant Kulkarni
- Baylor Genetics and Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Cherisse Marcou
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Linyan Meng
- Baylor Genetics and Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - David R Murdock
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Atteeq U Rehman
- Molecular Diagnostics Laboratory, New York Genome Center, New York, NY, USA
| | - Elizabeth Spiteri
- Department of Pathology, Stanford Medicine, Stanford University, Stanford, CA, USA
| | | | - Hutton M Kearney
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Heidi L Rehm
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
18
|
Hieu NLT, Thu NTM, Ngan LTA, Van LTK, Huy DP, Linh PTT, Mai NTQ, Hien HTD, Hang DTT. Genetic analysis using targeted exome sequencing of 53 Vietnamese children with developmental and epileptic encephalopathies. Am J Med Genet A 2022; 188:2048-2060. [PMID: 35365919 DOI: 10.1002/ajmg.a.62741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 01/14/2022] [Accepted: 03/13/2022] [Indexed: 11/07/2022]
Abstract
Developmental and epileptic encephalopathies (DEE) refers to a group of rare and severe neurodevelopmental disorders where genetic etiologies can play a major role. This study aimed to elucidate the genetic etiologies of a cohort of 53 Vietnamese patients with DEE. All patients were classified into known electroclinical syndromes where possible. Exome sequencing (ES) followed by a targeted analysis on 294 DEE-related genes was then performed. Patients with identified causative variants were followed for 6 months to determine the impact of genetic testing on their treatment. The diagnostic yield was 38.0% (20/53), which was significantly higher in the earlier onset group (<12 months) than in the later onset group (≥12 months). The 19 identified variants belonged to 11 genes with various cellular functions. Genes encoding ion channels especially sodium voltage-gated channel were the most frequently involved. Most variants were missense variants and located in key protein functional domains. Four variants were novel and four had been reported previously but in different phenotypes. Within 6 months of further follow-up, treatment changes were applied for six patients based on the identified disease-causing variants, with five patients showing a positive impact. This is the first study in Vietnam to analyze the genetics of DEE. This study confirms the strong involvement of genetic etiologies in DEE, especially early onset DEE. The study also contributes to clarify the genotype-phenotype correlations of DEE and highlights the efficacy of targeted ES in the diagnosis and treatment of DEE.
Collapse
Affiliation(s)
- Nguyen Le Trung Hieu
- Neurology Department, Children Hospital 2, Ho Chi Minh City, Vietnam.,University of Medicine and Pharmacy, Ho Chi Minh City, Vietnam
| | | | - Le Tran Anh Ngan
- Neurology Department, Children Hospital 2, Ho Chi Minh City, Vietnam
| | - Le Thi Khanh Van
- Neurology Department, Children Hospital 2, Ho Chi Minh City, Vietnam
| | - Do Phuoc Huy
- Medical Genetics Institute, Ho Chi Minh City, Vietnam
| | - Pham Thi Truc Linh
- Functional Genomic Unit, DNA Medical Technology Company, Ho Chi Minh City, Vietnam
| | - Nguyen Thi Quynh Mai
- Research Center for Genetics and Reproductive Health, School of Medicine, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Huynh Thi Dieu Hien
- Research Center for Genetics and Reproductive Health, School of Medicine, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Do Thi Thu Hang
- Research Center for Genetics and Reproductive Health, School of Medicine, Vietnam National University, Ho Chi Minh City, Vietnam
| |
Collapse
|
19
|
Perry LD, Hogg SL, Bowdin S, Ambegaonkar G, Parker AP. Fifteen-minute consultation: The efficient investigation of infantile and childhood epileptic encephalopathies in the era of modern genomics. Arch Dis Child Educ Pract Ed 2022; 107:80-87. [PMID: 33414255 DOI: 10.1136/archdischild-2020-320606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/05/2020] [Accepted: 12/09/2020] [Indexed: 11/03/2022]
Abstract
The investigation of children presenting with infantile and childhood epileptic encephalopathies (ICEE) is challenging due to diverse aetiologies, overlapping phenotypes and the relatively low diagnostic yield of MRI, electroencephalography (EEG) and biochemical investigations. Careful history and thorough examination remain essential as these may identify an acquired cause or indicate more targeted investigation for a genetic disorder. Whole exome sequencing (WES) with analysis of a panel of candidate epilepsy genes has increased the diagnostic yield. Whole genome sequencing (WGS), particularly as a trio with both parents' DNA, is likely to supersede WES. Modern genomic investigation impacts on the timing and necessity of other testing. We propose a structured approach for children presenting with ICEE where there is diagnostic uncertainty, emphasising the importance of WGS or, if unavailable, WES early in the investigative process. We note the importance of expert review of all investigations, including radiology, neurophysiology and biochemistry, to confirm the technique used was appropriate as well as the results. It is essential to counsel families on the risks associated with the procedures, the yield of the procedures, findings that are difficult to interpret and implication of 'negative' results. Where children remain without a diagnosis despite comprehensive investigation, we note the importance of ongoing multidisciplinary care.
Collapse
Affiliation(s)
- Luke Daniel Perry
- Developmental Neurosciences, University College London, Great Ormond Street Institute of Child Health, London, UK
| | - Sarah Louise Hogg
- Biochemical Genetics Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Sarah Bowdin
- Department of Clinical Genetics, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Gautam Ambegaonkar
- Paediatric Neurology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Alasdair Pj Parker
- Paediatric Neurology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
20
|
Nicholas TJ, Al‐Sweel N, Farrell A, Mao R, Bayrak‐Toydemir P, Miller CE, Bentley D, Palmquist R, Moore B, Hernandez EJ, Cormier MJ, Fredrickson E, Noble K, Rynearson S, Holt C, Karren M, Bonkowsky JL, Tristani‐Firouzi M, Yandell M, Marth G, Quinlan AR, Brunelli L, Toydemir R, Shayota BJ, Carey JC, Boyden SE, Malone Jenkins S. Comprehensive variant calling from whole-genome sequencing identifies a complex inversion that disrupts ZFPM2 in familial congenital diaphragmatic hernia. Mol Genet Genomic Med 2022; 10:e1888. [PMID: 35119225 PMCID: PMC9000945 DOI: 10.1002/mgg3.1888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Genetic disorders contribute to significant morbidity and mortality in critically ill newborns. Despite advances in genome sequencing technologies, a majority of neonatal cases remain unsolved. Complex structural variants (SVs) often elude conventional genome sequencing variant calling pipelines and will explain a portion of these unsolved cases. METHODS As part of the Utah NeoSeq project, we used a research-based, rapid whole-genome sequencing (WGS) protocol to investigate the genomic etiology for a newborn with a left-sided congenital diaphragmatic hernia (CDH) and cardiac malformations, whose mother also had a history of CDH and atrial septal defect. RESULTS Using both a novel, alignment-free and traditional alignment-based variant callers, we identified a maternally inherited complex SV on chromosome 8, consisting of an inversion flanked by deletions. This complex inversion, further confirmed using orthogonal molecular techniques, disrupts the ZFPM2 gene, which is associated with both CDH and various congenital heart defects. CONCLUSIONS Our results demonstrate that complex structural events, which often are unidentifiable or not reported by clinically validated testing procedures, can be discovered and accurately characterized with conventional, short-read sequencing and underscore the utility of WGS as a first-line diagnostic tool.
Collapse
Affiliation(s)
- Thomas J. Nicholas
- Department of Human Genetics, Utah Center for Genetic DiscoveryUniversity of UtahSalt Lake CityUSA
| | - Najla Al‐Sweel
- ARUP LaboratoriesSalt Lake CityUSA
- Department of PathologyUniversity of UtahSalt Lake CityUSA
| | - Andrew Farrell
- Department of Human Genetics, Utah Center for Genetic DiscoveryUniversity of UtahSalt Lake CityUSA
| | - Rong Mao
- ARUP LaboratoriesSalt Lake CityUSA
- Department of PathologyUniversity of UtahSalt Lake CityUSA
| | - Pinar Bayrak‐Toydemir
- ARUP LaboratoriesSalt Lake CityUSA
- Department of PathologyUniversity of UtahSalt Lake CityUSA
| | | | - Dawn Bentley
- Division of Neonatology, Department of PediatricsUniversity of Utah School of MedicineSalt Lake CityUSA
| | - Rachel Palmquist
- Division of Pediatric Neurology, Department of PediatricsUniversity of Utah School of MedicineSalt Lake CityUSA
- Primary Children's Center for Personalized MedicineSalt Lake CityUSA
| | - Barry Moore
- Department of Human Genetics, Utah Center for Genetic DiscoveryUniversity of UtahSalt Lake CityUSA
| | - Edgar J. Hernandez
- Department of Human Genetics, Utah Center for Genetic DiscoveryUniversity of UtahSalt Lake CityUSA
| | - Michael J. Cormier
- Department of Human Genetics, Utah Center for Genetic DiscoveryUniversity of UtahSalt Lake CityUSA
| | | | | | - Shawn Rynearson
- Department of Human Genetics, Utah Center for Genetic DiscoveryUniversity of UtahSalt Lake CityUSA
| | - Carson Holt
- Department of Human Genetics, Utah Center for Genetic DiscoveryUniversity of UtahSalt Lake CityUSA
| | - Mary Anne Karren
- Department of Human Genetics, Utah Center for Genetic DiscoveryUniversity of UtahSalt Lake CityUSA
| | - Joshua L. Bonkowsky
- Division of Pediatric Neurology, Department of PediatricsUniversity of Utah School of MedicineSalt Lake CityUSA
- Primary Children's Center for Personalized MedicineSalt Lake CityUSA
| | - Martin Tristani‐Firouzi
- Division of Pediatric Cardiology, Department of PediatricsUniversity of Utah School of MedicineSalt Lake CityUSA
| | - Mark Yandell
- Department of Human Genetics, Utah Center for Genetic DiscoveryUniversity of UtahSalt Lake CityUSA
| | - Gabor Marth
- Department of Human Genetics, Utah Center for Genetic DiscoveryUniversity of UtahSalt Lake CityUSA
| | - Aaron R. Quinlan
- Department of Human Genetics, Utah Center for Genetic DiscoveryUniversity of UtahSalt Lake CityUSA
- Department of Biomedical InformaticsUniversity of UtahSalt Lake CityUSA
| | - Luca Brunelli
- Division of Neonatology, Department of PediatricsUniversity of Utah School of MedicineSalt Lake CityUSA
| | - Reha M. Toydemir
- ARUP LaboratoriesSalt Lake CityUSA
- Department of PathologyUniversity of UtahSalt Lake CityUSA
| | - Brian J. Shayota
- Division of Medical Genetics, Department of PediatricsUniversity of Utah School of MedicineSalt Lake CityUSA
| | - John C. Carey
- Division of Medical Genetics, Department of PediatricsUniversity of Utah School of MedicineSalt Lake CityUSA
| | - Steven E. Boyden
- Department of Human Genetics, Utah Center for Genetic DiscoveryUniversity of UtahSalt Lake CityUSA
| | - Sabrina Malone Jenkins
- Division of Neonatology, Department of PediatricsUniversity of Utah School of MedicineSalt Lake CityUSA
| |
Collapse
|
21
|
Piloting positive psychology resources for caregivers of a child with a genetic developmental and epileptic encephalopathy. Eur J Paediatr Neurol 2022; 37:129-138. [PMID: 35240556 DOI: 10.1016/j.ejpn.2022.01.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/24/2021] [Accepted: 01/31/2022] [Indexed: 11/22/2022]
Abstract
UNLABELLED Developmental and epileptic encephalopathies (DEEs) are chronic and life-threatening conditions, frequently with a genetic basis and infantile-onset. Caregivers often experience enduring distress adapting to their child's diagnosis and report a deficit of accessible psychological supports. We aimed to pilot a novel, empirically-driven suite of audio-visual positive psychology resources tailored for caregivers of children with a DEE, called 'Finding a Way'. METHODS We recruited caregivers through two paediatric hospital databases, and we also shared an invitation to the online questionnaire via genetic epilepsy advocacy organisations. The online questionnaire included a combination of validated, purpose-designed, and open-ended questions to assess the acceptability, relevance, and emotional impact of the resources among caregivers. RESULTS 167 caregivers from 18 countries reviewed the resources, with 56 caregivers completing over 85% of the evaluation. Caregivers rated the resources as highly acceptable and relevant to their experiences. In both the quantitative and qualitative data, caregivers reported that the resources normalised their emotional experiences and provided helpful suggestions about managing their personal relationships, seeking support and accepting help from others. Frequently reported emotional responses after viewing the resources included feeling "comforted", "hopeful", "connected" and "reassured". Suggestions for improvement included, expanding the suite of resources and embedding the resources with links to specialised psychological services. CONCLUSION 'Finding a Way' is a novel codesigned suite of audio-visual positive psychology resources tailored for caregivers of children with DEEs. Our results suggest that 'Finding a Way' is acceptable to caregivers and may contribute towards enhanced emotional adaptation and coping.
Collapse
|
22
|
The Extracellular Milieu of Toxoplasma's Lytic Cycle Drives Lab Adaptation, Primarily by Transcriptional Reprogramming. mSystems 2021; 6:e0119621. [PMID: 34874774 PMCID: PMC8651083 DOI: 10.1128/msystems.01196-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Evolve and resequencing (E&R) was applied to lab adaptation of Toxoplasma gondii for over 1,500 generations with the goal of mapping host-independent in vitro virulence traits. Phenotypic assessments of steps across the lytic cycle revealed that only traits needed in the extracellular milieu evolved. Nonsynonymous single-nucleotide polymorphisms (SNPs) in only one gene, a P4 flippase, fixated across two different evolving populations, whereas dramatic changes in the transcriptional signature of extracellular parasites were identified. Newly developed computational tools correlated phenotypes evolving at different rates with specific transcriptomic changes. A set of 300 phenotype-associated genes was mapped, of which nearly 50% is annotated as hypothetical. Validation of a select number of genes by knockouts confirmed their role in lab adaptation and highlights novel mechanisms underlying in vitro virulence traits. Further analyses of differentially expressed genes revealed the development of a “pro-tachyzoite” profile as well as the upregulation of the fatty acid biosynthesis (FASII) pathway. The latter aligned with the P4 flippase SNP and aligned with a low abundance of medium-chain fatty acids at low passage, indicating this is a limiting factor in extracellular parasites. In addition, partial overlap with the bradyzoite differentiation transcriptome in extracellular parasites indicated that stress pathways are involved in both situations. This was reflected in the partial overlap between the assembled ApiAP2 and Myb transcription factor network underlying the adapting extracellular state with the bradyzoite differentiation program. Overall, E&R is a new genomic tool successfully applied to map the development of polygenic traits underlying in vitro virulence of T. gondii. IMPORTANCE It has been well established that prolonged in vitro cultivation of Toxoplasma gondii augments progression of the lytic cycle. This lab adaptation results in increased capacities to divide, migrate, and survive outside a host cell, all of which are considered host-independent virulence factors. However, the mechanistic basis underlying these enhanced virulence features is unknown. Here, E&R was utilized to empirically characterize the phenotypic, genomic, and transcriptomic changes in the non-lab-adapted strain, GT1, during 2.5 years of lab adaptation. This identified the shutdown of stage differentiation and upregulation of lipid biosynthetic pathways as the key processes being modulated. Furthermore, lab adaptation was primarily driven by transcriptional reprogramming, which rejected the starting hypothesis that genetic mutations would drive lab adaptation. Overall, the work empirically shows that lab adaptation augments T. gondii’s in vitro virulence by transcriptional reprogramming and that E&R is a powerful new tool to map multigenic traits.
Collapse
|
23
|
Sheidley BR, Malinowski J, Bergner AL, Bier L, Gloss DS, Mu W, Mulhern MM, Partack EJ, Poduri A. Genetic testing for the epilepsies: A systematic review. Epilepsia 2021; 63:375-387. [PMID: 34893972 DOI: 10.1111/epi.17141] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Numerous genetic testing options for individuals with epilepsy have emerged over the past decade without clear guidelines regarding optimal testing strategies. We performed a systematic evidence review (SER) and conducted meta-analyses of the diagnostic yield of genetic tests commonly utilized for patients with epilepsy. We also assessed nonyield outcomes (NYOs) such as changes in treatment and/or management, prognostic information, recurrence risk determination, and genetic counseling. METHODS We performed an SER, in accordance with PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses), using PubMed, Embase, CINAHL, and Cochrane Central through December of 2020. We included studies that utilized genome sequencing (GS), exome sequencing (ES), multigene panel (MGP), and/or genome-wide comparative genomic hybridization/chromosomal microarray (CGH/CMA) in cohorts (n ≥ 10) ascertained for epilepsy. Quality assessment was undertaken using ROBINS-I (Risk of Bias in Non-Randomized Studies of Interventions). We estimated diagnostic yields and 95% confidence intervals with random effects meta-analyses and narratively synthesized NYOs. RESULTS From 5985 nonduplicated articles published through 2020, 154 met inclusion criteria and were included in meta-analyses of diagnostic yield; 43 of those were included in the NYO synthesis. The overall diagnostic yield across all test modalities was 17%, with the highest yield for GS (48%), followed by ES (24%), MGP (19%), and CGH/CMA (9%). The only phenotypic factors that were significantly associated with increased yield were (1) the presence of developmental and epileptic encephalopathy and/or (2) the presence of neurodevelopmental comorbidities. Studies reporting NYOs addressed clinical and personal utility of testing. SIGNIFICANCE This comprehensive SER, focused specifically on the literature regarding patients with epilepsy, provides a comparative assessment of the yield of clinically available tests, which will help shape clinician decision-making and policy regarding insurance coverage for genetic testing. We highlight the need for prospective assessment of the clinical and personal utility of genetic testing for patients with epilepsy and for standardization in reporting patient characteristics.
Collapse
Affiliation(s)
- Beth R Sheidley
- Epilepsy Genetics Program, Division of Epilepsy and Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
| | | | - Amanda L Bergner
- Department of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Louise Bier
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - David S Gloss
- Department of Neurology, Charleston Area Medical Center, Charleston, West Virginia, USA
| | - Weiyi Mu
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Maureen M Mulhern
- Department of Pathology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA.,Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Emily J Partack
- Genomics Services, Quest Diagnostics, Marlborough, Massachusetts, USA
| | - Annapurna Poduri
- Epilepsy Genetics Program, Division of Epilepsy and Neurophysiology, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
24
|
Qaiser F, Sadoway T, Yin Y, Zulfiqar Ali Q, Nguyen CM, Shum N, Backstrom I, Marques PT, Tabarestani S, Munhoz RP, Krings T, Pearson CE, Yuen RKC, Andrade DM. Genome sequencing identifies rare tandem repeat expansions and copy number variants in Lennox-Gastaut syndrome. Brain Commun 2021; 3:fcab207. [PMID: 34622207 PMCID: PMC8491034 DOI: 10.1093/braincomms/fcab207] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/23/2021] [Accepted: 07/29/2021] [Indexed: 11/22/2022] Open
Abstract
Epilepsies are a group of common neurological disorders with a substantial
genetic basis. Despite this, the molecular diagnosis of epilepsies remains
challenging due to its heterogeneity. Studies utilizing whole-genome sequencing
may provide additional insights into genetic causes of epilepsies of unknown
aetiology. Whole-genome sequencing was used to evaluate a cohort of adults with
unexplained developmental and epileptic encephalopathies (n
= 30), for whom prior genetic tests, including whole-exome sequencing in
some cases, were negative or inconclusive. Rare single nucleotide variants,
insertions/deletions, copy number variants and tandem repeat expansions were
analysed. Seven pathogenic or likely pathogenic single nucleotide variants, and
two pathogenic deleterious copy number variants were identified in nine patients
(32.1% of the cohort). One of the copy number variants, identified in a
patient with Lennox–Gastaut syndrome, was too small to be detected by
chromosomal microarray techniques. We also identified two tandem repeat
expansions with clinical implications in two other patients with
Lennox–Gastaut syndrome: a CGG repeat expansion in the
5′untranslated region of DIP2B, and a CTG expansion in
ATXN8OS (previously implicated in spinocerebellar ataxia
type 8). Three patients had KCNA2 pathogenic variants. One of
them died of sudden unexpected death in epilepsy. The other two patients had, in
addition to a KCNA2 variant, a second de novo
variant impacting potential epilepsy-relevant genes (KCNIP4 and
UBR5). Overall, whole-genome sequencing provided a genetic
explanation in 32.1% of the total cohort. This is also the first report
of coding and non-coding tandem repeat expansions identified in patients with
Lennox–Gastaut syndrome. This study demonstrates that using whole-genome
sequencing, the examination of multiple types of rare genetic variation,
including those found in the non-coding region of the genome, can help resolve
unexplained epilepsies.
Collapse
Affiliation(s)
- Farah Qaiser
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, Canada.,Genetics & Genome Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Canada.,Adult Epilepsy Genetics Research Program, Krembil Neurosciences Institute, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Tara Sadoway
- Adult Epilepsy Genetics Research Program, Krembil Neurosciences Institute, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Yue Yin
- Genetics & Genome Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Canada
| | - Quratulain Zulfiqar Ali
- Adult Epilepsy Genetics Research Program, Krembil Neurosciences Institute, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Charlotte M Nguyen
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, Canada.,Genetics & Genome Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Canada
| | - Natalie Shum
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, Canada.,Genetics & Genome Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Canada
| | - Ian Backstrom
- Genetics & Genome Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Canada
| | - Paula T Marques
- Adult Epilepsy Genetics Research Program, Krembil Neurosciences Institute, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Sepideh Tabarestani
- Adult Epilepsy Genetics Research Program, Krembil Neurosciences Institute, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Renato P Munhoz
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Canada.,Neuromodulation Unit and Ataxia Clinic, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Timo Krings
- Department of Medical Imaging, University of Toronto, Toronto, Canada.,Division of Neuroradiology, Toronto Western Hospital, University Health Network, Toronto, Canada
| | - Christopher E Pearson
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, Canada.,Genetics & Genome Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Canada
| | - Ryan K C Yuen
- Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, Canada.,Genetics & Genome Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Canada
| | - Danielle M Andrade
- Adult Epilepsy Genetics Research Program, Krembil Neurosciences Institute, Toronto Western Hospital, University Health Network, Toronto, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Toronto, Canada.,Epilepsy Program, Krembil Neurosciences Institute, Toronto Western Hospital, University Health Network, University of Toronto, Toronto, Canada
| |
Collapse
|
25
|
Abstract
With the advent of next generation sequencing technology there has been a spurt of papers on genetics in epilepsy in children. Genetic testing has now become an essential part of clinical practice in epilepsy. It helps in reaching an etiological diagnosis, providing prognostic information, guiding therapy precisely indicated for the patient and avoiding drugs that may worsen the seizures. Once the pathogenic variant has been found, this enables determining and counseling the risk of recurrence to the patient and other relatives at risk. It also makes available different reproductive options such as prenatal diagnosis or pre-implantation diagnosis. The authors describe the benefits, the clinical situations that require genetic testing, the types of genetic tests that are available, and how to choose the appropriate test and their likely yields. Genetic counseling, both pre- and post-test that should be provided is described briefly. Two useful tables are included that depict the therapy for variants in different epilepsy genes.
Collapse
|
26
|
Shieh JT, Penon-Portmann M, Wong KHY, Levy-Sakin M, Verghese M, Slavotinek A, Gallagher RC, Mendelsohn BA, Tenney J, Beleford D, Perry H, Chow SK, Sharo AG, Brenner SE, Qi Z, Yu J, Klein OD, Martin D, Kwok PY, Boffelli D. Application of full-genome analysis to diagnose rare monogenic disorders. NPJ Genom Med 2021; 6:77. [PMID: 34556655 PMCID: PMC8460793 DOI: 10.1038/s41525-021-00241-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/21/2020] [Indexed: 11/30/2022] Open
Abstract
Current genetic tests for rare diseases provide a diagnosis in only a modest proportion of cases. The Full-Genome Analysis method, FGA, combines long-range assembly and whole-genome sequencing to detect small variants, structural variants with breakpoint resolution, and phasing. We built a variant prioritization pipeline and tested FGA’s utility for diagnosis of rare diseases in a clinical setting. FGA identified structural variants and small variants with an overall diagnostic yield of 40% (20 of 50 cases) and 35% in exome-negative cases (8 of 23 cases), 4 of these were structural variants. FGA detected and mapped structural variants that are missed by short reads, including non-coding duplication, and phased variants across long distances of more than 180 kb. With the prioritization algorithm, longer DNA technologies could replace multiple tests for monogenic disorders and expand the range of variants detected. Our study suggests that genomes produced from technologies like FGA can improve variant detection and provide higher resolution genome maps for future application.
Collapse
Affiliation(s)
- Joseph T Shieh
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA. .,Division of Medical Genetics, Pediatrics, Benioff Children's Hospital, University of California San Francisco, San Francisco, CA, USA.
| | - Monica Penon-Portmann
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA.,Division of Medical Genetics, Pediatrics, Benioff Children's Hospital, University of California San Francisco, San Francisco, CA, USA
| | - Karen H Y Wong
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Michal Levy-Sakin
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Michelle Verghese
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Anne Slavotinek
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA.,Division of Medical Genetics, Pediatrics, Benioff Children's Hospital, University of California San Francisco, San Francisco, CA, USA
| | - Renata C Gallagher
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA.,Division of Medical Genetics, Pediatrics, Benioff Children's Hospital, University of California San Francisco, San Francisco, CA, USA
| | - Bryce A Mendelsohn
- Division of Medical Genetics, Pediatrics, Benioff Children's Hospital, University of California San Francisco, San Francisco, CA, USA
| | - Jessica Tenney
- Division of Medical Genetics, Pediatrics, Benioff Children's Hospital, University of California San Francisco, San Francisco, CA, USA
| | - Daniah Beleford
- Division of Medical Genetics, Pediatrics, Benioff Children's Hospital, University of California San Francisco, San Francisco, CA, USA
| | - Hazel Perry
- Division of Medical Genetics, Pediatrics, Benioff Children's Hospital, University of California San Francisco, San Francisco, CA, USA
| | - Stephen K Chow
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Andrew G Sharo
- Biophysics Graduate Group, University of California Berkeley, Berkeley, CA, USA
| | - Steven E Brenner
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - Zhongxia Qi
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Jingwei Yu
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Ophir D Klein
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA.,Division of Medical Genetics, Pediatrics, Benioff Children's Hospital, University of California San Francisco, San Francisco, CA, USA.,Craniofacial Biology and Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA, USA
| | - David Martin
- Children's Hospital Oakland Research Institute, Benioff Children's Hospital Oakland, University of California San Francisco, Oakland, CA, USA
| | - Pui-Yan Kwok
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA.,Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, USA.,Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Dario Boffelli
- Children's Hospital Oakland Research Institute, Benioff Children's Hospital Oakland, University of California San Francisco, Oakland, CA, USA
| |
Collapse
|
27
|
Maroilley T, Li X, Oldach M, Jean F, Stasiuk SJ, Tarailo-Graovac M. Deciphering complex genome rearrangements in C. elegans using short-read whole genome sequencing. Sci Rep 2021; 11:18258. [PMID: 34521941 PMCID: PMC8440550 DOI: 10.1038/s41598-021-97764-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/30/2021] [Indexed: 12/14/2022] Open
Abstract
Genomic rearrangements cause congenital disorders, cancer, and complex diseases in human. Yet, they are still understudied in rare diseases because their detection is challenging, despite the advent of whole genome sequencing (WGS) technologies. Short-read (srWGS) and long-read WGS approaches are regularly compared, and the latter is commonly recommended in studies focusing on genomic rearrangements. However, srWGS is currently the most economical, accurate, and widely supported technology. In Caenorhabditis elegans (C. elegans), such variants, induced by various mutagenesis processes, have been used for decades to balance large genomic regions by preventing chromosomal crossover events and allowing the maintenance of lethal mutations. Interestingly, those chromosomal rearrangements have rarely been characterized on a molecular level. To evaluate the ability of srWGS to detect various types of complex genomic rearrangements, we sequenced three balancer strains using short-read Illumina technology. As we experimentally validated the breakpoints uncovered by srWGS, we showed that, by combining several types of analyses, srWGS enables the detection of a reciprocal translocation (eT1), a free duplication (sDp3), a large deletion (sC4), and chromoanagenesis events. Thus, applying srWGS to decipher real complex genomic rearrangements in model organisms may help designing efficient bioinformatics pipelines with systematic detection of complex rearrangements in human genomes.
Collapse
Affiliation(s)
- Tatiana Maroilley
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Xiao Li
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Matthew Oldach
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Francesca Jean
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Susan J Stasiuk
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Maja Tarailo-Graovac
- Departments of Biochemistry, Molecular Biology and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada. .,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
28
|
Next-generation sequencing in childhood-onset epilepsies: Diagnostic yield and impact on neuronal ceroid lipofuscinosis type 2 (CLN2) disease diagnosis. PLoS One 2021; 16:e0255933. [PMID: 34469436 PMCID: PMC8409681 DOI: 10.1371/journal.pone.0255933] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 07/27/2021] [Indexed: 11/19/2022] Open
Abstract
Epilepsy is one of the most common childhood-onset neurological conditions with a genetic etiology. Genetic diagnosis provides potential for etiologically-based management and treatment. Existing research has focused on early-onset (<24 months) epilepsies; data regarding later-onset epilepsies is limited. The goal of this study was to determine the diagnostic yield of a clinically available epilepsy panel in a selected pediatric epilepsy cohort with epilepsy onset between 24-60 months of life and evaluate whether this approach decreases the age of diagnosis of neuronal ceroid lipofuscinosis type 2 (CLN2). Next-generation sequencing (NGS)-based epilepsy panels, including genes associated with epileptic encephalopathies and inborn errors of metabolism (IEMs) that present with epilepsy, were used. Copy-number variant (CNV) detection from NGS data was included. Variant interpretation was performed per American College of Medical Genetics and Genomics (ACMG) guidelines. Results are reported from 211 consecutive patients with the following inclusion criteria: 24-60 months of age at the time of enrollment, first unprovoked seizure at/after 24 months, and at least one additional finding such as EEG/MRI abnormalities, speech delay, or motor symptoms. Median age was 42 months at testing and 30 months at first seizure onset; the mean delay from first seizure to comprehensive genetic testing was 10.3 months. A genetic diagnosis was established in 43 patients (20.4%). CNVs were reported in 25.6% diagnosed patients; 27.3% of CNVs identified were intragenic. Within the diagnosed cohort, 11 (25.6%) patients were diagnosed with an IEM. The predominant molecular diagnosis was CLN2 (14% of diagnosed patients). For these patients, diagnosis was achieved 12-24 months earlier than reported by natural history of the disease. This study supports comprehensive genetic testing for patients whose first seizure occurs ≥ 24 months of age. It also supports early application of testing in this age group, as the identified diagnoses can have significant impact on patient management and outcome.
Collapse
|
29
|
Abstract
Leukodystrophies are a group of genetically determined disorders that affect development or maintenance of central nervous system myelin. Leukodystrophies have an incidence of at least 1 in 4700 live births and significant morbidity and elevated risk of early death. This report includes a discussion of the types of leukodystrophies; their prevalence, clinical presentation, symptoms, and diagnosis; and current and future treatments. Leukodystrophies can present at any age from infancy to adulthood, with variability in disease progression and clinical presentation, ranging from developmental delay to seizures to spasticity. Diagnosis is based on a combination of history, examination, and radiologic and laboratory findings, including genetic testing. Although there are few cures, there are significant opportunities for care and improvements in patient well-being. Rapid advances in imaging and diagnosis, the emergence of and requirement for timely treatments, and the addition of leukodystrophy screening to newborn screening, make an understanding of the leukodystrophies necessary for pediatricians and other care providers for children.
Collapse
Affiliation(s)
- Joshua L Bonkowsky
- Division of Pediatric Neurology, Department of Pediatrics, School of Medicine, University of Utah and Brain and Spine Center, Primary Children's Hospital, Salt Lake City, Utah
| | | | | |
Collapse
|
30
|
Pedersen BS, Brown JM, Dashnow H, Wallace AD, Velinder M, Tristani-Firouzi M, Schiffman JD, Tvrdik T, Mao R, Best DH, Bayrak-Toydemir P, Quinlan AR. Effective variant filtering and expected candidate variant yield in studies of rare human disease. NPJ Genom Med 2021; 6:60. [PMID: 34267211 PMCID: PMC8282602 DOI: 10.1038/s41525-021-00227-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 06/22/2021] [Indexed: 11/08/2022] Open
Abstract
In studies of families with rare disease, it is common to screen for de novo mutations, as well as recessive or dominant variants that explain the phenotype. However, the filtering strategies and software used to prioritize high-confidence variants vary from study to study. In an effort to establish recommendations for rare disease research, we explore effective guidelines for variant (SNP and INDEL) filtering and report the expected number of candidates for de novo dominant, recessive, and autosomal dominant modes of inheritance. We derived these guidelines using two large family-based cohorts that underwent whole-genome sequencing, as well as two family cohorts with whole-exome sequencing. The filters are applied to common attributes, including genotype-quality, sequencing depth, allele balance, and population allele frequency. The resulting guidelines yield ~10 candidate SNP and INDEL variants per exome, and 18 per genome for recessive and de novo dominant modes of inheritance, with substantially more candidates for autosomal dominant inheritance. For family-based, whole-genome sequencing studies, this number includes an average of three de novo, ten compound heterozygous, one autosomal recessive, four X-linked variants, and roughly 100 candidate variants following autosomal dominant inheritance. The slivar software we developed to establish and rapidly apply these filters to VCF files is available at https://github.com/brentp/slivar under an MIT license, and includes documentation and recommendations for best practices for rare disease analysis.
Collapse
Affiliation(s)
- Brent S Pedersen
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA.
| | - Joe M Brown
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Harriet Dashnow
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Amelia D Wallace
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Matt Velinder
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | | | - Joshua D Schiffman
- Division of Pediatric Hematology/Oncology, Center for Children's Cancer Research, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | | | - Rong Mao
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
- ARUP Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, UT, USA
| | - D Hunter Best
- Department of Pediatrics, University of Utah, Salt Lake City, UT, USA
- School of Medicine, Emory University, Atlanta, GA, USA
- ARUP Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, UT, USA
| | - Pinar Bayrak-Toydemir
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
- ARUP Institute for Clinical and Experimental Pathology, ARUP Laboratories, Salt Lake City, UT, USA
| | - Aaron R Quinlan
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
- Utah Center for Genetic Discovery, University of Utah, Salt Lake City, UT, USA
- Department of Biomedical Informatics, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
31
|
Shcheglovitov A, Peterson RT. Screening Platforms for Genetic Epilepsies-Zebrafish, iPSC-Derived Neurons, and Organoids. Neurotherapeutics 2021; 18:1478-1489. [PMID: 34595731 PMCID: PMC8608971 DOI: 10.1007/s13311-021-01115-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2021] [Indexed: 02/04/2023] Open
Abstract
Recent advances in molecular and cellular engineering, such as human cell reprogramming, genome editing, and patient-specific organoids, have provided unprecedented opportunities for investigating human disorders in both animals and human-based models at an improved pace and precision. This progress will inevitably lead to the development of innovative drug-screening platforms and new patient-specific therapeutics. In this review, we discuss recent advances that have been made using zebrafish and human-induced pluripotent stem cell (iPSC)-derived neurons and organoids for modeling genetic epilepsies. We also provide our prospective on how these models can potentially be combined to build new screening platforms for antiseizure and antiepileptogenic drug discovery that harness the robustness and tractability of zebrafish models as well as the patient-specific genetics and biology of iPSC-derived neurons and organoids.
Collapse
|
32
|
Steely CJ, Russell KL, Feusier JE, Qiao Y, Tavtigian SV, Marth G, Jorde LB. Mobile element insertions and associated structural variants in longitudinal breast cancer samples. Sci Rep 2021; 11:13020. [PMID: 34158539 PMCID: PMC8219704 DOI: 10.1038/s41598-021-92444-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/07/2021] [Indexed: 02/05/2023] Open
Abstract
While mobile elements are largely inactive in healthy somatic tissues, increased activity has been found in cancer tissues, with significant variation among different cancer types. In addition to insertion events, mobile elements have also been found to mediate many structural variation events in the genome. Here, to better understand the timing and impact of mobile element insertions and associated structural variants in cancer, we examined their activity in longitudinal samples of four metastatic breast cancer patients. We identified 11 mobile element insertions or associated structural variants and found that the majority of these occurred early in tumor progression. Most of the variants impact intergenic regions; however, we identified a translocation interrupting MAP2K4 involving Alu elements and a deletion in YTHDF2 involving mobile elements that likely inactivate reported tumor suppressor genes. The high variant allele fraction of the translocation, the loss of the other copy of MAP2K4, the recurrent loss-of-function mutations found in this gene in other cancers, and the important function of MAP2K4 indicate that this translocation is potentially a driver mutation. Overall, using a unique longitudinal dataset, we find that most variants are likely passenger mutations in the four patients we examined, but some variants impact tumor progression.
Collapse
Affiliation(s)
- Cody J Steely
- Department of Human Genetics, University of Utah School of Medicine, 15 N. 2030 E. Rm 5100, Salt Lake City, UT, 84112, USA.
| | - Kristi L Russell
- Department of Human Genetics, University of Utah School of Medicine, 15 N. 2030 E. Rm 5100, Salt Lake City, UT, 84112, USA
| | - Julie E Feusier
- Department of Human Genetics, University of Utah School of Medicine, 15 N. 2030 E. Rm 5100, Salt Lake City, UT, 84112, USA
| | - Yi Qiao
- Department of Human Genetics, University of Utah School of Medicine, 15 N. 2030 E. Rm 5100, Salt Lake City, UT, 84112, USA
- Utah Center for Genetic Discovery, Salt Lake City, UT, 84112, USA
| | - Sean V Tavtigian
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Gabor Marth
- Department of Human Genetics, University of Utah School of Medicine, 15 N. 2030 E. Rm 5100, Salt Lake City, UT, 84112, USA
- Utah Center for Genetic Discovery, Salt Lake City, UT, 84112, USA
| | - Lynn B Jorde
- Department of Human Genetics, University of Utah School of Medicine, 15 N. 2030 E. Rm 5100, Salt Lake City, UT, 84112, USA
- Utah Center for Genetic Discovery, Salt Lake City, UT, 84112, USA
| |
Collapse
|
33
|
Liu Y, Wu X, Wang Y. An integrated approach for copy number variation discovery in parent-offspring trios. Brief Bioinform 2021; 22:6306464. [PMID: 34151932 DOI: 10.1093/bib/bbab230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 04/27/2021] [Accepted: 05/25/2021] [Indexed: 11/14/2022] Open
Abstract
Whole-genome sequencing (WGS) of parent-offspring trios has become widely used to identify causal copy number variations (CNVs) in rare and complex diseases. Existing CNV detection approaches usually do not make effective use of Mendelian inheritance in parent-offspring trios and yield low accuracy. In this study, we propose a novel integrated approach, TrioCNV2, for jointly detecting CNVs from WGS data of the parent-offspring trio. TrioCNV2 first makes use of the read depth and discordant read pairs to infer approximate locations of CNVs and then employs the split read and local de novo assembly approaches to refine the breakpoints. We use the real WGS data of two parent-offspring trios to demonstrate TrioCNV2's performance and compare it with other CNV detection approaches. The software TrioCNV2 is implemented using a combination of Java and R and is freely available from the website at https://github.com/yongzhuang/TrioCNV2.
Collapse
Affiliation(s)
- Yongzhuang Liu
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Xiaoliang Wu
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Yadong Wang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
34
|
Sun D, Liu Y, Cai W, Ma J, Ni K, Chen M, Wang C, Liu Y, Zhu Y, Liu Z, Zhu F. Detection of Disease-Causing SNVs/Indels and CNVs in Single Test Based on Whole Exome Sequencing: A Retrospective Case Study in Epileptic Encephalopathies. Front Pediatr 2021; 9:635703. [PMID: 34055682 PMCID: PMC8155357 DOI: 10.3389/fped.2021.635703] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
Background: Epileptic encephalopathies (EEs) are a pediatric entity with highly phenotypic and genetic heterogeneity. Both single nucleotide variants (SNVs)/Indels and copy number variations (CNVs) could be the causes. Whole exome sequencing (WES) is widely applied to detect SNVs/Indels, but the bioinformatics approach for detecting CNVs is still limited and weak. In the current study, the possibility of profiling both disease-causing SNVs/Indels and CNVs in a single test based on WES in EEs was evaluated. Methods: The infants diagnosed with EEs were enrolled from a single pediatric epilepsy center between January 2018 and February 2020. Demographic and clinical data were collected. In WES data, the pathogenic SNVs were identified through an in-house pipeline, and pathogenic CNVs were identified by CNVkit. The diagnostic rate was evaluated, and the molecular findings were characterized. Results: A total of 73 infants were included; 36 (49.32%) of them were males. The median age was 7 months. Thirty-two (43.84%) infants had been diagnosed with epilepsy syndrome. The most common type of syndrome was West syndrome (22/73, 30.1%), followed by Dravet syndrome (20/77, 27.4%). Fifty-four (73.97%) had intellectual development delay. The genetic cause of EEs, pathogenic or likely pathogenic variants, were successfully discovered in 46.6% (34/73) of the infants, and 29 (39.7%) infants carried SNVs/Indels, while 5 (6.8%) carried CNVs. The majority of the disease-causing variants were inherited in de novo pattern (25, 71.4%). In addition to showing that the variants in the ion channel encoding genes accounted for the main etiology, we discovered and confirmed two new disease-causing genes, CACNA1E and WDR26. Five discovered CNVs were deletions of 2q24.3, 1p36, 15q11-q13, 16p11.2, and 17p13.3, and all were confirmed by array comparative genomic hybridization. Conclusion: The application of both SNVs/Indels and CNVs detection in a single test based on WES yielded a high diagnosis rate in EEs. WES may serve as a first-tier test with cost-effective benefit in EEs.
Collapse
Affiliation(s)
- Dan Sun
- Department of Neurology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Liu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Cai
- Department of Hematology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiehui Ma
- Department of Neurology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Ni
- Department of Neurology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Chen
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Cheng Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongchu Liu
- Aegicare Technology Co., Ltd.Shenzhen, China
| | | | - Zhisheng Liu
- Department of Neurology, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Zhu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
35
|
Abe‐Hatano C, Iida A, Kosugi S, Momozawa Y, Terao C, Ishikawa K, Okubo M, Hachiya Y, Nishida H, Nakamura K, Miyata R, Murakami C, Takahashi K, Hoshino K, Sakamoto H, Ohta S, Kubota M, Takeshita E, Ishiyama A, Nakagawa E, Sasaki M, Kato M, Matsumoto N, Kamatani Y, Kubo M, Takahashi Y, Natsume J, Inoue K, Goto Y. Whole genome sequencing of 45 Japanese patients with intellectual disability. Am J Med Genet A 2021; 185:1468-1480. [PMID: 33624935 PMCID: PMC8247954 DOI: 10.1002/ajmg.a.62138] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/23/2020] [Accepted: 02/06/2021] [Indexed: 02/06/2023]
Abstract
Intellectual disability (ID) is characterized by significant limitations in both intellectual functioning and adaptive behaviors, originating before the age of 18 years. However, the genetic etiologies of ID are still incompletely elucidated due to the wide range of clinical and genetic heterogeneity. Whole genome sequencing (WGS) has been applied as a single-step clinical diagnostic tool for ID because it detects genetic variations with a wide range of resolution from single nucleotide variants (SNVs) to structural variants (SVs). To explore the causative genes for ID, we employed WGS in 45 patients from 44 unrelated Japanese families and performed a stepwise screening approach focusing on the coding variants in the genes. Here, we report 12 pathogenic and likely pathogenic variants: seven heterozygous variants of ADNP, SATB2, ANKRD11, PTEN, TCF4, SPAST, and KCNA2, three hemizygous variants of SMS, SLC6A8, and IQSEC2, and one homozygous variant in AGTPBP1. Of these, four were considered novel. Furthermore, a novel 76 kb deletion containing exons 1 and 2 in DYRK1A was identified. We confirmed the clinical and genetic heterogeneity and high frequency of de novo causative variants (8/12, 66.7%). This is the first report of WGS analysis in Japanese patients with ID. Our results would provide insight into the correlation between novel variants and expanded phenotypes of the disease.
Collapse
Affiliation(s)
- Chihiro Abe‐Hatano
- Department of Mental Retardation and Birth Defect ResearchNational Institute of Neuroscience, National Center of Neurology and PsychiatryTokyoJapan
- Department of PediatricsNagoya University Graduate School of MedicineAichiJapan
| | - Aritoshi Iida
- Medical Genome CenterNational Center of Neurology and PsychiatryTokyoJapan
| | - Shunichi Kosugi
- Laboratory for Statistical and Translational GeneticsRIKEN Center for Integrative Medical SciencesKanagawaJapan
| | - Yukihide Momozawa
- Laboratory for Genotyping DevelopmentRIKEN Center for Integrative Medical SciencesKanagawaJapan
| | - Chikashi Terao
- Laboratory for Statistical and Translational GeneticsRIKEN Center for Integrative Medical SciencesKanagawaJapan
- Clinical Research CenterShizuoka General HospitalShizuokaJapan
- The Department of Applied GeneticsThe School of Pharmaceutical Sciences, University of ShizuokaShizuokaJapan
| | - Keiko Ishikawa
- Medical Genome CenterNational Center of Neurology and PsychiatryTokyoJapan
| | - Mariko Okubo
- Department of Child NeurologyNational Center Hospital, National Center of Neurology and PsychiatryTokyoJapan
| | - Yasuo Hachiya
- Department of NeuropediatricsTokyo Metropolitan Neurological HospitalTokyoJapan
| | - Hiroya Nishida
- Department of NeuropediatricsTokyo Metropolitan Neurological HospitalTokyoJapan
| | - Kazuyuki Nakamura
- Department of PediatricsYamagata University Faculty of MedicineYamagataJapan
| | - Rie Miyata
- Department of PediatricsTokyo‐Kita Medical CenterTokyoJapan
| | - Chie Murakami
- Department of PediatricsKitakyusyu Children's Rehabilitation CenterFukuokaJapan
| | - Kan Takahashi
- Department of PediatricsOme Municipal General HospitalTokyoJapan
| | - Kyoko Hoshino
- Department of PediatricsMinami Wakayama Medical CenterWakayamaJapan
| | - Haruko Sakamoto
- Department of NeonatologyJapanese Red Cross Osaka HospitalOsakaJapan
| | - Sayaka Ohta
- Division of NeurologyNational Center for Child Health and DevelopmentTokyoJapan
| | - Masaya Kubota
- Division of NeurologyNational Center for Child Health and DevelopmentTokyoJapan
| | - Eri Takeshita
- Department of Child NeurologyNational Center Hospital, National Center of Neurology and PsychiatryTokyoJapan
| | - Akihiko Ishiyama
- Department of Child NeurologyNational Center Hospital, National Center of Neurology and PsychiatryTokyoJapan
| | - Eiji Nakagawa
- Department of Child NeurologyNational Center Hospital, National Center of Neurology and PsychiatryTokyoJapan
| | - Masayuki Sasaki
- Department of Child NeurologyNational Center Hospital, National Center of Neurology and PsychiatryTokyoJapan
| | - Mitsuhiro Kato
- Department of PediatricsYamagata University Faculty of MedicineYamagataJapan
- Department of PediatricsShowa University School of MedicineTokyoJapan
| | - Naomichi Matsumoto
- Department of Human GeneticsYokohama City University Graduate School of MedicineKanagawaJapan
| | - Yoichiro Kamatani
- Laboratory for Statistical and Translational GeneticsRIKEN Center for Integrative Medical SciencesKanagawaJapan
- Department of Computational Biology and Medical SciencesGraduate School of Frontier Sciences, The University of TokyoTokyoJapan
| | - Michiaki Kubo
- Laboratory for Genotyping DevelopmentRIKEN Center for Integrative Medical SciencesKanagawaJapan
| | - Yoshiyuki Takahashi
- Department of PediatricsNagoya University Graduate School of MedicineAichiJapan
| | - Jun Natsume
- Department of PediatricsNagoya University Graduate School of MedicineAichiJapan
| | - Ken Inoue
- Department of Mental Retardation and Birth Defect ResearchNational Institute of Neuroscience, National Center of Neurology and PsychiatryTokyoJapan
| | - Yu‐Ichi Goto
- Department of Mental Retardation and Birth Defect ResearchNational Institute of Neuroscience, National Center of Neurology and PsychiatryTokyoJapan
- Medical Genome CenterNational Center of Neurology and PsychiatryTokyoJapan
| |
Collapse
|
36
|
Skarżyński H. The role of next generation sequencing in predicting hearing loss. Expert Rev Mol Diagn 2021; 21:347-348. [PMID: 33706655 DOI: 10.1080/14737159.2021.1902313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Henryk Skarżyński
- Institute of Physiology and Pathology of Hearing, World Hearing Center, Kajetany/Warsaw, Poland
| |
Collapse
|
37
|
Palmer EE, Sachdev R, Macintosh R, Melo US, Mundlos S, Righetti S, Kandula T, Minoche AE, Puttick C, Gayevskiy V, Hesson L, Idrisoglu S, Shoubridge C, Thai MHN, Davis RL, Drew AP, Sampaio H, Andrews PI, Lawson J, Cardamone M, Mowat D, Colley A, Kummerfeld S, Dinger ME, Cowley MJ, Roscioli T, Bye A, Kirk E. Diagnostic Yield of Whole Genome Sequencing After Nondiagnostic Exome Sequencing or Gene Panel in Developmental and Epileptic Encephalopathies. Neurology 2021; 96:e1770-e1782. [PMID: 33568551 DOI: 10.1212/wnl.0000000000011655] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/18/2020] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE To assess the benefits and limitations of whole genome sequencing (WGS) compared to exome sequencing (ES) or multigene panel (MGP) in the molecular diagnosis of developmental and epileptic encephalopathies (DEE). METHODS We performed WGS of 30 comprehensively phenotyped DEE patient trios that were undiagnosed after first-tier testing, including chromosomal microarray and either research ES (n = 15) or diagnostic MGP (n = 15). RESULTS Eight diagnoses were made in the 15 individuals who received prior ES (53%): 3 individuals had complex structural variants; 5 had ES-detectable variants, which now had additional evidence for pathogenicity. Eleven diagnoses were made in the 15 MGP-negative individuals (68%); the majority (n = 10) involved genes not included in the panel, particularly in individuals with postneonatal onset of seizures and those with more complex presentations including movement disorders, dysmorphic features, or multiorgan involvement. A total of 42% of diagnoses were autosomal recessive or X-chromosome linked. CONCLUSION WGS was able to improve diagnostic yield over ES primarily through the detection of complex structural variants (n = 3). The higher diagnostic yield was otherwise better attributed to the power of re-analysis rather than inherent advantages of the WGS platform. Additional research is required to assist in the assessment of pathogenicity of novel noncoding and complex structural variants and further improve diagnostic yield for patients with DEE and other neurogenetic disorders.
Collapse
Affiliation(s)
- Elizabeth Emma Palmer
- From the School of Women's and Children's Health (E.E.P., R.S., S.R., T.K., H.S., P.I.A., J.L., M.C., D.M., M.J.C., A.B., E.K.), The School of Biotechnology and Biomolecular Sciences (M.E.D.), Childrens Cancer Institute (M.J.C.), and NeuRA (T.R.), University of New South Wales; Sydney Childrens Hospital Randwick (E.E.P., R.S., R.M., S.R., T.K., H.S., P.I.A., J.L., M.C., D.M., A.B., E.K.), Sydney Childrens Hospital Network; GOLD Service (E.E.P.), Hunter Genetics; Kinghorn Centre for Clinical Genomics (E.E.P., A.E.M., C.P., V.G., L.H., S.I., R.L.D., A.P.D., S.K., M.J.C.), Garvan Institute of Medical Research, Sydney, Australia; RG Development & Disease (U.S.M., S.M.), Max Planck Institute for Molecular Genetics; Institute for Medical Genetics and Human Genetics (U.S.M., S.M.), Charité-Universitätsmedizin, Berlin, Germany; Faculty of Medicine, Prince of Wales Clinical School (L.H.), and Faculty of Medicine, St Vincents Clinical School (S.K.), UNSW Sydney, Randwick; Adelaide Medical School (C.S., M.H.N.T.), University of Adelaide; Kolling Institute (R.L.D.), University of Sydney; SWSLHD Liverpool Hospital (A.C.), Liverpool; and New South Wales Health Pathology Randwick Genomics Laboratory (T.R., E.K.), Australia.
| | - Rani Sachdev
- From the School of Women's and Children's Health (E.E.P., R.S., S.R., T.K., H.S., P.I.A., J.L., M.C., D.M., M.J.C., A.B., E.K.), The School of Biotechnology and Biomolecular Sciences (M.E.D.), Childrens Cancer Institute (M.J.C.), and NeuRA (T.R.), University of New South Wales; Sydney Childrens Hospital Randwick (E.E.P., R.S., R.M., S.R., T.K., H.S., P.I.A., J.L., M.C., D.M., A.B., E.K.), Sydney Childrens Hospital Network; GOLD Service (E.E.P.), Hunter Genetics; Kinghorn Centre for Clinical Genomics (E.E.P., A.E.M., C.P., V.G., L.H., S.I., R.L.D., A.P.D., S.K., M.J.C.), Garvan Institute of Medical Research, Sydney, Australia; RG Development & Disease (U.S.M., S.M.), Max Planck Institute for Molecular Genetics; Institute for Medical Genetics and Human Genetics (U.S.M., S.M.), Charité-Universitätsmedizin, Berlin, Germany; Faculty of Medicine, Prince of Wales Clinical School (L.H.), and Faculty of Medicine, St Vincents Clinical School (S.K.), UNSW Sydney, Randwick; Adelaide Medical School (C.S., M.H.N.T.), University of Adelaide; Kolling Institute (R.L.D.), University of Sydney; SWSLHD Liverpool Hospital (A.C.), Liverpool; and New South Wales Health Pathology Randwick Genomics Laboratory (T.R., E.K.), Australia
| | - Rebecca Macintosh
- From the School of Women's and Children's Health (E.E.P., R.S., S.R., T.K., H.S., P.I.A., J.L., M.C., D.M., M.J.C., A.B., E.K.), The School of Biotechnology and Biomolecular Sciences (M.E.D.), Childrens Cancer Institute (M.J.C.), and NeuRA (T.R.), University of New South Wales; Sydney Childrens Hospital Randwick (E.E.P., R.S., R.M., S.R., T.K., H.S., P.I.A., J.L., M.C., D.M., A.B., E.K.), Sydney Childrens Hospital Network; GOLD Service (E.E.P.), Hunter Genetics; Kinghorn Centre for Clinical Genomics (E.E.P., A.E.M., C.P., V.G., L.H., S.I., R.L.D., A.P.D., S.K., M.J.C.), Garvan Institute of Medical Research, Sydney, Australia; RG Development & Disease (U.S.M., S.M.), Max Planck Institute for Molecular Genetics; Institute for Medical Genetics and Human Genetics (U.S.M., S.M.), Charité-Universitätsmedizin, Berlin, Germany; Faculty of Medicine, Prince of Wales Clinical School (L.H.), and Faculty of Medicine, St Vincents Clinical School (S.K.), UNSW Sydney, Randwick; Adelaide Medical School (C.S., M.H.N.T.), University of Adelaide; Kolling Institute (R.L.D.), University of Sydney; SWSLHD Liverpool Hospital (A.C.), Liverpool; and New South Wales Health Pathology Randwick Genomics Laboratory (T.R., E.K.), Australia
| | - Uirá Souto Melo
- From the School of Women's and Children's Health (E.E.P., R.S., S.R., T.K., H.S., P.I.A., J.L., M.C., D.M., M.J.C., A.B., E.K.), The School of Biotechnology and Biomolecular Sciences (M.E.D.), Childrens Cancer Institute (M.J.C.), and NeuRA (T.R.), University of New South Wales; Sydney Childrens Hospital Randwick (E.E.P., R.S., R.M., S.R., T.K., H.S., P.I.A., J.L., M.C., D.M., A.B., E.K.), Sydney Childrens Hospital Network; GOLD Service (E.E.P.), Hunter Genetics; Kinghorn Centre for Clinical Genomics (E.E.P., A.E.M., C.P., V.G., L.H., S.I., R.L.D., A.P.D., S.K., M.J.C.), Garvan Institute of Medical Research, Sydney, Australia; RG Development & Disease (U.S.M., S.M.), Max Planck Institute for Molecular Genetics; Institute for Medical Genetics and Human Genetics (U.S.M., S.M.), Charité-Universitätsmedizin, Berlin, Germany; Faculty of Medicine, Prince of Wales Clinical School (L.H.), and Faculty of Medicine, St Vincents Clinical School (S.K.), UNSW Sydney, Randwick; Adelaide Medical School (C.S., M.H.N.T.), University of Adelaide; Kolling Institute (R.L.D.), University of Sydney; SWSLHD Liverpool Hospital (A.C.), Liverpool; and New South Wales Health Pathology Randwick Genomics Laboratory (T.R., E.K.), Australia
| | - Stefan Mundlos
- From the School of Women's and Children's Health (E.E.P., R.S., S.R., T.K., H.S., P.I.A., J.L., M.C., D.M., M.J.C., A.B., E.K.), The School of Biotechnology and Biomolecular Sciences (M.E.D.), Childrens Cancer Institute (M.J.C.), and NeuRA (T.R.), University of New South Wales; Sydney Childrens Hospital Randwick (E.E.P., R.S., R.M., S.R., T.K., H.S., P.I.A., J.L., M.C., D.M., A.B., E.K.), Sydney Childrens Hospital Network; GOLD Service (E.E.P.), Hunter Genetics; Kinghorn Centre for Clinical Genomics (E.E.P., A.E.M., C.P., V.G., L.H., S.I., R.L.D., A.P.D., S.K., M.J.C.), Garvan Institute of Medical Research, Sydney, Australia; RG Development & Disease (U.S.M., S.M.), Max Planck Institute for Molecular Genetics; Institute for Medical Genetics and Human Genetics (U.S.M., S.M.), Charité-Universitätsmedizin, Berlin, Germany; Faculty of Medicine, Prince of Wales Clinical School (L.H.), and Faculty of Medicine, St Vincents Clinical School (S.K.), UNSW Sydney, Randwick; Adelaide Medical School (C.S., M.H.N.T.), University of Adelaide; Kolling Institute (R.L.D.), University of Sydney; SWSLHD Liverpool Hospital (A.C.), Liverpool; and New South Wales Health Pathology Randwick Genomics Laboratory (T.R., E.K.), Australia
| | - Sarah Righetti
- From the School of Women's and Children's Health (E.E.P., R.S., S.R., T.K., H.S., P.I.A., J.L., M.C., D.M., M.J.C., A.B., E.K.), The School of Biotechnology and Biomolecular Sciences (M.E.D.), Childrens Cancer Institute (M.J.C.), and NeuRA (T.R.), University of New South Wales; Sydney Childrens Hospital Randwick (E.E.P., R.S., R.M., S.R., T.K., H.S., P.I.A., J.L., M.C., D.M., A.B., E.K.), Sydney Childrens Hospital Network; GOLD Service (E.E.P.), Hunter Genetics; Kinghorn Centre for Clinical Genomics (E.E.P., A.E.M., C.P., V.G., L.H., S.I., R.L.D., A.P.D., S.K., M.J.C.), Garvan Institute of Medical Research, Sydney, Australia; RG Development & Disease (U.S.M., S.M.), Max Planck Institute for Molecular Genetics; Institute for Medical Genetics and Human Genetics (U.S.M., S.M.), Charité-Universitätsmedizin, Berlin, Germany; Faculty of Medicine, Prince of Wales Clinical School (L.H.), and Faculty of Medicine, St Vincents Clinical School (S.K.), UNSW Sydney, Randwick; Adelaide Medical School (C.S., M.H.N.T.), University of Adelaide; Kolling Institute (R.L.D.), University of Sydney; SWSLHD Liverpool Hospital (A.C.), Liverpool; and New South Wales Health Pathology Randwick Genomics Laboratory (T.R., E.K.), Australia
| | - Tejaswi Kandula
- From the School of Women's and Children's Health (E.E.P., R.S., S.R., T.K., H.S., P.I.A., J.L., M.C., D.M., M.J.C., A.B., E.K.), The School of Biotechnology and Biomolecular Sciences (M.E.D.), Childrens Cancer Institute (M.J.C.), and NeuRA (T.R.), University of New South Wales; Sydney Childrens Hospital Randwick (E.E.P., R.S., R.M., S.R., T.K., H.S., P.I.A., J.L., M.C., D.M., A.B., E.K.), Sydney Childrens Hospital Network; GOLD Service (E.E.P.), Hunter Genetics; Kinghorn Centre for Clinical Genomics (E.E.P., A.E.M., C.P., V.G., L.H., S.I., R.L.D., A.P.D., S.K., M.J.C.), Garvan Institute of Medical Research, Sydney, Australia; RG Development & Disease (U.S.M., S.M.), Max Planck Institute for Molecular Genetics; Institute for Medical Genetics and Human Genetics (U.S.M., S.M.), Charité-Universitätsmedizin, Berlin, Germany; Faculty of Medicine, Prince of Wales Clinical School (L.H.), and Faculty of Medicine, St Vincents Clinical School (S.K.), UNSW Sydney, Randwick; Adelaide Medical School (C.S., M.H.N.T.), University of Adelaide; Kolling Institute (R.L.D.), University of Sydney; SWSLHD Liverpool Hospital (A.C.), Liverpool; and New South Wales Health Pathology Randwick Genomics Laboratory (T.R., E.K.), Australia
| | - Andre E Minoche
- From the School of Women's and Children's Health (E.E.P., R.S., S.R., T.K., H.S., P.I.A., J.L., M.C., D.M., M.J.C., A.B., E.K.), The School of Biotechnology and Biomolecular Sciences (M.E.D.), Childrens Cancer Institute (M.J.C.), and NeuRA (T.R.), University of New South Wales; Sydney Childrens Hospital Randwick (E.E.P., R.S., R.M., S.R., T.K., H.S., P.I.A., J.L., M.C., D.M., A.B., E.K.), Sydney Childrens Hospital Network; GOLD Service (E.E.P.), Hunter Genetics; Kinghorn Centre for Clinical Genomics (E.E.P., A.E.M., C.P., V.G., L.H., S.I., R.L.D., A.P.D., S.K., M.J.C.), Garvan Institute of Medical Research, Sydney, Australia; RG Development & Disease (U.S.M., S.M.), Max Planck Institute for Molecular Genetics; Institute for Medical Genetics and Human Genetics (U.S.M., S.M.), Charité-Universitätsmedizin, Berlin, Germany; Faculty of Medicine, Prince of Wales Clinical School (L.H.), and Faculty of Medicine, St Vincents Clinical School (S.K.), UNSW Sydney, Randwick; Adelaide Medical School (C.S., M.H.N.T.), University of Adelaide; Kolling Institute (R.L.D.), University of Sydney; SWSLHD Liverpool Hospital (A.C.), Liverpool; and New South Wales Health Pathology Randwick Genomics Laboratory (T.R., E.K.), Australia
| | - Clare Puttick
- From the School of Women's and Children's Health (E.E.P., R.S., S.R., T.K., H.S., P.I.A., J.L., M.C., D.M., M.J.C., A.B., E.K.), The School of Biotechnology and Biomolecular Sciences (M.E.D.), Childrens Cancer Institute (M.J.C.), and NeuRA (T.R.), University of New South Wales; Sydney Childrens Hospital Randwick (E.E.P., R.S., R.M., S.R., T.K., H.S., P.I.A., J.L., M.C., D.M., A.B., E.K.), Sydney Childrens Hospital Network; GOLD Service (E.E.P.), Hunter Genetics; Kinghorn Centre for Clinical Genomics (E.E.P., A.E.M., C.P., V.G., L.H., S.I., R.L.D., A.P.D., S.K., M.J.C.), Garvan Institute of Medical Research, Sydney, Australia; RG Development & Disease (U.S.M., S.M.), Max Planck Institute for Molecular Genetics; Institute for Medical Genetics and Human Genetics (U.S.M., S.M.), Charité-Universitätsmedizin, Berlin, Germany; Faculty of Medicine, Prince of Wales Clinical School (L.H.), and Faculty of Medicine, St Vincents Clinical School (S.K.), UNSW Sydney, Randwick; Adelaide Medical School (C.S., M.H.N.T.), University of Adelaide; Kolling Institute (R.L.D.), University of Sydney; SWSLHD Liverpool Hospital (A.C.), Liverpool; and New South Wales Health Pathology Randwick Genomics Laboratory (T.R., E.K.), Australia
| | - Velimir Gayevskiy
- From the School of Women's and Children's Health (E.E.P., R.S., S.R., T.K., H.S., P.I.A., J.L., M.C., D.M., M.J.C., A.B., E.K.), The School of Biotechnology and Biomolecular Sciences (M.E.D.), Childrens Cancer Institute (M.J.C.), and NeuRA (T.R.), University of New South Wales; Sydney Childrens Hospital Randwick (E.E.P., R.S., R.M., S.R., T.K., H.S., P.I.A., J.L., M.C., D.M., A.B., E.K.), Sydney Childrens Hospital Network; GOLD Service (E.E.P.), Hunter Genetics; Kinghorn Centre for Clinical Genomics (E.E.P., A.E.M., C.P., V.G., L.H., S.I., R.L.D., A.P.D., S.K., M.J.C.), Garvan Institute of Medical Research, Sydney, Australia; RG Development & Disease (U.S.M., S.M.), Max Planck Institute for Molecular Genetics; Institute for Medical Genetics and Human Genetics (U.S.M., S.M.), Charité-Universitätsmedizin, Berlin, Germany; Faculty of Medicine, Prince of Wales Clinical School (L.H.), and Faculty of Medicine, St Vincents Clinical School (S.K.), UNSW Sydney, Randwick; Adelaide Medical School (C.S., M.H.N.T.), University of Adelaide; Kolling Institute (R.L.D.), University of Sydney; SWSLHD Liverpool Hospital (A.C.), Liverpool; and New South Wales Health Pathology Randwick Genomics Laboratory (T.R., E.K.), Australia
| | - Luke Hesson
- From the School of Women's and Children's Health (E.E.P., R.S., S.R., T.K., H.S., P.I.A., J.L., M.C., D.M., M.J.C., A.B., E.K.), The School of Biotechnology and Biomolecular Sciences (M.E.D.), Childrens Cancer Institute (M.J.C.), and NeuRA (T.R.), University of New South Wales; Sydney Childrens Hospital Randwick (E.E.P., R.S., R.M., S.R., T.K., H.S., P.I.A., J.L., M.C., D.M., A.B., E.K.), Sydney Childrens Hospital Network; GOLD Service (E.E.P.), Hunter Genetics; Kinghorn Centre for Clinical Genomics (E.E.P., A.E.M., C.P., V.G., L.H., S.I., R.L.D., A.P.D., S.K., M.J.C.), Garvan Institute of Medical Research, Sydney, Australia; RG Development & Disease (U.S.M., S.M.), Max Planck Institute for Molecular Genetics; Institute for Medical Genetics and Human Genetics (U.S.M., S.M.), Charité-Universitätsmedizin, Berlin, Germany; Faculty of Medicine, Prince of Wales Clinical School (L.H.), and Faculty of Medicine, St Vincents Clinical School (S.K.), UNSW Sydney, Randwick; Adelaide Medical School (C.S., M.H.N.T.), University of Adelaide; Kolling Institute (R.L.D.), University of Sydney; SWSLHD Liverpool Hospital (A.C.), Liverpool; and New South Wales Health Pathology Randwick Genomics Laboratory (T.R., E.K.), Australia
| | - Senel Idrisoglu
- From the School of Women's and Children's Health (E.E.P., R.S., S.R., T.K., H.S., P.I.A., J.L., M.C., D.M., M.J.C., A.B., E.K.), The School of Biotechnology and Biomolecular Sciences (M.E.D.), Childrens Cancer Institute (M.J.C.), and NeuRA (T.R.), University of New South Wales; Sydney Childrens Hospital Randwick (E.E.P., R.S., R.M., S.R., T.K., H.S., P.I.A., J.L., M.C., D.M., A.B., E.K.), Sydney Childrens Hospital Network; GOLD Service (E.E.P.), Hunter Genetics; Kinghorn Centre for Clinical Genomics (E.E.P., A.E.M., C.P., V.G., L.H., S.I., R.L.D., A.P.D., S.K., M.J.C.), Garvan Institute of Medical Research, Sydney, Australia; RG Development & Disease (U.S.M., S.M.), Max Planck Institute for Molecular Genetics; Institute for Medical Genetics and Human Genetics (U.S.M., S.M.), Charité-Universitätsmedizin, Berlin, Germany; Faculty of Medicine, Prince of Wales Clinical School (L.H.), and Faculty of Medicine, St Vincents Clinical School (S.K.), UNSW Sydney, Randwick; Adelaide Medical School (C.S., M.H.N.T.), University of Adelaide; Kolling Institute (R.L.D.), University of Sydney; SWSLHD Liverpool Hospital (A.C.), Liverpool; and New South Wales Health Pathology Randwick Genomics Laboratory (T.R., E.K.), Australia
| | - Cheryl Shoubridge
- From the School of Women's and Children's Health (E.E.P., R.S., S.R., T.K., H.S., P.I.A., J.L., M.C., D.M., M.J.C., A.B., E.K.), The School of Biotechnology and Biomolecular Sciences (M.E.D.), Childrens Cancer Institute (M.J.C.), and NeuRA (T.R.), University of New South Wales; Sydney Childrens Hospital Randwick (E.E.P., R.S., R.M., S.R., T.K., H.S., P.I.A., J.L., M.C., D.M., A.B., E.K.), Sydney Childrens Hospital Network; GOLD Service (E.E.P.), Hunter Genetics; Kinghorn Centre for Clinical Genomics (E.E.P., A.E.M., C.P., V.G., L.H., S.I., R.L.D., A.P.D., S.K., M.J.C.), Garvan Institute of Medical Research, Sydney, Australia; RG Development & Disease (U.S.M., S.M.), Max Planck Institute for Molecular Genetics; Institute for Medical Genetics and Human Genetics (U.S.M., S.M.), Charité-Universitätsmedizin, Berlin, Germany; Faculty of Medicine, Prince of Wales Clinical School (L.H.), and Faculty of Medicine, St Vincents Clinical School (S.K.), UNSW Sydney, Randwick; Adelaide Medical School (C.S., M.H.N.T.), University of Adelaide; Kolling Institute (R.L.D.), University of Sydney; SWSLHD Liverpool Hospital (A.C.), Liverpool; and New South Wales Health Pathology Randwick Genomics Laboratory (T.R., E.K.), Australia
| | - Monica Hong Ngoc Thai
- From the School of Women's and Children's Health (E.E.P., R.S., S.R., T.K., H.S., P.I.A., J.L., M.C., D.M., M.J.C., A.B., E.K.), The School of Biotechnology and Biomolecular Sciences (M.E.D.), Childrens Cancer Institute (M.J.C.), and NeuRA (T.R.), University of New South Wales; Sydney Childrens Hospital Randwick (E.E.P., R.S., R.M., S.R., T.K., H.S., P.I.A., J.L., M.C., D.M., A.B., E.K.), Sydney Childrens Hospital Network; GOLD Service (E.E.P.), Hunter Genetics; Kinghorn Centre for Clinical Genomics (E.E.P., A.E.M., C.P., V.G., L.H., S.I., R.L.D., A.P.D., S.K., M.J.C.), Garvan Institute of Medical Research, Sydney, Australia; RG Development & Disease (U.S.M., S.M.), Max Planck Institute for Molecular Genetics; Institute for Medical Genetics and Human Genetics (U.S.M., S.M.), Charité-Universitätsmedizin, Berlin, Germany; Faculty of Medicine, Prince of Wales Clinical School (L.H.), and Faculty of Medicine, St Vincents Clinical School (S.K.), UNSW Sydney, Randwick; Adelaide Medical School (C.S., M.H.N.T.), University of Adelaide; Kolling Institute (R.L.D.), University of Sydney; SWSLHD Liverpool Hospital (A.C.), Liverpool; and New South Wales Health Pathology Randwick Genomics Laboratory (T.R., E.K.), Australia
| | - Ryan L Davis
- From the School of Women's and Children's Health (E.E.P., R.S., S.R., T.K., H.S., P.I.A., J.L., M.C., D.M., M.J.C., A.B., E.K.), The School of Biotechnology and Biomolecular Sciences (M.E.D.), Childrens Cancer Institute (M.J.C.), and NeuRA (T.R.), University of New South Wales; Sydney Childrens Hospital Randwick (E.E.P., R.S., R.M., S.R., T.K., H.S., P.I.A., J.L., M.C., D.M., A.B., E.K.), Sydney Childrens Hospital Network; GOLD Service (E.E.P.), Hunter Genetics; Kinghorn Centre for Clinical Genomics (E.E.P., A.E.M., C.P., V.G., L.H., S.I., R.L.D., A.P.D., S.K., M.J.C.), Garvan Institute of Medical Research, Sydney, Australia; RG Development & Disease (U.S.M., S.M.), Max Planck Institute for Molecular Genetics; Institute for Medical Genetics and Human Genetics (U.S.M., S.M.), Charité-Universitätsmedizin, Berlin, Germany; Faculty of Medicine, Prince of Wales Clinical School (L.H.), and Faculty of Medicine, St Vincents Clinical School (S.K.), UNSW Sydney, Randwick; Adelaide Medical School (C.S., M.H.N.T.), University of Adelaide; Kolling Institute (R.L.D.), University of Sydney; SWSLHD Liverpool Hospital (A.C.), Liverpool; and New South Wales Health Pathology Randwick Genomics Laboratory (T.R., E.K.), Australia
| | - Alexander P Drew
- From the School of Women's and Children's Health (E.E.P., R.S., S.R., T.K., H.S., P.I.A., J.L., M.C., D.M., M.J.C., A.B., E.K.), The School of Biotechnology and Biomolecular Sciences (M.E.D.), Childrens Cancer Institute (M.J.C.), and NeuRA (T.R.), University of New South Wales; Sydney Childrens Hospital Randwick (E.E.P., R.S., R.M., S.R., T.K., H.S., P.I.A., J.L., M.C., D.M., A.B., E.K.), Sydney Childrens Hospital Network; GOLD Service (E.E.P.), Hunter Genetics; Kinghorn Centre for Clinical Genomics (E.E.P., A.E.M., C.P., V.G., L.H., S.I., R.L.D., A.P.D., S.K., M.J.C.), Garvan Institute of Medical Research, Sydney, Australia; RG Development & Disease (U.S.M., S.M.), Max Planck Institute for Molecular Genetics; Institute for Medical Genetics and Human Genetics (U.S.M., S.M.), Charité-Universitätsmedizin, Berlin, Germany; Faculty of Medicine, Prince of Wales Clinical School (L.H.), and Faculty of Medicine, St Vincents Clinical School (S.K.), UNSW Sydney, Randwick; Adelaide Medical School (C.S., M.H.N.T.), University of Adelaide; Kolling Institute (R.L.D.), University of Sydney; SWSLHD Liverpool Hospital (A.C.), Liverpool; and New South Wales Health Pathology Randwick Genomics Laboratory (T.R., E.K.), Australia
| | - Hugo Sampaio
- From the School of Women's and Children's Health (E.E.P., R.S., S.R., T.K., H.S., P.I.A., J.L., M.C., D.M., M.J.C., A.B., E.K.), The School of Biotechnology and Biomolecular Sciences (M.E.D.), Childrens Cancer Institute (M.J.C.), and NeuRA (T.R.), University of New South Wales; Sydney Childrens Hospital Randwick (E.E.P., R.S., R.M., S.R., T.K., H.S., P.I.A., J.L., M.C., D.M., A.B., E.K.), Sydney Childrens Hospital Network; GOLD Service (E.E.P.), Hunter Genetics; Kinghorn Centre for Clinical Genomics (E.E.P., A.E.M., C.P., V.G., L.H., S.I., R.L.D., A.P.D., S.K., M.J.C.), Garvan Institute of Medical Research, Sydney, Australia; RG Development & Disease (U.S.M., S.M.), Max Planck Institute for Molecular Genetics; Institute for Medical Genetics and Human Genetics (U.S.M., S.M.), Charité-Universitätsmedizin, Berlin, Germany; Faculty of Medicine, Prince of Wales Clinical School (L.H.), and Faculty of Medicine, St Vincents Clinical School (S.K.), UNSW Sydney, Randwick; Adelaide Medical School (C.S., M.H.N.T.), University of Adelaide; Kolling Institute (R.L.D.), University of Sydney; SWSLHD Liverpool Hospital (A.C.), Liverpool; and New South Wales Health Pathology Randwick Genomics Laboratory (T.R., E.K.), Australia
| | - Peter Ian Andrews
- From the School of Women's and Children's Health (E.E.P., R.S., S.R., T.K., H.S., P.I.A., J.L., M.C., D.M., M.J.C., A.B., E.K.), The School of Biotechnology and Biomolecular Sciences (M.E.D.), Childrens Cancer Institute (M.J.C.), and NeuRA (T.R.), University of New South Wales; Sydney Childrens Hospital Randwick (E.E.P., R.S., R.M., S.R., T.K., H.S., P.I.A., J.L., M.C., D.M., A.B., E.K.), Sydney Childrens Hospital Network; GOLD Service (E.E.P.), Hunter Genetics; Kinghorn Centre for Clinical Genomics (E.E.P., A.E.M., C.P., V.G., L.H., S.I., R.L.D., A.P.D., S.K., M.J.C.), Garvan Institute of Medical Research, Sydney, Australia; RG Development & Disease (U.S.M., S.M.), Max Planck Institute for Molecular Genetics; Institute for Medical Genetics and Human Genetics (U.S.M., S.M.), Charité-Universitätsmedizin, Berlin, Germany; Faculty of Medicine, Prince of Wales Clinical School (L.H.), and Faculty of Medicine, St Vincents Clinical School (S.K.), UNSW Sydney, Randwick; Adelaide Medical School (C.S., M.H.N.T.), University of Adelaide; Kolling Institute (R.L.D.), University of Sydney; SWSLHD Liverpool Hospital (A.C.), Liverpool; and New South Wales Health Pathology Randwick Genomics Laboratory (T.R., E.K.), Australia
| | - John Lawson
- From the School of Women's and Children's Health (E.E.P., R.S., S.R., T.K., H.S., P.I.A., J.L., M.C., D.M., M.J.C., A.B., E.K.), The School of Biotechnology and Biomolecular Sciences (M.E.D.), Childrens Cancer Institute (M.J.C.), and NeuRA (T.R.), University of New South Wales; Sydney Childrens Hospital Randwick (E.E.P., R.S., R.M., S.R., T.K., H.S., P.I.A., J.L., M.C., D.M., A.B., E.K.), Sydney Childrens Hospital Network; GOLD Service (E.E.P.), Hunter Genetics; Kinghorn Centre for Clinical Genomics (E.E.P., A.E.M., C.P., V.G., L.H., S.I., R.L.D., A.P.D., S.K., M.J.C.), Garvan Institute of Medical Research, Sydney, Australia; RG Development & Disease (U.S.M., S.M.), Max Planck Institute for Molecular Genetics; Institute for Medical Genetics and Human Genetics (U.S.M., S.M.), Charité-Universitätsmedizin, Berlin, Germany; Faculty of Medicine, Prince of Wales Clinical School (L.H.), and Faculty of Medicine, St Vincents Clinical School (S.K.), UNSW Sydney, Randwick; Adelaide Medical School (C.S., M.H.N.T.), University of Adelaide; Kolling Institute (R.L.D.), University of Sydney; SWSLHD Liverpool Hospital (A.C.), Liverpool; and New South Wales Health Pathology Randwick Genomics Laboratory (T.R., E.K.), Australia
| | - Michael Cardamone
- From the School of Women's and Children's Health (E.E.P., R.S., S.R., T.K., H.S., P.I.A., J.L., M.C., D.M., M.J.C., A.B., E.K.), The School of Biotechnology and Biomolecular Sciences (M.E.D.), Childrens Cancer Institute (M.J.C.), and NeuRA (T.R.), University of New South Wales; Sydney Childrens Hospital Randwick (E.E.P., R.S., R.M., S.R., T.K., H.S., P.I.A., J.L., M.C., D.M., A.B., E.K.), Sydney Childrens Hospital Network; GOLD Service (E.E.P.), Hunter Genetics; Kinghorn Centre for Clinical Genomics (E.E.P., A.E.M., C.P., V.G., L.H., S.I., R.L.D., A.P.D., S.K., M.J.C.), Garvan Institute of Medical Research, Sydney, Australia; RG Development & Disease (U.S.M., S.M.), Max Planck Institute for Molecular Genetics; Institute for Medical Genetics and Human Genetics (U.S.M., S.M.), Charité-Universitätsmedizin, Berlin, Germany; Faculty of Medicine, Prince of Wales Clinical School (L.H.), and Faculty of Medicine, St Vincents Clinical School (S.K.), UNSW Sydney, Randwick; Adelaide Medical School (C.S., M.H.N.T.), University of Adelaide; Kolling Institute (R.L.D.), University of Sydney; SWSLHD Liverpool Hospital (A.C.), Liverpool; and New South Wales Health Pathology Randwick Genomics Laboratory (T.R., E.K.), Australia
| | - David Mowat
- From the School of Women's and Children's Health (E.E.P., R.S., S.R., T.K., H.S., P.I.A., J.L., M.C., D.M., M.J.C., A.B., E.K.), The School of Biotechnology and Biomolecular Sciences (M.E.D.), Childrens Cancer Institute (M.J.C.), and NeuRA (T.R.), University of New South Wales; Sydney Childrens Hospital Randwick (E.E.P., R.S., R.M., S.R., T.K., H.S., P.I.A., J.L., M.C., D.M., A.B., E.K.), Sydney Childrens Hospital Network; GOLD Service (E.E.P.), Hunter Genetics; Kinghorn Centre for Clinical Genomics (E.E.P., A.E.M., C.P., V.G., L.H., S.I., R.L.D., A.P.D., S.K., M.J.C.), Garvan Institute of Medical Research, Sydney, Australia; RG Development & Disease (U.S.M., S.M.), Max Planck Institute for Molecular Genetics; Institute for Medical Genetics and Human Genetics (U.S.M., S.M.), Charité-Universitätsmedizin, Berlin, Germany; Faculty of Medicine, Prince of Wales Clinical School (L.H.), and Faculty of Medicine, St Vincents Clinical School (S.K.), UNSW Sydney, Randwick; Adelaide Medical School (C.S., M.H.N.T.), University of Adelaide; Kolling Institute (R.L.D.), University of Sydney; SWSLHD Liverpool Hospital (A.C.), Liverpool; and New South Wales Health Pathology Randwick Genomics Laboratory (T.R., E.K.), Australia
| | - Alison Colley
- From the School of Women's and Children's Health (E.E.P., R.S., S.R., T.K., H.S., P.I.A., J.L., M.C., D.M., M.J.C., A.B., E.K.), The School of Biotechnology and Biomolecular Sciences (M.E.D.), Childrens Cancer Institute (M.J.C.), and NeuRA (T.R.), University of New South Wales; Sydney Childrens Hospital Randwick (E.E.P., R.S., R.M., S.R., T.K., H.S., P.I.A., J.L., M.C., D.M., A.B., E.K.), Sydney Childrens Hospital Network; GOLD Service (E.E.P.), Hunter Genetics; Kinghorn Centre for Clinical Genomics (E.E.P., A.E.M., C.P., V.G., L.H., S.I., R.L.D., A.P.D., S.K., M.J.C.), Garvan Institute of Medical Research, Sydney, Australia; RG Development & Disease (U.S.M., S.M.), Max Planck Institute for Molecular Genetics; Institute for Medical Genetics and Human Genetics (U.S.M., S.M.), Charité-Universitätsmedizin, Berlin, Germany; Faculty of Medicine, Prince of Wales Clinical School (L.H.), and Faculty of Medicine, St Vincents Clinical School (S.K.), UNSW Sydney, Randwick; Adelaide Medical School (C.S., M.H.N.T.), University of Adelaide; Kolling Institute (R.L.D.), University of Sydney; SWSLHD Liverpool Hospital (A.C.), Liverpool; and New South Wales Health Pathology Randwick Genomics Laboratory (T.R., E.K.), Australia
| | - Sarah Kummerfeld
- From the School of Women's and Children's Health (E.E.P., R.S., S.R., T.K., H.S., P.I.A., J.L., M.C., D.M., M.J.C., A.B., E.K.), The School of Biotechnology and Biomolecular Sciences (M.E.D.), Childrens Cancer Institute (M.J.C.), and NeuRA (T.R.), University of New South Wales; Sydney Childrens Hospital Randwick (E.E.P., R.S., R.M., S.R., T.K., H.S., P.I.A., J.L., M.C., D.M., A.B., E.K.), Sydney Childrens Hospital Network; GOLD Service (E.E.P.), Hunter Genetics; Kinghorn Centre for Clinical Genomics (E.E.P., A.E.M., C.P., V.G., L.H., S.I., R.L.D., A.P.D., S.K., M.J.C.), Garvan Institute of Medical Research, Sydney, Australia; RG Development & Disease (U.S.M., S.M.), Max Planck Institute for Molecular Genetics; Institute for Medical Genetics and Human Genetics (U.S.M., S.M.), Charité-Universitätsmedizin, Berlin, Germany; Faculty of Medicine, Prince of Wales Clinical School (L.H.), and Faculty of Medicine, St Vincents Clinical School (S.K.), UNSW Sydney, Randwick; Adelaide Medical School (C.S., M.H.N.T.), University of Adelaide; Kolling Institute (R.L.D.), University of Sydney; SWSLHD Liverpool Hospital (A.C.), Liverpool; and New South Wales Health Pathology Randwick Genomics Laboratory (T.R., E.K.), Australia
| | - Marcel E Dinger
- From the School of Women's and Children's Health (E.E.P., R.S., S.R., T.K., H.S., P.I.A., J.L., M.C., D.M., M.J.C., A.B., E.K.), The School of Biotechnology and Biomolecular Sciences (M.E.D.), Childrens Cancer Institute (M.J.C.), and NeuRA (T.R.), University of New South Wales; Sydney Childrens Hospital Randwick (E.E.P., R.S., R.M., S.R., T.K., H.S., P.I.A., J.L., M.C., D.M., A.B., E.K.), Sydney Childrens Hospital Network; GOLD Service (E.E.P.), Hunter Genetics; Kinghorn Centre for Clinical Genomics (E.E.P., A.E.M., C.P., V.G., L.H., S.I., R.L.D., A.P.D., S.K., M.J.C.), Garvan Institute of Medical Research, Sydney, Australia; RG Development & Disease (U.S.M., S.M.), Max Planck Institute for Molecular Genetics; Institute for Medical Genetics and Human Genetics (U.S.M., S.M.), Charité-Universitätsmedizin, Berlin, Germany; Faculty of Medicine, Prince of Wales Clinical School (L.H.), and Faculty of Medicine, St Vincents Clinical School (S.K.), UNSW Sydney, Randwick; Adelaide Medical School (C.S., M.H.N.T.), University of Adelaide; Kolling Institute (R.L.D.), University of Sydney; SWSLHD Liverpool Hospital (A.C.), Liverpool; and New South Wales Health Pathology Randwick Genomics Laboratory (T.R., E.K.), Australia
| | - Mark J Cowley
- From the School of Women's and Children's Health (E.E.P., R.S., S.R., T.K., H.S., P.I.A., J.L., M.C., D.M., M.J.C., A.B., E.K.), The School of Biotechnology and Biomolecular Sciences (M.E.D.), Childrens Cancer Institute (M.J.C.), and NeuRA (T.R.), University of New South Wales; Sydney Childrens Hospital Randwick (E.E.P., R.S., R.M., S.R., T.K., H.S., P.I.A., J.L., M.C., D.M., A.B., E.K.), Sydney Childrens Hospital Network; GOLD Service (E.E.P.), Hunter Genetics; Kinghorn Centre for Clinical Genomics (E.E.P., A.E.M., C.P., V.G., L.H., S.I., R.L.D., A.P.D., S.K., M.J.C.), Garvan Institute of Medical Research, Sydney, Australia; RG Development & Disease (U.S.M., S.M.), Max Planck Institute for Molecular Genetics; Institute for Medical Genetics and Human Genetics (U.S.M., S.M.), Charité-Universitätsmedizin, Berlin, Germany; Faculty of Medicine, Prince of Wales Clinical School (L.H.), and Faculty of Medicine, St Vincents Clinical School (S.K.), UNSW Sydney, Randwick; Adelaide Medical School (C.S., M.H.N.T.), University of Adelaide; Kolling Institute (R.L.D.), University of Sydney; SWSLHD Liverpool Hospital (A.C.), Liverpool; and New South Wales Health Pathology Randwick Genomics Laboratory (T.R., E.K.), Australia
| | - Tony Roscioli
- From the School of Women's and Children's Health (E.E.P., R.S., S.R., T.K., H.S., P.I.A., J.L., M.C., D.M., M.J.C., A.B., E.K.), The School of Biotechnology and Biomolecular Sciences (M.E.D.), Childrens Cancer Institute (M.J.C.), and NeuRA (T.R.), University of New South Wales; Sydney Childrens Hospital Randwick (E.E.P., R.S., R.M., S.R., T.K., H.S., P.I.A., J.L., M.C., D.M., A.B., E.K.), Sydney Childrens Hospital Network; GOLD Service (E.E.P.), Hunter Genetics; Kinghorn Centre for Clinical Genomics (E.E.P., A.E.M., C.P., V.G., L.H., S.I., R.L.D., A.P.D., S.K., M.J.C.), Garvan Institute of Medical Research, Sydney, Australia; RG Development & Disease (U.S.M., S.M.), Max Planck Institute for Molecular Genetics; Institute for Medical Genetics and Human Genetics (U.S.M., S.M.), Charité-Universitätsmedizin, Berlin, Germany; Faculty of Medicine, Prince of Wales Clinical School (L.H.), and Faculty of Medicine, St Vincents Clinical School (S.K.), UNSW Sydney, Randwick; Adelaide Medical School (C.S., M.H.N.T.), University of Adelaide; Kolling Institute (R.L.D.), University of Sydney; SWSLHD Liverpool Hospital (A.C.), Liverpool; and New South Wales Health Pathology Randwick Genomics Laboratory (T.R., E.K.), Australia
| | - Ann Bye
- From the School of Women's and Children's Health (E.E.P., R.S., S.R., T.K., H.S., P.I.A., J.L., M.C., D.M., M.J.C., A.B., E.K.), The School of Biotechnology and Biomolecular Sciences (M.E.D.), Childrens Cancer Institute (M.J.C.), and NeuRA (T.R.), University of New South Wales; Sydney Childrens Hospital Randwick (E.E.P., R.S., R.M., S.R., T.K., H.S., P.I.A., J.L., M.C., D.M., A.B., E.K.), Sydney Childrens Hospital Network; GOLD Service (E.E.P.), Hunter Genetics; Kinghorn Centre for Clinical Genomics (E.E.P., A.E.M., C.P., V.G., L.H., S.I., R.L.D., A.P.D., S.K., M.J.C.), Garvan Institute of Medical Research, Sydney, Australia; RG Development & Disease (U.S.M., S.M.), Max Planck Institute for Molecular Genetics; Institute for Medical Genetics and Human Genetics (U.S.M., S.M.), Charité-Universitätsmedizin, Berlin, Germany; Faculty of Medicine, Prince of Wales Clinical School (L.H.), and Faculty of Medicine, St Vincents Clinical School (S.K.), UNSW Sydney, Randwick; Adelaide Medical School (C.S., M.H.N.T.), University of Adelaide; Kolling Institute (R.L.D.), University of Sydney; SWSLHD Liverpool Hospital (A.C.), Liverpool; and New South Wales Health Pathology Randwick Genomics Laboratory (T.R., E.K.), Australia
| | - Edwin Kirk
- From the School of Women's and Children's Health (E.E.P., R.S., S.R., T.K., H.S., P.I.A., J.L., M.C., D.M., M.J.C., A.B., E.K.), The School of Biotechnology and Biomolecular Sciences (M.E.D.), Childrens Cancer Institute (M.J.C.), and NeuRA (T.R.), University of New South Wales; Sydney Childrens Hospital Randwick (E.E.P., R.S., R.M., S.R., T.K., H.S., P.I.A., J.L., M.C., D.M., A.B., E.K.), Sydney Childrens Hospital Network; GOLD Service (E.E.P.), Hunter Genetics; Kinghorn Centre for Clinical Genomics (E.E.P., A.E.M., C.P., V.G., L.H., S.I., R.L.D., A.P.D., S.K., M.J.C.), Garvan Institute of Medical Research, Sydney, Australia; RG Development & Disease (U.S.M., S.M.), Max Planck Institute for Molecular Genetics; Institute for Medical Genetics and Human Genetics (U.S.M., S.M.), Charité-Universitätsmedizin, Berlin, Germany; Faculty of Medicine, Prince of Wales Clinical School (L.H.), and Faculty of Medicine, St Vincents Clinical School (S.K.), UNSW Sydney, Randwick; Adelaide Medical School (C.S., M.H.N.T.), University of Adelaide; Kolling Institute (R.L.D.), University of Sydney; SWSLHD Liverpool Hospital (A.C.), Liverpool; and New South Wales Health Pathology Randwick Genomics Laboratory (T.R., E.K.), Australia
| |
Collapse
|
38
|
Affiliation(s)
- Diana Baralle
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Vardha Ismail
- Clinical Genetics, Southampton University Hospitals NHS Trust, Southampton, UK
| |
Collapse
|
39
|
Ki CS. Recent Advances in the Clinical Application of Next-Generation Sequencing. Pediatr Gastroenterol Hepatol Nutr 2021; 24:1-6. [PMID: 33505888 PMCID: PMC7813577 DOI: 10.5223/pghn.2021.24.1.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023] Open
Abstract
Next-generation sequencing (NGS) technologies have changed the process of genetic diagnosis from a gene-by-gene approach to syndrome-based diagnostic gene panel sequencing (DPS), diagnostic exome sequencing (DES), and diagnostic genome sequencing (DGS). A priori information on the causative genes that might underlie a genetic condition is a prerequisite for genetic diagnosis before conducting clinical NGS tests. Theoretically, DPS, DES, and DGS do not require any information on specific candidate genes. Therefore, clinical NGS tests sometimes detect disease-related pathogenic variants in genes underlying different conditions from the initial diagnosis. These clinical NGS tests are expensive, but they can be a cost-effective approach for the rapid diagnosis of rare disorders with genetic heterogeneity, such as the glycogen storage disease, familial intrahepatic cholestasis, lysosomal storage disease, and primary immunodeficiency. In addition, DES or DGS may find novel genes that that were previously not linked to human diseases.
Collapse
|
40
|
Hong SY, Yang JJ, Li SY, Lee IC. A Wide Spectrum of Genetic Disorders Causing Severe Childhood Epilepsy in Taiwan: A Case Series of Ultrarare Genetic Cause and Novel Mutation Analysis in a Pilot Study. J Pers Med 2020; 10:jpm10040281. [PMID: 33333793 PMCID: PMC7765181 DOI: 10.3390/jpm10040281] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Pediatric epileptic encephalopathy and severe neurological disorders comprise a group of heterogenous diseases. We used whole-exome sequencing (WES) to identify genetic defects in pediatric patients. METHODS Patients with refractory seizures using ≥2 antiepileptic drugs (AEDs) receiving one AED and having neurodevelopmental regression or having severe neurological or neuromuscular disorders with unidentified causes were enrolled, of which 54 patients fulfilled the inclusion criteria, were enrolled, and underwent WES. RESULTS Genetic diagnoses were confirmed in 24 patients. In the seizure group, KCNQ2, SCN1A, TBCID 24, GRIN1, IRF2BPL, MECP2, OSGEP, PACS1, PIGA, PPP1CB, SMARCA4, SUOX, SZT2, UBE3A, 16p13.11 microdeletion, [4p16.3p16.1(68,345-7,739,782)X1, 17q25.1q25.3(73,608,322-81,041,938)X3], and LAMA2 were identified. In the nonseizure group, SCN2A, SPTBN2, DMD, and FBN1 were identified. Ten novel mutations were identified. The recurrent genes included SCN1A, KCNQ2, and TBCID24. Male pediatric patients had a significantly higher (57% vs. 29%; p < 0.05, odds ratio = 3.18) yield than their female counterparts. Seventeen genes were identified from the seizure groups, of which 82% were rare genetic etiologies for childhood seizure and did not appear recurrently in the case series. CONCLUSIONS Wide genetic variation was identified for severe childhood seizures by WES. WES had a high yield, particularly in male infantile patients.
Collapse
Affiliation(s)
- Syuan-Yu Hong
- Division of Pediatric Neurology, Department of Pediatrics, Children’s Hospital, China Medical University Hospital, Taichung 40447, Taiwan;
| | - Jiann-Jou Yang
- Genetics Laboratory and Department of Biomedical Sciences, Chung Shan Medical University, Taichung 40201, Taiwan; (J.-J.Y.); (S.-Y.L.)
| | - Shuan-Yow Li
- Genetics Laboratory and Department of Biomedical Sciences, Chung Shan Medical University, Taichung 40201, Taiwan; (J.-J.Y.); (S.-Y.L.)
| | - Inn-Chi Lee
- Division of Pediatric Neurology, Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
- Institute of Medicine, School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
- Correspondence: ; Tel.: +886-4-2473-9535; Fax: +886-4-2471-0934
| |
Collapse
|
41
|
Matricardi S, De Liso P, Freri E, Costa P, Castellotti B, Magri S, Gellera C, Granata T, Musante L, Lesca G, Oertel J, Craiu D, Hammer TB, Møller RS, Barisic N, Abou Jamra R, Polster T, Vigevano F, Marini C. Neonatal developmental and epileptic encephalopathy due to autosomal recessive variants in
SLC13A5
gene. Epilepsia 2020; 61:2474-2485. [DOI: 10.1111/epi.16699] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/18/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Sara Matricardi
- Department of Child Neuropsychiatry Children’s Hospital Ancona Italy
| | - Paola De Liso
- Department of Neuroscience Istituto di Ricovero e Cura a Carattere Scientifico Bambino Gesù Children's Hospital Rome Italy
| | - Elena Freri
- Department of Pediatric Neuroscience Istituto di Ricovero e Cura a Carattere Scientifico Foundation Carlo Besta Neurological Institute Milan Italy
| | - Paola Costa
- Department of Neuropsychiatry Institute for Maternal and Child Health Istituto di Ricovero e Cura a Carattere Scientifico Burlo Garofolo Trieste Italy
| | - Barbara Castellotti
- Unit of Medical Genetics and Neurogenetics Istituto di Ricovero e Cura a Carattere Scientifico Foundation Carlo Besta Neurological Institute Milan Italy
| | - Stefania Magri
- Unit of Medical Genetics and Neurogenetics Istituto di Ricovero e Cura a Carattere Scientifico Foundation Carlo Besta Neurological Institute Milan Italy
| | - Cinzia Gellera
- Unit of Medical Genetics and Neurogenetics Istituto di Ricovero e Cura a Carattere Scientifico Foundation Carlo Besta Neurological Institute Milan Italy
| | - Tiziana Granata
- Department of Pediatric Neuroscience Istituto di Ricovero e Cura a Carattere Scientifico Foundation Carlo Besta Neurological Institute Milan Italy
| | - Luciana Musante
- Department of Medical Genetics Institute for Maternal and Child Health Istituto di Ricovero e Cura a Carattere Scientifico Burlo Garofolo Trieste Italy
| | - Gaetan Lesca
- Department of Medical Genetics Lyon Civil Hospices Lyon France
| | - Julie Oertel
- Department of Medical Genetics Archet Hospital 2, Nice University Hospital Center Nice France
| | - Dana Craiu
- Department of Clinical Neurosciences Carol Davila University of Medicine and Pharmacy Bucharest Bucharest Romania
- Pediatric Neurology Clinic Alexandru Obregia Hospital Bucharest Romania
| | | | - Rikke S. Møller
- Danish Epilepsy Center Filadelfia Dianalund Denmark
- Institute for Regional Health Services University of Southern Denmark Odense Denmark
| | - Nina Barisic
- Division of Child Neurology Department of Pediatrics Clinical Medical Center Zagreb University of Zagreb Medical School Zagreb Croatia
| | - Rami Abou Jamra
- Institute of Human Genetics University Medical Center Leipzig Leipzig Germany
| | - Tilman Polster
- Pediatric Epileptology Mara HospitalBethel Epilepsy Center Bielefeld Germany
| | - Federico Vigevano
- Department of Neuroscience Istituto di Ricovero e Cura a Carattere Scientifico Bambino Gesù Children's Hospital Rome Italy
| | - Carla Marini
- Department of Child Neuropsychiatry Children’s Hospital Ancona Italy
| |
Collapse
|
42
|
Sun J, Zhang Y, Wang M, Guan Q, Yang X, Ou JX, Yan M, Wang C, Zhang Y, Li ZH, Lan C, Mao C, Zhou HW, Hao B, Zhang Z. The Biological Significance of Multi-copy Regions and Their Impact on Variant Discovery. GENOMICS, PROTEOMICS & BIOINFORMATICS 2020; 18:516-524. [PMID: 32827758 PMCID: PMC8377240 DOI: 10.1016/j.gpb.2019.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/07/2019] [Accepted: 06/06/2019] [Indexed: 11/23/2022]
Abstract
Identification of genetic variants via high-throughput sequencing (HTS) technologies has been essential for both fundamental and clinical studies. However, to what extent the genome sequence composition affects variant calling remains unclear. In this study, we identified 63,897 multi-copy sequences (MCSs) with a minimum length of 300 bp, each of which occurs at least twice in the human genome. The 151,749 genomic loci (multi-copy regions, or MCRs) harboring these MCSs account for 1.98% of the genome and are distributed unevenly across chromosomes. MCRs containing the same MCS tend to be located on the same chromosome. Gene Ontology (GO) analyses revealed that 3800 genes whose UTRs or exons overlap with MCRs are enriched for Golgi-related cellular component terms and various enzymatic activities in the GO biological function category. MCRs are also enriched for loci that are sensitive to neocarzinostatin-induced double-strand breaks. Moreover, genetic variants discovered by genome-wide association studies and recorded in dbSNP are significantly underrepresented in MCRs. Using simulated HTS datasets, we show that false variant discovery rates are significantly higher in MCRs than in other genomic regions. These results suggest that extra caution must be taken when identifying genetic variants in the MCRs via HTS technologies.
Collapse
Affiliation(s)
- Jing Sun
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China; Center for Precision Medicine, Shunde Hospital of Southern Medical University, Foshan 528399, China
| | - Yanfang Zhang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China
| | - Minhui Wang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Qian Guan
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Xiujia Yang
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China
| | - Jin Xia Ou
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Mingchen Yan
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Chengrui Wang
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yan Zhang
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhi-Hao Li
- Division of Epidemiology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Chunhong Lan
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China; Center for Precision Medicine, Shunde Hospital of Southern Medical University, Foshan 528399, China
| | - Chen Mao
- Division of Epidemiology, School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Hong-Wei Zhou
- Microbiome Medicine Center, Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Bingtao Hao
- Center for Precision Medicine, Shunde Hospital of Southern Medical University, Foshan 528399, China.
| | - Zhenhai Zhang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou 510515, China; Center for Precision Medicine, Shunde Hospital of Southern Medical University, Foshan 528399, China.
| |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW Seizures can arise in neocortical, thalamocortical, limbic or brainstem networks. Here, we review recent genetic mechanisms implicated in focal and genetic generalized epilepsies (GGEs). RECENT FINDINGS Pathogenic variation in GAP activity toward RAGs 1 (GATOR1) complex genes (i.e., DEPDC5, NPRL2 and NPRL3) mainly result in focal epilepsies. They are associated with high rates of sudden unexpected death in epilepsy and malformations of cortical development (MCD), where "two-hits" in GATOR1-related pathways are also found in MCDs. Large-scale sequencing studies continue to reveal new genetic risk (germline or somatic) variants, and new genes relevant to epileptic encephalopathies (EEs). Genes previously associated with EEs, including GABAA receptor genes, are now known to play a role in both common focal and GGEs in individuals without intellectual disabilities. These findings suggest that there may be a common pathophysiological mechanism in GGEs and focal epilepsies. Finally, polygenic risk scores, based on common genetic variation, offer promise in helping to differentiate between GGEs and common forms of focal epilepsies. Genetic abnormalities are a significant cause of common sporadic epilepsies, epilepsies associated with inflammatory markers, and focal epilepsies with or without MCD. Future studies using genome sequencing may provide more answers to the remaining unresolved epilepsy cases.
Collapse
|
44
|
Richter F, Morton SU, Kim SW, Kitaygorodsky A, Wasson LK, Chen KM, Zhou J, Qi H, Patel N, DePalma SR, Parfenov M, Homsy J, Gorham JM, Manheimer KB, Velinder M, Farrell A, Marth G, Schadt EE, Kaltman JR, Newburger JW, Giardini A, Goldmuntz E, Brueckner M, Kim R, Porter GA, Bernstein D, Chung WK, Srivastava D, Tristani-Firouzi M, Troyanskaya OG, Dickel DE, Shen Y, Seidman JG, Seidman CE, Gelb BD. Genomic analyses implicate noncoding de novo variants in congenital heart disease. Nat Genet 2020; 52:769-777. [PMID: 32601476 PMCID: PMC7415662 DOI: 10.1038/s41588-020-0652-z] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 05/22/2020] [Indexed: 02/07/2023]
Abstract
A genetic etiology is identified for one-third of patients with congenital heart disease (CHD), with 8% of cases attributable to coding de novo variants (DNVs). To assess the contribution of noncoding DNVs to CHD, we compared genome sequences from 749 CHD probands and their parents with those from 1,611 unaffected trios. Neural network prediction of noncoding DNV transcriptional impact identified a burden of DNVs in individuals with CHD (n = 2,238 DNVs) compared to controls (n = 4,177; P = 8.7 × 10-4). Independent analyses of enhancers showed an excess of DNVs in associated genes (27 genes versus 3.7 expected, P = 1 × 10-5). We observed significant overlap between these transcription-based approaches (odds ratio (OR) = 2.5, 95% confidence interval (CI) 1.1-5.0, P = 5.4 × 10-3). CHD DNVs altered transcription levels in 5 of 31 enhancers assayed. Finally, we observed a DNV burden in RNA-binding-protein regulatory sites (OR = 1.13, 95% CI 1.1-1.2, P = 8.8 × 10-5). Our findings demonstrate an enrichment of potentially disruptive regulatory noncoding DNVs in a fraction of CHD at least as high as that observed for damaging coding DNVs.
Collapse
Affiliation(s)
- Felix Richter
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sarah U Morton
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Seong Won Kim
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Alexander Kitaygorodsky
- Departments of Systems Biology and Biomedical Informatics, Columbia University, New York, NY, USA
| | - Lauren K Wasson
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | | | - Jian Zhou
- Flatiron Institute, Simons Foundation, New York, NY, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hongjian Qi
- Departments of Systems Biology and Biomedical Informatics, Columbia University, New York, NY, USA
| | - Nihir Patel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | - Jason Homsy
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Center for External Innovation, Takeda Pharmaceuticals USA, Cambridge, MA, USA
| | - Joshua M Gorham
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Kathryn B Manheimer
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Sema4, Stamford, CT, USA
| | - Matthew Velinder
- Department of Human Genetics, Utah Center for Genetic Discovery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Andrew Farrell
- Department of Human Genetics, Utah Center for Genetic Discovery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Gabor Marth
- Department of Human Genetics, Utah Center for Genetic Discovery, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Eric E Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Sema4, Stamford, CT, USA
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jonathan R Kaltman
- Heart Development and Structural Diseases Branch, Division of Cardiovascular Sciences, NHLBI/NIH, Bethesda, MD, USA
| | | | | | - Elizabeth Goldmuntz
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Martina Brueckner
- Departments of Pediatrics and Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Richard Kim
- Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - George A Porter
- Department of Pediatrics, University of Rochester, Rochester, NY, USA
| | - Daniel Bernstein
- Department of Pediatrics, Stanford University, Palo Alto, CA, USA
| | - Wendy K Chung
- Departments of Pediatrics and Medicine, Columbia University Medical Center, New York, NY, USA
| | - Deepak Srivastava
- Gladstone Institute of Cardiovascular Disease and University of California San Francisco, San Francisco, CA, USA
| | - Martin Tristani-Firouzi
- Division of Pediatric Cardiology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Olga G Troyanskaya
- Flatiron Institute, Simons Foundation, New York, NY, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Computer Science, Princeton University, Princeton, NJ, USA
| | - Diane E Dickel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Lab, Berkeley, CA, USA
| | - Yufeng Shen
- Departments of Systems Biology and Biomedical Informatics, Columbia University, New York, NY, USA
| | | | - Christine E Seidman
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Cardiology, Brigham and Women's Hospital, Boston, MA, USA
| | - Bruce D Gelb
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
45
|
Chiang KL, Huang CY, Hsieh LP, Chang KP. A propositional AI system for supporting epilepsy diagnosis based on the 2017 epilepsy classification: Illustrated by Dravet syndrome. Epilepsy Behav 2020; 106:107021. [PMID: 32224446 DOI: 10.1016/j.yebeh.2020.107021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 03/02/2020] [Accepted: 03/02/2020] [Indexed: 01/01/2023]
Abstract
PURPOSE The 2017 epilepsy and seizure diagnosis framework emphasizes epilepsy syndromes and the etiology-based approach. We developed a propositional artificial intelligence (AI) system based on the above concepts to support physicians in the diagnosis of epilepsy. METHODS We analyzed and built ontology knowledge for the classification of seizure patterns, epilepsy, epilepsy syndrome, and etiologies. Protégé ontology tool was applied in this study. In order to enable the system to be close to the inferential thinking of clinical experts, we classified and constructed knowledge of other epilepsy-related knowledge, including comorbidities, epilepsy imitators, epilepsy descriptors, characteristic electroencephalography (EEG) findings, treatments, etc. We used the Ontology Web Language with Description Logic (OWL-DL) and Semantic Web Rule Language (SWRL) to design rules for expressing the relationship between these ontologies. RESULTS Dravet syndrome was taken as an illustration for epilepsy syndromes implementation. We designed an interface for the physician to enter the various characteristics of the patients. Clinical data of an 18-year-old boy with epilepsy was applied to the AI system. Through SWRL and reasoning engine Drool's execution, we successfully demonstrate the process of differential diagnosis. CONCLUSION We developed a propositional AI system by using the OWL-DL/SWRL approach to deal with the complexity of current epilepsy diagnosis. The experience of this system, centered on the clinical epilepsy syndromes, paves a path to construct an AI system for further complicated epilepsy diagnosis.
Collapse
Affiliation(s)
- Kuo-Liang Chiang
- Department of Pediatric Neurology, Kuang-Tien General Hospital, No. 117, Shatian Road, Shalu District, Taichung 43303, Taiwan; Department of Nutrition, Hungkuang University, No. 1018, Section 6, Taiwan Boulevard, Shalu District, Taichung 43302, Taiwan; Department of Industrial Engineering and Enterprise Information, Tunghai University, P.O. Box 985, Taichung 40704, Taiwan.
| | - Chin-Yin Huang
- Department of Industrial Engineering and Enterprise Information, Tunghai University, P.O. Box 985, Taichung 40704, Taiwan; Program for Health Administration, Tunghai University, P.O. Box 985, Taichung 40704, Taiwan.
| | - Liang-Po Hsieh
- Department of Neurology, Cheng-Ching Hospital, No. 966, Section 4, Taiwan Boulevard, Xitun District, Taichung 40764, Taiwan
| | - Kai-Ping Chang
- Department of Pediatric Neurology, Taipei Veterans General Hospital, No.201, Section 2, Shipai Rd., Beitou District, Taipei 11217, Taiwan
| |
Collapse
|
46
|
Carvill GL, Helbig KL, Myers CT, Scala M, Huether R, Lewis S, Kruer TN, Guida BS, Bakhtiari S, Sebe J, Tang S, Stickney H, Oktay SU, Bhandiwad AA, Ramsey K, Narayanan V, Feyma T, Rohena LO, Accogli A, Severino M, Hollingsworth G, Gill D, Depienne C, Nava C, Sadleir LG, Caruso PA, Lin AE, Jansen FE, Koeleman B, Brilstra E, Willemsen MH, Kleefstra T, Sa J, Mathieu ML, Perrin L, Lesca G, Striano P, Casari G, Scheffer IE, Raible D, Sattlegger E, Capra V, Padilla-Lopez S, Mefford HC, Kruer MC. Damaging de novo missense variants in EEF1A2 lead to a developmental and degenerative epileptic-dyskinetic encephalopathy. Hum Mutat 2020; 41:1263-1279. [PMID: 32196822 DOI: 10.1002/humu.24015] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 02/14/2020] [Accepted: 03/13/2020] [Indexed: 11/08/2022]
Abstract
Heterozygous de novo variants in the eukaryotic elongation factor EEF1A2 have previously been described in association with intellectual disability and epilepsy but never functionally validated. Here we report 14 new individuals with heterozygous EEF1A2 variants. We functionally validate multiple variants as protein-damaging using heterologous expression and complementation analysis. Our findings allow us to confirm multiple variants as pathogenic and broaden the phenotypic spectrum to include dystonia/choreoathetosis, and in some cases a degenerative course with cerebral and cerebellar atrophy. Pathogenic variants appear to act via a haploinsufficiency mechanism, disrupting both the protein synthesis and integrated stress response functions of EEF1A2. Our studies provide evidence that EEF1A2 is highly intolerant to variation and that de novo pathogenic variants lead to an epileptic-dyskinetic encephalopathy with both neurodevelopmental and neurodegenerative features. Developmental features may be driven by impaired synaptic protein synthesis during early brain development while progressive symptoms may be linked to an impaired ability to handle cytotoxic stressors.
Collapse
Affiliation(s)
- Gemma L Carvill
- Ken and Ruth Davee Department of Neurology, Northwestern University, Chicago, Illinois
| | - Katherine L Helbig
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,The Epilepsy NeuroGenetics Initiative, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Candace T Myers
- Division of Genetic Medicine, Department of Pediatrics, Seattle, Washington
| | - Marcello Scala
- Department of Pediatric Neurology & Muscular Disorders, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università degli Studi di Genova, Genoa, Italy
| | - Robert Huether
- Division of Clinical Genomics, Ambry Genetics, Aliso Viejo, California
| | - Sara Lewis
- Barrow Neurological Institute, Department of Neurology, Phoenix Children's Hospital, Phoenix, Arizona.,Departments of Child Health, Cellular & Molecular Medicine, and Neurology and Program in Genetics, University of Arizona College of Medicine Phoenix, Phoenix, Arizona
| | - Tyler N Kruer
- Barrow Neurological Institute, Department of Neurology, Phoenix Children's Hospital, Phoenix, Arizona.,Departments of Child Health, Cellular & Molecular Medicine, and Neurology and Program in Genetics, University of Arizona College of Medicine Phoenix, Phoenix, Arizona
| | - Brandon S Guida
- Barrow Neurological Institute, Department of Neurology, Phoenix Children's Hospital, Phoenix, Arizona.,Departments of Child Health, Cellular & Molecular Medicine, and Neurology and Program in Genetics, University of Arizona College of Medicine Phoenix, Phoenix, Arizona
| | - Somayeh Bakhtiari
- Barrow Neurological Institute, Department of Neurology, Phoenix Children's Hospital, Phoenix, Arizona.,Departments of Child Health, Cellular & Molecular Medicine, and Neurology and Program in Genetics, University of Arizona College of Medicine Phoenix, Phoenix, Arizona
| | - Joy Sebe
- Department of Biology, University of Washington, Seattle, Washington.,Department of Biological Structure, University of Washington, Seattle, Washington
| | - Sha Tang
- Division of Clinical Genomics, Ambry Genetics, Aliso Viejo, California
| | - Heather Stickney
- Department of Biological Structure, University of Washington, Seattle, Washington
| | - Sehribani Ulusoy Oktay
- Department of Biology, University of Washington, Seattle, Washington.,Department of Biological Structure, University of Washington, Seattle, Washington
| | - Ashwin A Bhandiwad
- Department of Biological Structure, University of Washington, Seattle, Washington
| | - Keri Ramsey
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, Arizona
| | - Vinodh Narayanan
- Center for Rare Childhood Disorders, Translational Genomics Research Institute, Phoenix, Arizona
| | - Timothy Feyma
- Department of Neurology, Gillette Children's Specialty Healthcare, St. Paul, Minnesota
| | - Luis O Rohena
- Department of Pediatrics, Division of Genetics, San Antonio Military Medical Center, San Antonio, Texas.,Department of Pediatrics, Long School of Medicine, University of Texas, San Antonio, Texas
| | - Andrea Accogli
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università degli Studi di Genova, Genoa, Italy.,Medical Genetics Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Mariasavina Severino
- Department of Pediatric Neurology & Muscular Disorders, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini, Genoa, Italy
| | - Georgina Hollingsworth
- Departments of Medicine and Paediatrics, University of Melbourne and Austin Health Royal Children's Hospital, Melbourne, Australia
| | - Deepak Gill
- Ty Nelson Department of Neurology, The Children's Hospital at Westmead, Sydney, New South Wales, Australia
| | - Christel Depienne
- INSERM UMR 975, Institut du Cerveau et de la Moelle Epinière, Hôpital Pitié-Salpêtrière, Paris, France
| | - Caroline Nava
- INSERM UMR 975, Institut du Cerveau et de la Moelle Epinière, Hôpital Pitié-Salpêtrière, Paris, France
| | - Lynette G Sadleir
- Department of Paediatrics and Child Health, University of Otago Wellington, Wellington South, New Zealand
| | - Paul A Caruso
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston
| | - Angela E Lin
- Medical Genetics, Department of Pediatrics, MassGeneral Hospital for Children, Harvard Medical School, Boston, Massachusetts
| | - Floor E Jansen
- Department of Pediatric Neurology, University Medical Center, Utrecht, The Netherlands
| | - Bobby Koeleman
- Department of Pediatric Neurology, University Medical Center, Utrecht, The Netherlands
| | - Eva Brilstra
- Department of Genetics, Utrecht University, Utrecht, The Netherlands
| | - Marjolein H Willemsen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tjitske Kleefstra
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joaquim Sa
- Serviço de Genética Médica, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Marie-Laure Mathieu
- Neuropaediatrics Department, Femme Mère Enfant Hospital, Lyon, France.,Claude Bernard Lyon 1 University, Lyon, France
| | - Laurine Perrin
- Department of Paediatric Physical Medicine and Rehabilitation, CHU Saint-Etienne, Hôpital Bellevue, Saint-Étienne, France
| | - Gaetan Lesca
- CRNL Inserm U1028-CNRS UMR5292-Claude Bernard University Lyon 1, Lyon, France.,Department of Medical Genetics, Lyon University Hospital, Lyon, France
| | - Pasquale Striano
- Department of Pediatric Neurology & Muscular Disorders, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università degli Studi di Genova, Genoa, Italy
| | - Giorgio Casari
- Department of Pediatric Neurology & Muscular Disorders, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Università degli Studi di Genova, Genoa, Italy
| | - Ingrid E Scheffer
- Departments of Medicine and Paediatrics, University of Melbourne and Austin Health Royal Children's Hospital, Melbourne, Australia
| | - David Raible
- Department of Biology, University of Washington, Seattle, Washington.,Department of Biological Structure, University of Washington, Seattle, Washington
| | - Evelyn Sattlegger
- School of Natural & Computational Sciences, Massey University, Auckland, New Zealand
| | - Valeria Capra
- Department of Pediatric Neurology & Muscular Disorders, IRCCS Istituto Giannina Gaslini, Via Gerolamo Gaslini, Genoa, Italy
| | - Sergio Padilla-Lopez
- Barrow Neurological Institute, Department of Neurology, Phoenix Children's Hospital, Phoenix, Arizona.,Departments of Child Health, Cellular & Molecular Medicine, and Neurology and Program in Genetics, University of Arizona College of Medicine Phoenix, Phoenix, Arizona
| | - Heather C Mefford
- Division of Genetic Medicine, Department of Pediatrics, Seattle, Washington
| | - Michael C Kruer
- Barrow Neurological Institute, Department of Neurology, Phoenix Children's Hospital, Phoenix, Arizona.,Departments of Child Health, Cellular & Molecular Medicine, and Neurology and Program in Genetics, University of Arizona College of Medicine Phoenix, Phoenix, Arizona
| |
Collapse
|
47
|
Long K, Wang H, Song Z, Yin X, Wang Y. EEF1A2 mutations in epileptic encephalopathy/intellectual disability: Understanding the potential mechanism of phenotypic variation. Epilepsy Behav 2020; 105:106955. [PMID: 32062104 DOI: 10.1016/j.yebeh.2020.106955] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/27/2020] [Accepted: 01/27/2020] [Indexed: 10/25/2022]
Abstract
EEF1A2 encodes protein elongation factor 1-alpha 2, which is involved in Guanosine triphosphate (GTP)-dependent binding of aminoacyl-transfer RNA (tRNA) to the A-site of ribosomes during protein biosynthesis and is highly expressed in the central nervous system. De novo mutations in EEF1A2 have been identified in patients with extensive neurological deficits, including intractable epilepsy, globe developmental delay, and severe intellectual disability. However, the mechanism underlying phenotype variation is unknown. Using next-generation sequencing, we identified a novel and a recurrent de novo mutation, c.294C>A; p.(Phe98Leu) and c.208G>A; p.(Gly70Ser), in patients with Lennox-Gastaut syndrome. The further systematic analysis revealed that all EEF1A2 mutations were associated with epilepsy and intellectual disability, suggesting its critical role in neurodevelopment. Missense mutations with severe molecular alteration in the t-RNA binding sites or GTP hydrolysis domain were associated with early-onset severe epilepsy, indicating that the clinical expression was potentially determined by the location of mutations and alteration of molecular effects. This study highlights the potential genotype-phenotype relationship in EEF1A2 and facilitates the evaluation of the pathogenicity of EEF1A2 mutations in clinical practice.
Collapse
Affiliation(s)
- Kexin Long
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hua Wang
- Maternal and Child Health Hospital of Hunan Province, Changsha, Hunan 410008, China; Key Laboratory of Birth Defects Research and Prevention, Changsha, Hunan 410008, China
| | - Zhanyi Song
- Med Department of Pediatric Neurology, Chenzhou No.1 People's Hospital (Children's Hospital), Chenzhou, Hunan 423000, China
| | - Xiaomeng Yin
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Yaqin Wang
- Department of Health Management Centre, the Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China.
| |
Collapse
|
48
|
Abstract
Developmental and epileptic encephalopathies (DEEs) can be primarily attributed to genetic causes. The genetic landscape of DEEs has been largely shaped by the rise of high-throughput sequencing, which led to the discovery of new DEE-associated genes and helped identify de novo pathogenic variants. We discuss briefly the contribution of de novo variants to DEE and also focus on alternative inheritance models that contribute to DEE. First, autosomal recessive inheritance in outbred populations may have a larger contribution than previously appreciated, accounting for up to 13% of DEEs. A small subset of genes that typically harbor de novo variants have been associated with recessive inheritance, and often these individuals have more severe clinical presentations. Additionally, pathogenic variants in X-linked genes have been identified in both affected males and females, possibly due to a lack of X-chromosome inactivation skewing. Collectively, exome sequencing has resulted in a molecular diagnosis for many individuals with DEE, but this still leaves many cases unsolved. Multiple factors contribute to the missing etiology, including nonexonic variants, mosaicism, epigenetics, and oligogenic inheritance. Here, we focus on the first 2 factors. We discuss the promises and challenges of genome sequencing, which allows for a more comprehensive analysis of the genome, including interpretation of structural and noncoding variants and also yields a high number of de novo variants for interpretation. We also consider the contribution of genetic mosaicism, both what it means for a molecular diagnosis in mosaic individuals and the important implications for genetic counseling.
Collapse
Affiliation(s)
- Hannah C Happ
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Gemma L Carvill
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
49
|
In silico analysis of the functional and structural consequences of SNPs in human ARX gene associated with EIEE1. INFORMATICS IN MEDICINE UNLOCKED 2020. [DOI: 10.1016/j.imu.2020.100447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
50
|
Khalyfa A, Sanz-Rubio D. Genetics and Extracellular Vesicles of Pediatrics Sleep Disordered Breathing and Epilepsy. Int J Mol Sci 2019; 20:ijms20215483. [PMID: 31689970 PMCID: PMC6862182 DOI: 10.3390/ijms20215483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/14/2019] [Accepted: 10/28/2019] [Indexed: 12/27/2022] Open
Abstract
Sleep remains one of the least understood phenomena in biology, and sleep disturbances are one of the most common behavioral problems in childhood. The etiology of sleep disorders is complex and involves both genetic and environmental factors. Epilepsy is the most popular childhood neurological condition and is characterized by an enduring predisposition to generate epileptic seizures, and the neurobiological, cognitive, psychological, and social consequences of this condition. Sleep and epilepsy are interrelated, and the importance of sleep in epilepsy is less known. The state of sleep also influences whether a seizure will occur at a given time, and this differs considerably for various epilepsy syndromes. The development of epilepsy has been associated with single or multiple gene variants. The genetics of epilepsy is complex and disorders exhibit significant genetic heterogeneity and variability in the expressivity of seizures. Phenobarbital (PhB) is the most widely used antiepileptic drug. With its principal mechanism of action to prolong the opening time of the γ-aminobutyric acid (GABA)-A receptor-associated chloride channel, it enhances chloride anion influx into neurons, with subsequent hyperpolarization, thereby reducing excitability. Enzymes that metabolize pharmaceuticals including PhB are well known for having genetic polymorphisms that contribute to adverse drug–drug interactions. PhB metabolism is highly dependent upon the cytochrome P450 (CYP450) and genetic polymorphisms can lead to variability in active drug levels. The highly polymorphic CYP2C19 isozymes are responsible for metabolizing a large portion of routinely prescribed drugs and variants contribute significantly to adverse drug reactions and therapeutic failures. A limited number of CYP2C19 single nucleotide polymorphisms (SNPs) are involved in drug metabolism. Extracellular vesicles (EVs) are circular membrane fragments released from the endosomal compartment as exosomes are shed from the surfaces of the membranes of most cell types. Increasing evidence indicated that EVs play a pivotal role in cell-to-cell communication. Theses EVs may play an important role between sleep, epilepsy, and treatments. The discovery of exosomes provides potential strategies for the diagnosis and treatment of many diseases including neurocognitive deficit. The aim of this study is to better understand and provide further knowledge about the metabolism and interactions between phenobarbital and CYP2C19 polymorphisms in children with epilepsy, interplay between sleep, and EVs. Understanding this interplay between epilepsy and sleep is helpful in the optimal treatment of all patients with epileptic seizures. The use of genetics and extracellular vesicles as precision medicine for the diagnosis and treatment of children with sleep disorder will improve the prognosis and the quality of life in patients with epilepsy.
Collapse
Affiliation(s)
- Abdelnaby Khalyfa
- Department of Pediatrics, Section of Sleep Medicine, The University of Chicago, Chicago, IL 60637, USA.
- Department of Child Health and the Child Health Research Institute, University of Missouri School of Medicine, Columbia, MO 65201, USA.
| | - David Sanz-Rubio
- Department of Child Health and the Child Health Research Institute, University of Missouri School of Medicine, Columbia, MO 65201, USA.
| |
Collapse
|