1
|
Nakamura M, Huang GN. Why some hearts heal and others don't: The phylogenetic landscape of cardiac regenerative capacity. Semin Cell Dev Biol 2025; 170:103609. [PMID: 40220599 DOI: 10.1016/j.semcdb.2025.103609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 03/03/2025] [Accepted: 03/31/2025] [Indexed: 04/14/2025]
Abstract
The limited ability of adult humans to replenish lost heart muscle cells after a heart attack has attracted scientists to explore natural heart regeneration capabilities in the animal kingdom. In particular, research has accelerated since the landmark discovery more than twenty years ago that zebrafish can completely regrow myocardial tissue. In this review, we survey heart regeneration studies in diverse model and non-model animals, aiming to gain insights into both the evolutionary trends in cardiac regenerative potential and the variations among closely related species. Differences in cardiomyogenesis, vasculature formation, and the communication between cardiovascular cells and other players have been investigated to understand the cellular basis, although the precise molecular and genetic causes underlying the stark differences in cardiac regenerative potential among certain close cousins remain largely unknown. By studying cardiovascular regeneration and repair in diverse organisms, we may uncover distinct mechanisms, offering new perspectives for advancing regenerative medicine.
Collapse
Affiliation(s)
- Makoto Nakamura
- Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco, San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, USA; Bakar Aging Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Guo N Huang
- Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco, San Francisco, CA, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, USA; Bakar Aging Research Institute, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
2
|
Koopmans T, van Rooij E. Molecular gatekeepers of endogenous adult mammalian cardiomyocyte proliferation. Nat Rev Cardiol 2025:10.1038/s41569-025-01145-y. [PMID: 40195566 DOI: 10.1038/s41569-025-01145-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/10/2025] [Indexed: 04/09/2025]
Abstract
Irreversible cardiac fibrosis, cardiomyocyte death and chronic cardiac dysfunction after myocardial infarction pose a substantial global health-care challenge, with no curative treatments available. To regenerate the injured heart, cardiomyocytes must proliferate to replace lost myocardial tissue - a capability that adult mammals have largely forfeited to adapt to the demanding conditions of life. Using various preclinical models, our understanding of cardiomyocyte proliferation has progressed remarkably, leading to the successful reactivation of cell cycle induction in adult animals, with functional recovery after cardiac injury. Central to this success is the targeting of key pathways and structures that drive cardiomyocyte maturation after birth - nucleation and ploidy, sarcomere structure, developmental signalling, chromatin and epigenetic regulation, the microenvironment and metabolic maturation - forming a complex regulatory framework that allows efficient cellular contraction but restricts cardiomyocyte proliferation. In this Review, we explore the molecular pathways underlying these core mechanisms and how their manipulation can reactivate the cell cycle in cardiomyocytes, potentially contributing to cardiac repair.
Collapse
Affiliation(s)
- Tim Koopmans
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, Netherlands
| | - Eva van Rooij
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, Netherlands.
- Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands.
| |
Collapse
|
3
|
Lantz C, Becker A, DeBerge M, Filipp M, Glinton K, Ananthakrishnan A, Urbanczyk J, Cetlin M, Alzamroon A, Abdel-Latif A, Spite M, Ge ZD, Thorp EB. Early-age efferocytosis directs macrophage arachidonic acid metabolism for tissue regeneration. Immunity 2025; 58:344-361.e7. [PMID: 39938482 PMCID: PMC11839170 DOI: 10.1016/j.immuni.2024.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/20/2024] [Accepted: 11/21/2024] [Indexed: 02/14/2025]
Abstract
In response to organ injury in adults, macrophages often promote scarring, yet during early life, they are required for tissue regeneration. To elucidate the mechanisms underlying age-associated regeneration, we compared the macrophage injury response in newborn versus adult hearts. Single-cell analysis revealed an accumulation of tissue-resident macrophages in neonates that were selectively polarized for apoptotic cell recognition and uptake (efferocytosis). Ablation of the apoptotic cell recognition receptor Mertk in newborns prevented cardiac regeneration. These findings could be attributed to reprogramming of macrophage gene expression that was required for biosynthesis of the eicosanoid thromboxane A2, which unexpectedly activated parenchymal cell proliferation. Markers of thromboxane A2 production were suppressed in adult macrophages after efferocytosis. Moreover, macrophage-neighboring neonatal cardiomyocytes expressed the thromboxane A2 receptor, whose activation induced a metabolic shift that supported cellular proliferation. Our data reveal a fundamental age-defined macrophage response in which lipid mitogens produced during efferocytosis support receptor-mediated tissue regeneration.
Collapse
Affiliation(s)
- Connor Lantz
- Department of Pathology, Feinberg School of Medicine, Chicago, IL 60611, USA; Comprehensive Transplant Center, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA.
| | - Amanda Becker
- Department of Pediatrics, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Matthew DeBerge
- Department of Pathology, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Mallory Filipp
- Department of Pathology, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kristofor Glinton
- Department of Pathology, Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | - Jessica Urbanczyk
- Department of Pathology, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Madeline Cetlin
- Department of Pathology, Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | - Matthew Spite
- Center for Experimental Therapeutics and Reperfusion Injury, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Zhi-Dong Ge
- Department of Pathology, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Edward B Thorp
- Department of Pathology, Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Pediatrics, Feinberg School of Medicine, Chicago, IL 60611, USA; Heart Center, Stanley Manne Children's Research Institute, Ann & Robert Lurie Children's Hospital, Chicago, IL 60611, USA; Comprehensive Transplant Center, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
4
|
Kidd BM, Varholick JA, Tuyn DM, Kamat PK, Simon ZD, Liu L, Mekler MP, Pompilus M, Bubenik JL, Davenport ML, Carter HA, Grudny MM, Barbazuk WB, Doré S, Febo M, Candelario-Jalil E, Maden M, Swanson MS. Stroke-induced neuroplasticity in spiny mice in the absence of tissue regeneration. NPJ Regen Med 2024; 9:41. [PMID: 39706830 PMCID: PMC11662029 DOI: 10.1038/s41536-024-00386-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024] Open
Abstract
Stroke is a major cause of disability for adults over 40 years of age. While research into animal models has prioritized treatments aimed at diminishing post-stroke damage, no studies have investigated the response to a severe stroke injury in a highly regenerative adult mammal. Here we investigate the effects of transient ischemia on adult spiny mice, Acomys cahirinus, due to their ability to regenerate multiple tissues without scarring. Transient middle cerebral artery occlusion was performed and Acomys showed rapid behavioral recovery post-stroke yet failed to regenerate impacted brain regions. An Acomys brain atlas in combination with functional (f)MRI demonstrated recovery coincides with neuroplasticity. The strength and quality of the global connectome are preserved post-injury with distinct contralateral and ipsilateral brain regions compensating for lost tissue. Thus, we propose Acomys recovers functionally from an ischemic stroke injury not by tissue regeneration but by altering its brain connectome.
Collapse
Affiliation(s)
- Benjamin M Kidd
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL, USA
- Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Justin A Varholick
- Department of Biology, College of Liberal Arts and Sciences and the Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Dana M Tuyn
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL, USA
| | - Pradip K Kamat
- Departments of Anesthesiology, Neurology, Psychology, and Pharmaceutics, Center for Translational Research in Neurodegenerative Disease, and the College of Medicine, University of Florida, Gainesville, FL, USA
| | - Zachary D Simon
- Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
- Department of Psychiatry and the McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Lei Liu
- Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Mackenzie P Mekler
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL, USA
| | - Marjory Pompilus
- Department of Psychiatry and the McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Jodi L Bubenik
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL, USA
| | - Mackenzie L Davenport
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL, USA
| | - Helmut A Carter
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL, USA
| | - Matteo M Grudny
- Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
- Department of Psychiatry and the McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - W Brad Barbazuk
- Department of Biology, College of Liberal Arts and Sciences and the Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Sylvain Doré
- Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
- Departments of Anesthesiology, Neurology, Psychology, and Pharmaceutics, Center for Translational Research in Neurodegenerative Disease, and the College of Medicine, University of Florida, Gainesville, FL, USA
- Department of Psychiatry and the McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Marcelo Febo
- Department of Psychiatry and the McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Eduardo Candelario-Jalil
- Department of Neuroscience, McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Malcolm Maden
- Department of Biology, College of Liberal Arts and Sciences and the Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Maurice S Swanson
- Department of Molecular Genetics and Microbiology, Center for NeuroGenetics and the Genetics Institute, University of Florida, College of Medicine, Gainesville, FL, USA.
| |
Collapse
|
5
|
Davenport ML, Fong A, Albury KN, Henley-Beasley CS, Barton ER, Maden M, Swanson MS. Spiny mice are primed but fail to regenerate volumetric skeletal muscle loss injuries. Skelet Muscle 2024; 14:26. [PMID: 39468576 PMCID: PMC11520498 DOI: 10.1186/s13395-024-00358-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/20/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND In recent years, the African spiny mouse Acomys cahirinus has been shown to regenerate a remarkable array of severe internal and external injuries in the absence of a fibrotic response, including the ability to regenerate full-thickness skin excisions, ear punches, severe kidney injuries, and complete transection of the spinal cord. While skeletal muscle is highly regenerative in adult mammals, Acomys displays superior muscle regeneration properties compared with standard laboratory mice following several injuries, including serial cardiotoxin injections of skeletal muscle and volumetric muscle loss (VML) of the panniculus carnosus muscle following full-thickness excision injuries. VML is an extreme muscle injury defined as the irrecoverable ablation of muscle mass, most commonly resulting from combat injuries or surgical debridement. Barriers to the treatment of VML injury include early and prolonged inflammatory responses that promote fibrotic repair and the loss of structural and mechanical cues that promote muscle regeneration. While the regeneration of the panniculus carnosus in Acomys is impressive, its direct relevance to the study of VML in patients is less clear as this muscle has largely been lost in humans, and, while striated, is not a true skeletal muscle. We therefore sought to test the ability of Acomys to regenerate a skeletal muscle more commonly used in VML injury models. METHODS We performed two different VML injuries of the Acomys tibialis anterior muscle and compared the regenerative response to a standard laboratory mouse strain, Mus C57BL6/J. RESULTS Neither Acomys nor Mus recovered lost muscle mass or myofiber number within three months following VML injury, and Acomys also failed to recover force production better than Mus. In contrast, Acomys continued to express eMHC within the injured area even three months following injury, whereas Mus ceased expressing eMHC less than one-month post-injury, suggesting that Acomys muscle was primed, but failed, to regenerate. CONCLUSIONS While the panniculus carnosus muscle in Acomys regenerates following VML injury in the context of full-thickness skin excision, this regenerative ability does not translate to regenerative repair of a skeletal muscle.
Collapse
Affiliation(s)
- Mackenzie L Davenport
- Department of Molecular Genetics and Microbiology, University of Florida, College of Medicine, Gainesville, FL, 32610, USA.
- Center for NeuroGenetics, University of Florida, Gainesville, FL, 32610, USA.
- UF Genetics Institute, University of Florida, Gainesville, FL, 32610, USA.
- Myology Institute, University of Florida, Gainesville, FL, USA.
| | - Amaya Fong
- Department of Molecular Genetics and Microbiology, University of Florida, College of Medicine, Gainesville, FL, 32610, USA
- Center for NeuroGenetics, University of Florida, Gainesville, FL, 32610, USA
- UF Genetics Institute, University of Florida, Gainesville, FL, 32610, USA
| | - Kaela N Albury
- Department of Molecular Genetics and Microbiology, University of Florida, College of Medicine, Gainesville, FL, 32610, USA
- Center for NeuroGenetics, University of Florida, Gainesville, FL, 32610, USA
- UF Genetics Institute, University of Florida, Gainesville, FL, 32610, USA
| | - C Spencer Henley-Beasley
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, USA
- Myology Institute, University of Florida, Gainesville, FL, USA
| | - Elisabeth R Barton
- Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, FL, USA
- Myology Institute, University of Florida, Gainesville, FL, USA
| | - Malcolm Maden
- UF Genetics Institute, University of Florida, Gainesville, FL, 32610, USA
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Maurice S Swanson
- Department of Molecular Genetics and Microbiology, University of Florida, College of Medicine, Gainesville, FL, 32610, USA.
- Center for NeuroGenetics, University of Florida, Gainesville, FL, 32610, USA.
- UF Genetics Institute, University of Florida, Gainesville, FL, 32610, USA.
- Myology Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
6
|
Santoso F, De Leon MP, Kao WC, Chu WC, Roan HY, Lee GH, Tang MJ, Cheng JY, Chen CH. Appendage-resident epithelial cells expedite wound healing response in adult zebrafish. Curr Biol 2024; 34:3603-3615.e4. [PMID: 39019037 DOI: 10.1016/j.cub.2024.06.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/10/2024] [Accepted: 06/20/2024] [Indexed: 07/19/2024]
Abstract
Adult zebrafish are able to heal large-sized cutaneous wounds in hours with little to no scarring. This rapid re-epithelialization is crucial for preventing infection and jumpstarting the subsequent regeneration of damaged tissues. Despite significant progress in understanding this process, it remains unclear how vast numbers of epithelial cells are orchestrated on an organismic scale to ensure the timely closure of millimeter-sized wounds. Here, we report an unexpected role of adult zebrafish appendages (fins) in accelerating the re-epithelialization process. Through whole-body monitoring of single-cell dynamics in live animals, we found that fin-resident epithelial cells (FECs) are highly mobile and migrate to cover wounds in nearby body regions. Upon injury, FECs readily undergo organ-level mobilization, allowing for coverage of body surfaces of up to 4.78 mm2 in less than 8 h. Intriguingly, long-term fate-tracking experiments revealed that the migratory FECs are not short-lived at the wound site; instead, the cells can persist on the body surface for more than a year. Our experiments on "fin-less" and "fin-gaining" individuals demonstrated that the fin structures are not only capable of promoting rapid re-epithelialization but are also necessary for the process. We further found that fin-enriched extracellular matrix laminins promote the active migration of FECs by facilitating lamellipodia formation. These findings lead us to conclude that appendage structures in regenerative vertebrates, such as fins, may possess a previously unrecognized function beyond serving as locomotor organs. The appendages may also act as a massive reservoir of healing cells, which speed up wound closure and tissue repair.
Collapse
Affiliation(s)
- Fiorency Santoso
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Marco P De Leon
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Wei-Chen Kao
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Wei-Chen Chu
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Hsiao-Yuh Roan
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Gang-Hui Lee
- Department of Physiology, Medical College, National Cheng Kung University, Tainan, Taiwan; International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Jer Tang
- Department of Physiology, Medical College, National Cheng Kung University, Tainan, Taiwan; International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
| | - Ji-Yen Cheng
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Chen-Hui Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
7
|
Tomasso A, Disela V, Longaker MT, Bartscherer K. Marvels of spiny mouse regeneration: cellular players and their interactions in restoring tissue architecture in mammals. Curr Opin Genet Dev 2024; 87:102228. [PMID: 39047585 DOI: 10.1016/j.gde.2024.102228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/12/2024] [Accepted: 06/30/2024] [Indexed: 07/27/2024]
Abstract
Understanding the cellular and molecular determinants of mammalian tissue regeneration and repair is crucial for developing effective therapies that restore tissue architecture and function. In this review, we focus on the cell types involved in scarless wound response and regeneration of spiny mice (Acomys). Comparative -omics approaches with scar-prone mammals have revealed species-specific peculiarities in cellular behavior during the divergent healing trajectories. We discuss the developing views on which cell types engage in restoring the architecture of spiny mouse tissues through a co-ordinated spatiotemporal response to injury. While yet at the beginning of understanding how cells interact in these fascinating animals to regenerate tissues, spiny mice hold great promise for scar prevention and anti-fibrotic treatments.
Collapse
Affiliation(s)
- Antonio Tomasso
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University - School of Medicine, Department of Surgery, Stanford, CA 94305, USA; Department of Biology/Chemistry, Osnabrück University, Osnabrück 49076, Germany; Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), Utrecht 3584CT, the Netherlands. https://twitter.com/@anto_tomasso
| | - Vanessa Disela
- Department of Biology/Chemistry, Osnabrück University, Osnabrück 49076, Germany; Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), Utrecht 3584CT, the Netherlands. https://twitter.com/@VDisela
| | - Michael T Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University - School of Medicine, Department of Surgery, Stanford, CA 94305, USA. https://twitter.com/@LongakerLab
| | - Kerstin Bartscherer
- Department of Biology/Chemistry, Osnabrück University, Osnabrück 49076, Germany.
| |
Collapse
|
8
|
Varholick JA, Thermolice J, Godinez G, Dos Santos V, Kondapaneni R, Maden M. Older spiny mice (Acomys cahirinus) have delayed and spatially heterogenous ear wound regeneration. Biol Open 2024; 13:bio060565. [PMID: 39387300 PMCID: PMC11554262 DOI: 10.1242/bio.060565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/29/2024] [Indexed: 10/15/2024] Open
Abstract
The African spiny mouse (Acomys cahirinus) is a unique mammalian model of tissue regeneration, regenerating 4 mm ear-hole punches with cartilage, adipocytes, hair follicles, and muscle. However, the time to regenerate ear tissue varies from 20 to 90 days and muscle regeneration is inconsistent. Some report that older spiny mice have delayed regeneration without investigation on the regenerative capacity of muscle. We thought that delayed regeneration and inconsistent muscle regeneration could be linked via age-related nerve degeneration. While the current study found that spiny mice aged 6-9 months had delayed regeneration compared to 3-4 month-old spiny mice, the capacity of muscle regeneration was unrelated to age, and there was little evidence for age-related nerve degeneration. Instead, the regeneration of muscle, cartilage and adipocytes was spatially heterogeneous, declining in amount from the proximal to distal region of the regenerated tissue. Also, cartilage regeneration in the distal region was decreased in ≥22-month-old Acomys and adipocyte regeneration was decreased in those older than 6 months, compared to 3-4 month olds. While the underlying mechanisms for delayed and spatially heterogenous regeneration remain unclear, age and the spatial region of the regenerated tissue should be considered in experimental designs with spiny mice.
Collapse
Affiliation(s)
- Justin A. Varholick
- Department of Biology, University of Florida, Gainesville, FL, USA
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | | | - Gizelle Godinez
- Department of Psychology, University of Florida, Gainesville, FL, USA
| | | | | | - Malcolm Maden
- Department of Biology, University of Florida, Gainesville, FL, USA
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
- Genetics Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
9
|
Wong D, Martinez J, Quijada P. Exploring the Function of Epicardial Cells Beyond the Surface. Circ Res 2024; 135:353-371. [PMID: 38963865 PMCID: PMC11225799 DOI: 10.1161/circresaha.124.321567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
The epicardium, previously viewed as a passive outer layer around the heart, is now recognized as an essential component in development, regeneration, and repair. In this review, we explore the cellular and molecular makeup of the epicardium, highlighting its roles in heart regeneration and repair in zebrafish and salamanders, as well as its activation in young and adult postnatal mammals. We also examine the latest technologies used to study the function of epicardial cells for therapeutic interventions. Analysis of highly regenerative animal models shows that the epicardium is essential in regulating cardiomyocyte proliferation, transient fibrosis, and neovascularization. However, despite the epicardium's unique cellular programs to resolve cardiac damage, it remains unclear how to replicate these processes in nonregenerative mammalian organisms. During myocardial infarction, epicardial cells secrete signaling factors that modulate fibrotic, vascular, and inflammatory remodeling, which differentially enhance or inhibit cardiac repair. Recent transcriptomic studies have validated the cellular and molecular heterogeneity of the epicardium across various species and developmental stages, shedding further light on its function under pathological conditions. These studies have also provided insights into the function of regulatory epicardial-derived signaling molecules in various diseases, which could lead to new therapies and advances in reparative cardiovascular medicine. Moreover, insights gained from investigating epicardial cell function have initiated the development of novel techniques, including using human pluripotent stem cells and cardiac organoids to model reparative processes within the cardiovascular system. This growing understanding of epicardial function holds the potential for developing innovative therapeutic strategies aimed at addressing developmental heart disorders, enhancing regenerative therapies, and mitigating cardiovascular disease progression.
Collapse
Affiliation(s)
- David Wong
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90029
- Molecular, Cellular and Integrative Physiology Graduate Program, University of California, Los Angeles, CA 90029
| | - Julie Martinez
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90029
- Molecular, Cellular and Integrative Physiology Graduate Program, University of California, Los Angeles, CA 90029
| | - Pearl Quijada
- Department of Integrative Biology and Physiology, University of California, Los Angeles, CA 90029
- Eli and Edythe Broad Stem Research Center, University of California, Los Angeles, CA 90029
- Molecular Biology Institute, University of California, Los Angeles, CA 90029
| |
Collapse
|
10
|
Kuppa A, Alzamrooni A, Lopez R, Suhan T, Chaudhary R, Collins N, Van den Bergh F, Abouleisa R, Wang H, Mohamed T, Satin J, Lyssiotis C, Beard DA, Abdel-Latif A. Inherent Metabolic Adaptations in Adult Spiny Mouse ( Acomys ) Cardiomyocytes Facilitate Enhanced Cardiac Recovery Following Myocardial Infarction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595229. [PMID: 38826249 PMCID: PMC11142149 DOI: 10.1101/2024.05.22.595229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The adult mammalian heart has limited regenerative capacity following injury, leading to progressive heart failure and mortality. Recent studies have identified the spiny mouse ( Acomys ) as a unique model for mammalian cardiac isch3emic resilience, exhibiting enhanced recovery after myocardial infarction (MI) compared to commonly used laboratory mouse strains. However, the underlying cellular and molecular mechanisms behind this unique response remain poorly understood. In this study, we comprehensively characterized the metabolic characteristics of cardiomyocytes in Acomys compared to the non-regenerative Mus musculus . We utilized single-nucleus RNA sequencing (snRNA-seq) in sham-operated animals and 1, 3, and 7 days post-myocardial infarction to investigate cardiomyocytes' transcriptomic and metabolomic profiles in response to myocardial infarction. Complementary targeted metabolomics, stable isotope-resolved metabolomics, and functional mitochondrial assays were performed on heart tissues from both species to validate the transcriptomic findings and elucidate the metabolic adaptations in cardiomyocytes following ischemic injury. Transcriptomic analysis revealed that Acomys cardiomyocytes inherently upregulate genes associated with glycolysis, the pentose phosphate pathway, and glutathione metabolism while downregulating genes involved in oxidative phosphorylation (OXPHOS). These metabolic characteristics are linked to decreased reactive oxygen species (ROS) production and increased antioxidant capacity. Our targeted metabolomic studies in heart tissue corroborated these findings, showing a shift from fatty acid oxidation to glycolysis and ancillary biosynthetic pathways in Acomys at baseline with adaptive changes post-MI. Functional mitochondrial studies indicated a higher reliance on glycolysis in Acomys compared to Mus , underscoring the unique metabolic phenotype of Acomys hearts. Stable isotope tracing experiments confirmed a shift in glucose utilization from oxidative phosphorylation in Acomys . In conclusion, our study identifies unique metabolic characteristics of Acomys cardiomyocytes that contribute to their enhanced ischemic resilience following myocardial infarction. These findings provide novel insights into the role of metabolism in regulating cardiac repair in adult mammals. Our work highlights the importance of inherent and adaptive metabolic flexibility in determining cardiomyocyte ischemic responses and establishes Acomys as a valuable model for studying cardiac ischemic resilience in adult mammals. Graphical abstract
Collapse
|
11
|
Huang H, Huang GN, Payumo AY. Two decades of heart regeneration research: Cardiomyocyte proliferation and beyond. WIREs Mech Dis 2024; 16:e1629. [PMID: 37700522 PMCID: PMC10840678 DOI: 10.1002/wsbm.1629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 09/14/2023]
Abstract
Interest in vertebrate cardiac regeneration has exploded over the past two decades since the discovery that adult zebrafish are capable of complete heart regeneration, contrasting the limited regenerative potential typically observed in adult mammalian hearts. Undercovering the mechanisms that both support and limit cardiac regeneration across the animal kingdom may provide unique insights in how we may unlock this capacity in adult humans. In this review, we discuss key discoveries in the heart regeneration field over the last 20 years. Initially, seminal findings revealed that pre-existing cardiomyocytes are the major source of regenerated cardiac muscle, drawing interest into the intrinsic mechanisms regulating cardiomyocyte proliferation. Moreover, recent studies have identified the importance of intercellular interactions and physiological adaptations, which highlight the vast complexity of the cardiac regenerative process. Finally, we compare strategies that have been tested to increase the regenerative capacity of the adult mammalian heart. This article is categorized under: Cardiovascular Diseases > Stem Cells and Development.
Collapse
Affiliation(s)
- Herman Huang
- Department of Biological Sciences, San Jose State University, San Jose, CA 95192, USA
| | - Guo N. Huang
- Cardiovascular Research Institute & Department of Physiology, University of California, San Francisco, San Francisco, CA, 94158, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Alexander Y. Payumo
- Department of Biological Sciences, San Jose State University, San Jose, CA 95192, USA
| |
Collapse
|
12
|
McCabe MC, Okamura DM, Erickson CB, Perry BW, Brewer CM, Nguyen ED, Saviola AJ, Majesky MW, Hansen KC. ECM-Focused Proteomic Analysis of Ear Punch Regeneration in Acomys Cahirinus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.11.561940. [PMID: 37873317 PMCID: PMC10592745 DOI: 10.1101/2023.10.11.561940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
In mammals, significant injury is generally followed by the formation of a fibrotic scar which provides structural integrity but fails to functionally restore damaged tissue. Spiny mice of the genus Acomys represent the first example of full skin autotomy in mammals. Acomys cahirinus has evolved extremely weak skin as a strategy to avoid predation and is able to repeatedly regenerate healthy tissue without scar after severe skin injury or full-thickness ear punches. Extracellular matrix (ECM) composition is a critical regulator of wound repair and scar formation and previous studies have suggested that alterations in its expression may be responsible for the differences in regenerative capacity observed between Mus musculus and A. cahirinus , yet analysis of this critical tissue component has been limited in previous studies by its insolubility and resistance to extraction. Here, we utilize a 2-step ECM-optimized extraction to perform proteomic analysis of tissue composition during wound repair after full-thickness ear punches in A. cahirinus and M. musculus from weeks 1 to 4 post-injury. We observe changes in a wide range of ECM proteins which have been previously implicated in wound regeneration and scar formation, including collagens, coagulation and provisional matrix proteins, and matricryptic signaling peptides. We additionally report differences in crosslinking enzyme activity and ECM protein solubility between Mus and Acomys. Furthermore, we observed rapid and sustained increases in CD206, a marker of pro-regenerative M2 macrophages, in Acomys, whereas little or no increase in CD206 was detected in Mus. Together, these findings contribute to a comprehensive understanding of tissue cues which drive the regenerative capacity of Acomys and identify a number of potential targets for future pro-regenerative therapies.
Collapse
|
13
|
Nguyen ED, Fard VN, Kim BY, Collins S, Galey M, Nelson BR, Wakenight P, Gable SM, McKenna A, Bammler TK, MacDonald J, Okamura DM, Shendure J, Beier DR, Ramirez JM, Majesky MW, Millen KJ, Tollis M, Miller DE. Genome Report: chromosome-scale genome assembly of the African spiny mouse (Acomys cahirinus). G3 (BETHESDA, MD.) 2023; 13:jkad177. [PMID: 37552705 PMCID: PMC10542272 DOI: 10.1093/g3journal/jkad177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/03/2023] [Accepted: 06/23/2023] [Indexed: 08/10/2023]
Abstract
There is increasing interest in the African spiny mouse (Acomys cahirinus) as a model organism because of its ability for regeneration of tissue after injury in skin, muscle, and internal organs such as the kidneys. A high-quality reference genome is needed to better understand these regenerative properties at the molecular level. Here, we present an improved reference genome for A. cahirinus generated from long Nanopore sequencing reads. We confirm the quality of our annotations using RNA sequencing data from 4 different tissues. Our genome is of higher contiguity and quality than previously reported genomes from this species and will facilitate ongoing efforts to better understand the regenerative properties of this organism.
Collapse
Affiliation(s)
- Elizabeth Dong Nguyen
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, USA
| | - Vahid Nikoonejad Fard
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Bernard Y Kim
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Sarah Collins
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Miranda Galey
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Branden R Nelson
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Paul Wakenight
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Simone M Gable
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Aaron McKenna
- Department of Molecular & Systems Biology, Dartmouth Geisel School of Medicine, Lebanon, NH 03755, USA
| | - Theo K Bammler
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Jim MacDonald
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA
| | - Daryl M Okamura
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Jay Shendure
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA 98195, USA
| | - David R Beier
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Jan Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
- Department of Neurological Surgery, University of Washington, Seattle, WA 98195, USA
| | - Mark W Majesky
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101, USA
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA 98195, USA
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA
| | - Kathleen J Millen
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, USA
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Marc Tollis
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Danny E Miller
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, USA
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
14
|
Okamura DM, Nguyen ED, Collins SJ, Yoon K, Gere JB, Weiser-Evans MCM, Beier DR, Majesky MW. Mammalian organ regeneration in spiny mice. J Muscle Res Cell Motil 2023; 44:39-52. [PMID: 36131170 DOI: 10.1007/s10974-022-09631-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/30/2022] [Indexed: 11/26/2022]
Abstract
Fibrosis-driven solid organ failure is a major world-wide health burden with few therapeutic options. Spiny mice (genus: Acomys) are terrestrial mammals that regenerate severe skin wounds without fibrotic scars to evade predators. Recent studies have shown that spiny mice also regenerate acute ischemic and traumatic injuries to kidney, heart, spinal cord, and skeletal muscle. A common feature of this evolved wound healing response is a lack of formation of fibrotic scar tissue that degrades organ function, inhibits regeneration, and leads to organ failure. Complex tissue regeneration is an extremely rare property among mammalian species. In this article, we discuss the evidence that Acomys represents an emerging model organism that offers a unique opportunity for the biomedical community to investigate and clinically translate molecular mechanisms of scarless wound healing and regeneration of organ function in a mammalian species.
Collapse
Affiliation(s)
- Daryl M Okamura
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, 1900 Ninth Avenue, M/S C9S-5, Seattle, WA, 98101, USA
- Department of Pediatrics, University of Washington, Seattle, WA, 98195, USA
| | - Elizabeth D Nguyen
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, 1900 Ninth Avenue, M/S C9S-5, Seattle, WA, 98101, USA
- Department of Pediatrics, University of Washington, Seattle, WA, 98195, USA
| | - Sarah J Collins
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, 1900 Ninth Avenue, M/S C9S-5, Seattle, WA, 98101, USA
| | - Kevin Yoon
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, 1900 Ninth Avenue, M/S C9S-5, Seattle, WA, 98101, USA
| | - Joshua B Gere
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, 1900 Ninth Avenue, M/S C9S-5, Seattle, WA, 98101, USA
| | - Mary C M Weiser-Evans
- Department of Medicine, Division of Renal Diseases & Hypertension, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - David R Beier
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, 1900 Ninth Avenue, M/S C9S-5, Seattle, WA, 98101, USA
- Department of Pediatrics, University of Washington, Seattle, WA, 98195, USA
| | - Mark W Majesky
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, 1900 Ninth Avenue, M/S C9S-5, Seattle, WA, 98101, USA.
- Department of Pediatrics, University of Washington, Seattle, WA, 98195, USA.
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA, 98195, USA.
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
15
|
Nguyen PD, Gooijers I, Campostrini G, Verkerk AO, Honkoop H, Bouwman M, de Bakker DEM, Koopmans T, Vink A, Lamers GEM, Shakked A, Mars J, Mulder AA, Chocron S, Bartscherer K, Tzahor E, Mummery CL, de Boer TP, Bellin M, Bakkers J. Interplay between calcium and sarcomeres directs cardiomyocyte maturation during regeneration. Science 2023; 380:758-764. [PMID: 37200435 DOI: 10.1126/science.abo6718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/20/2023] [Indexed: 05/20/2023]
Abstract
Zebrafish hearts can regenerate by replacing damaged tissue with new cardiomyocytes. Although the steps leading up to the proliferation of surviving cardiomyocytes have been extensively studied, little is known about the mechanisms that control proliferation and redifferentiation to a mature state. We found that the cardiac dyad, a structure that regulates calcium handling and excitation-contraction coupling, played a key role in the redifferentiation process. A component of the cardiac dyad called leucine-rich repeat-containing 10 (Lrrc10) acted as a negative regulator of proliferation, prevented cardiomegaly, and induced redifferentiation. We found that its function was conserved in mammalian cardiomyocytes. This study highlights the importance of the underlying mechanisms required for heart regeneration and their application to the generation of fully functional cardiomyocytes.
Collapse
Affiliation(s)
- Phong D Nguyen
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, Netherlands
| | - Iris Gooijers
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, Netherlands
| | - Giulia Campostrini
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, Netherlands
| | - Arie O Verkerk
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam University Medical Center, Amsterdam, Netherlands
- Department of Experimental Cardiology, University of Amsterdam, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Hessel Honkoop
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, Netherlands
| | - Mara Bouwman
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, Netherlands
| | - Dennis E M de Bakker
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, Netherlands
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Tim Koopmans
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, Netherlands
- Department of Animal Physiology, Osnabrueck University, Osnabrück, Germany
| | - Aryan Vink
- Department of Pathology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Gerda E M Lamers
- Core Facility Microscopy, Institute of Biology, Leiden University, Leiden, Netherlands
| | - Avraham Shakked
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Jonas Mars
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, Netherlands
| | - Aat A Mulder
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Sonja Chocron
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, Netherlands
| | - Kerstin Bartscherer
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, Netherlands
- Department of Animal Physiology, Osnabrueck University, Osnabrück, Germany
| | - Eldad Tzahor
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Christine L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, Netherlands
| | - Teun P de Boer
- Department of Medical Physiology, Division of Heart and Lungs, University Medical Center Utrecht, Utrecht, Netherlands
| | - Milena Bellin
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden, Netherlands
- Department of Biology, University of Padua, Padua, Italy
- Veneto Institute of Molecular Medicine, Padua, Italy
| | - Jeroen Bakkers
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, Netherlands
- Department of Pediatric Cardiology, Division of Pediatrics, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
16
|
Tomasso A, Koopmans T, Lijnzaad P, Bartscherer K, Seifert AW. An ERK-dependent molecular switch antagonizes fibrosis and promotes regeneration in spiny mice ( Acomys). SCIENCE ADVANCES 2023; 9:eadf2331. [PMID: 37126559 PMCID: PMC10132760 DOI: 10.1126/sciadv.adf2331] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Although most mammals heal injured tissues and organs with scarring, spiny mice (Acomys) naturally regenerate skin and complex musculoskeletal tissues. Now, the core signaling pathways driving mammalian tissue regeneration are poorly characterized. Here, we show that, while immediate extracellular signal-regulated kinase (ERK) activation is a shared feature of scarring (Mus) and regenerating (Acomys) injuries, ERK activity is only sustained at high levels during complex tissue regeneration. Following ERK inhibition, ear punch regeneration in Acomys shifted toward fibrotic repair. Using single-cell RNA sequencing, we identified ERK-responsive cell types. Loss- and gain-of-function experiments prompted us to uncover fibroblast growth factor and ErbB signaling as upstream ERK regulators of regeneration. The ectopic activation of ERK in scar-prone injuries induced a pro-regenerative response, including cell proliferation, extracellular matrix remodeling, and hair follicle neogenesis. Our data detail an important distinction in ERK activity between regenerating and poorly regenerating adult mammals and open avenues to redirect fibrotic repair toward regenerative healing.
Collapse
Affiliation(s)
- Antonio Tomasso
- Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, Münster 48149, Germany
- Cells in Motion Cluster of Excellence-International Max Planck Research School (CiM-IMPRS Graduate Program), Münster 48149, Germany
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), Uppsalalaan 8, Utrecht 3584CT, Netherlands
- Department of Biology/Chemistry, Osnabrück University, Barbarastrasse 11, Osnabrück 49076, Germany
- Department of Biology, University of Kentucky, 101 T.H. Morgan Building, Lexington, KY 40506, USA
| | - Tim Koopmans
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), Uppsalalaan 8, Utrecht 3584CT, Netherlands
- Department of Biology/Chemistry, Osnabrück University, Barbarastrasse 11, Osnabrück 49076, Germany
| | - Philip Lijnzaad
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht 3584 CS, Netherlands
| | - Kerstin Bartscherer
- Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, Münster 48149, Germany
- Cells in Motion Cluster of Excellence-International Max Planck Research School (CiM-IMPRS Graduate Program), Münster 48149, Germany
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences), Uppsalalaan 8, Utrecht 3584CT, Netherlands
- Department of Biology/Chemistry, Osnabrück University, Barbarastrasse 11, Osnabrück 49076, Germany
| | - Ashley W Seifert
- Department of Biology, University of Kentucky, 101 T.H. Morgan Building, Lexington, KY 40506, USA
| |
Collapse
|
17
|
Nguyen ED, Fard VN, Kim BY, Collins S, Galey M, Nelson BR, Wakenight P, Gable SM, McKenna A, Bammler TK, MacDonald J, Okamura DM, Shendure J, Beier DR, Ramirez JM, Majesky MW, Millen KJ, Tollis M, Miller DE. GENOME REPORT: Chromosome-scale genome assembly of the African spiny mouse ( Acomys cahirinus ). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535372. [PMID: 37066261 PMCID: PMC10103962 DOI: 10.1101/2023.04.03.535372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
There is increasing interest in the African spiny mouse ( Acomys cahirinus ) as a model organism because of its ability for regeneration of tissue after injury in skin, muscle, and internal organs such as the kidneys. A high-quality reference genome is needed to better understand these regenerative properties at the molecular level. Here, we present an improved reference genome for A. cahirinus generated from long Nanopore sequencing reads. We confirm the quality of our annotations using RNA sequencing data from four different tissues. Our genome is of higher contiguity and quality than previously reported genomes from this species and will facilitate ongoing efforts to better understand the regenerative properties of this organism.
Collapse
Affiliation(s)
- Elizabeth Dong Nguyen
- Department of Pediatrics, University of Washington, Seattle, WA
- Center for Developmental Biology & Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA
| | - Vahid Nikoonejad Fard
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ
| | - Bernard Y. Kim
- Department of Biology, Stanford University, Stanford, CA
| | - Sarah Collins
- Center for Developmental Biology & Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA
| | - Miranda Galey
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA
| | - Branden R. Nelson
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA
| | - Paul Wakenight
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA
| | - Simone M. Gable
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ
| | - Aaron McKenna
- Department of Molecular & Systems Biology, Dartmouth Geisel School of Medicine, Lebanon, NH
| | - Theo K. Bammler
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA
| | - Jim MacDonald
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, WA
| | - Daryl M. Okamura
- Department of Pediatrics, University of Washington, Seattle, WA
- Center for Developmental Biology & Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA
| | - Jay Shendure
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA
- Department of Genome Sciences, University of Washington, Seattle, WA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA
- Howard Hughes Medical Institute, Seattle, WA
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA
| | - David R. Beier
- Department of Pediatrics, University of Washington, Seattle, WA
- Center for Developmental Biology & Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA
| | - Jan Marino Ramirez
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA
- Department of Neurological Surgery, University of Washington, Seattle WA
| | - Mark W. Majesky
- Department of Pediatrics, University of Washington, Seattle, WA
- Center for Developmental Biology & Regenerative Medicine, Seattle Children’s Research Institute, Seattle, WA
- Institute of Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA
| | - Kathleen J. Millen
- Department of Pediatrics, University of Washington, Seattle, WA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA
| | - Marc Tollis
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ
| | - Danny E. Miller
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, WA
| |
Collapse
|
18
|
Rolland L, Jopling C. The multifaceted nature of endogenous cardiac regeneration. Front Cardiovasc Med 2023; 10:1138485. [PMID: 36998973 PMCID: PMC10043193 DOI: 10.3389/fcvm.2023.1138485] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/09/2023] [Indexed: 03/15/2023] Open
Abstract
Since the first evidence of cardiac regeneration was observed, almost 50 years ago, more studies have highlighted the endogenous regenerative abilities of several models following cardiac injury. In particular, analysis of cardiac regeneration in zebrafish and neonatal mice has uncovered numerous mechanisms involved in the regenerative process. It is now apparent that cardiac regeneration is not simply achieved by inducing cardiomyocytes to proliferate but requires a multifaceted response involving numerous different cell types, signaling pathways and mechanisms which must all work in harmony in order for regeneration to occur. In this review we will endeavor to highlight a variety of processes that have been identifed as being essential for cardiac regeneration.
Collapse
|
19
|
Powell JM, Inoue K, Wallace KJ, Seifert AW, Young LJ, Kelly AM. Distribution of vasopressin 1a and oxytocin receptor protein and mRNA in the basal forebrain and midbrain of the spiny mouse (Acomys cahirinus). Brain Struct Funct 2023; 228:413-431. [PMID: 36271259 PMCID: PMC9974677 DOI: 10.1007/s00429-022-02581-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/07/2022] [Indexed: 01/25/2023]
Abstract
The nonapeptide system modulates numerous social behaviors through oxytocin and vasopressin activation of the oxytocin receptor (OXTR) and vasopressin receptor (AVPR1A) in the brain. OXTRs and AVPR1As are widely distributed throughout the brain and binding densities exhibit substantial variation within and across species. Although OXTR and AVPR1A binding distributions have been mapped for several rodents, this system has yet to be characterized in the spiny mouse (Acomys cahirinus). Here we conducted receptor autoradiography and in situ hybridization to map distributions of OXTR and AVPR1A binding and Oxtr and Avpr1a mRNA expression throughout the basal forebrain and midbrain of male and female spiny mice. We found that nonapeptide receptor mRNA is diffuse throughout the forebrain and midbrain and does not always align with OXTR and AVPR1A binding. Analyses of sex differences in brain regions involved in social behavior and reward revealed that males exhibit higher OXTR binding densities in the lateral septum, bed nucleus of the stria terminalis, and anterior hypothalamus. However, no association with gonadal sex was observed for AVPR1A binding. Hierarchical clustering analysis further revealed that co-expression patterns of OXTR and AVPR1A binding across brain regions involved in social behavior and reward differ between males and females. These findings provide mapping distributions and sex differences in nonapeptide receptors in spiny mice. Spiny mice are an excellent organism for studying grouping behaviors such as cooperation and prosociality, and the nonapeptide receptor mapping here can inform the study of nonapeptide-mediated behavior in a highly social, large group-living rodent.
Collapse
Affiliation(s)
- Jeanne M Powell
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA, 30322, USA
| | - Kiyoshi Inoue
- Center for Translational Social Neuroscience, Emory University, Atlanta, GA, 30329, USA
- Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Kelly J Wallace
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA, 30322, USA
| | - Ashley W Seifert
- Department of Biology, University of Kentucky, 101 Morgan Building, Lexington, KY, 40506, USA
| | - Larry J Young
- Center for Translational Social Neuroscience, Emory University, Atlanta, GA, 30329, USA
- Emory National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Aubrey M Kelly
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA, 30322, USA.
| |
Collapse
|
20
|
Vitorino M, Simão S, Moreira JB, Nogueira‐Rodrigues J, Silva J, Lourenço AS, Fernandes V, Sousa MM, Tiscornia G, Araújo IM. Coronal brain atlas in stereotaxic coordinates of the African spiny mouse,
Acomys cahirinus. J Comp Neurol 2022; 530:2215-2237. [DOI: 10.1002/cne.25329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Marta Vitorino
- Centre for Biomedical Research (CBMR) University of Algarve Faro Portugal
- Faculty of Medicine and Biomedical Sciences University of Algarve Faro Portugal
- Center for Marine Sciences (CCMAR) University of Algarve Faro Portugal
| | - Sónia Simão
- Centre for Biomedical Research (CBMR) University of Algarve Faro Portugal
- Faculty of Medicine and Biomedical Sciences University of Algarve Faro Portugal
- Algarve Biomedical Center Research Institute (ABC‐RI) University of Algarve Faro Portugal
| | - João B. Moreira
- Centre for Biomedical Research (CBMR) University of Algarve Faro Portugal
- Faculty of Medicine and Biomedical Sciences University of Algarve Faro Portugal
| | - Joana Nogueira‐Rodrigues
- Nerve Regeneration Group Instituto de Biologia Molecular e Celular (IBMC) Instituto de Investigação e Inovação em Saúde (i3S) University of Porto Porto Portugal
- Graduate Program in Molecular and Cell Biology Instituto de Ciências Biomédicas Abel Salazar (ICBAS) University of Porto Porto Portugal
| | - Joana Silva
- Centre for Biomedical Research (CBMR) University of Algarve Faro Portugal
- Faculty of Medicine and Biomedical Sciences University of Algarve Faro Portugal
| | - Ana Sofia Lourenço
- Centre for Biomedical Research (CBMR) University of Algarve Faro Portugal
- Faculty of Medicine and Biomedical Sciences University of Algarve Faro Portugal
| | - Vítor Fernandes
- Centre for Biomedical Research (CBMR) University of Algarve Faro Portugal
- Faculty of Medicine and Biomedical Sciences University of Algarve Faro Portugal
- Algarve Biomedical Center Research Institute (ABC‐RI) University of Algarve Faro Portugal
| | - Monica M. Sousa
- Nerve Regeneration Group Instituto de Biologia Molecular e Celular (IBMC) Instituto de Investigação e Inovação em Saúde (i3S) University of Porto Porto Portugal
| | - Gustavo Tiscornia
- Centre for Biomedical Research (CBMR) University of Algarve Faro Portugal
- Center for Marine Sciences (CCMAR) University of Algarve Faro Portugal
- Clínica Eugin Barcelona Spain
| | - Inês M. Araújo
- Centre for Biomedical Research (CBMR) University of Algarve Faro Portugal
- Faculty of Medicine and Biomedical Sciences University of Algarve Faro Portugal
- Algarve Biomedical Center Research Institute (ABC‐RI) University of Algarve Faro Portugal
- Champalimaud Research Program Lisbon Portugal
| |
Collapse
|
21
|
Auchampach J, Han L, Huang GN, Kühn B, Lough JW, O'Meara CC, Payumo AY, Rosenthal NA, Sucov HM, Yutzey KE, Patterson M. Measuring cardiomyocyte cell-cycle activity and proliferation in the age of heart regeneration. Am J Physiol Heart Circ Physiol 2022; 322:H579-H596. [PMID: 35179974 PMCID: PMC8934681 DOI: 10.1152/ajpheart.00666.2021] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/24/2022] [Accepted: 02/11/2022] [Indexed: 12/14/2022]
Abstract
During the past two decades, the field of mammalian myocardial regeneration has grown dramatically, and with this expanded interest comes increasing claims of experimental manipulations that mediate bona fide proliferation of cardiomyocytes. Too often, however, insufficient evidence or improper controls are provided to support claims that cardiomyocytes have definitively proliferated, a process that should be strictly defined as the generation of two de novo functional cardiomyocytes from one original cardiomyocyte. Throughout the literature, one finds inconsistent levels of experimental rigor applied, and frequently the specific data supplied as evidence of cardiomyocyte proliferation simply indicate cell-cycle activation or DNA synthesis, which do not necessarily lead to the generation of new cardiomyocytes. In this review, we highlight potential problems and limitations faced when characterizing cardiomyocyte proliferation in the mammalian heart, and summarize tools and experimental standards, which should be used to support claims of proliferation-based remuscularization. In the end, definitive establishment of de novo cardiomyogenesis can be difficult to prove; therefore, rigorous experimental strategies should be used for such claims.
Collapse
Affiliation(s)
- John Auchampach
- Department of Pharmacology and Toxicology and the Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Lu Han
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
- Division of Pediatric Cardiology, Herma Heart Institute, Children's Hospital of Wisconsin, Milwaukee, Wisconsin
| | - Guo N Huang
- Cardiovascular Research Institute and Department of Physiology, University of California, San Francisco, California
| | - Bernhard Kühn
- Division of Cardiology, Pediatric Institute for Heart Regeneration and Therapeutics, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania
- McGowan Institute of Regenerative Medicine, Pittsburgh, Pennsylvania
| | - John W Lough
- Department of Cell Biology Neurobiology and Anatomy and the Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Caitlin C O'Meara
- Department of Physiology and the Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Alexander Y Payumo
- Department of Biological Sciences, San José State University, San Jose, California
| | - Nadia A Rosenthal
- The Jackson Laboratory, Bar Harbor, Maine
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Victoria, Australia
- National Heart and Lung Institute, Imperial College of London, London, United Kingdom
| | - Henry M Sucov
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Katherine E Yutzey
- The Heart Institute, Cincinnati Children's Medical Center, Cincinnati, Ohio
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio
| | - Michaela Patterson
- Department of Cell Biology Neurobiology and Anatomy and the Cardiovascular Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
22
|
Seifert AW, Temple-Smith P. A remarkable rodent: Regeneration and reproduction in spiny mice (Acomys). Curr Top Dev Biol 2022; 147:659-707. [PMID: 35337466 DOI: 10.1016/bs.ctdb.2021.12.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Although certain organisms are chosen and employed to better understand a specific problem in biology (so-called model organisms), sometimes an animal model reveals its' biomedical importance by happenstance. In many ways, the advent of spiny mice (Acomys) as an emerging model to study regeneration and menstruation stands as a case study in scientific pseudoserendipity (Diaz de Chumaceiro, 1995). As we recount in this chapter, the discovery of these phenotypes, while not entirely accidental, was nonetheless unexpected. In addition to recounting how we uncovered these unusual mammalian traits, we outline recent work by our groups and others that has begun to outline the cellular and genetic mechanisms underlying bonafide mammalian tissue regeneration and a human-like mode of reproduction in spiny mice.
Collapse
Affiliation(s)
- Ashley W Seifert
- Department of Biology, University of Kentucky, Lexington, KY, United States; Department of Veterinary Anatomy and Physiology, University of Nairobi, Nairobi, Kenya.
| | - Peter Temple-Smith
- Department of Obstetrics & Gynecology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
23
|
Okamura DM, Nguyen ED, Beier DR, Majesky MW. Wound healing and regeneration in spiny mice (Acomys cahirinus). Curr Top Dev Biol 2022; 148:139-164. [DOI: 10.1016/bs.ctdb.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|