1
|
Morihara H, Yokoe S, Wakabayashi S, Takai S. TMEM182 inhibits myocardial differentiation of human iPS cells by maintaining the activated state of Wnt/β-catenin signaling through an increase in ILK expression. FASEB Bioadv 2024; 6:565-579. [PMID: 39512841 PMCID: PMC11539028 DOI: 10.1096/fba.2024-00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/19/2024] [Accepted: 10/04/2024] [Indexed: 11/15/2024] Open
Abstract
Transmembrane protein 182 (TMEM182) is notably abundant in muscle and adipose tissue, but its role in the heart remains unknown. This study examined the contribution of TMEM182 in the differentiation of human induced pluripotent stem cells (hiPSCs) into cardiomyocytes. For this, we generated hiPSCs overexpressing TMEM182 in a doxycycline-inducible manner and induced their differentiation into cardiomyocytes. On Day 12 of differentiation, expression of the cardiomyocyte markers, TNNT2 and MYH6, was significantly decreased in TMEM182-overexpressing cells. Additionally, we found that phosphorylation of GSK-3β (Ser9) and β-catenin (Ser552) was increased during TMEM182 overexpression, suggesting activation of Wnt/β-catenin signaling. We further focused on integrin-linked kinase (ILK) as the mechanism by which TMEM182 activates Wnt/β-catenin signaling. Evaluation showed that ILK expression was increased in cells overexpressing TMEM182. These results suggest that TMEM182 maintains Wnt/β-catenin signaling in an activated state after mesoderm formation by increasing ILK expression, thereby suppressing hiPSCs differentiation into cardiomyocytes.
Collapse
Affiliation(s)
- Hirofumi Morihara
- Department of Pharmacology, Faculty of MedicineOsaka Medical and Pharmaceutical UniversityTakatsukiJapan
| | - Shunichi Yokoe
- Department of Pharmacology, Faculty of MedicineOsaka Medical and Pharmaceutical UniversityTakatsukiJapan
| | - Shigeo Wakabayashi
- Department of Pharmacology, Faculty of MedicineOsaka Medical and Pharmaceutical UniversityTakatsukiJapan
- Department of Nursing, Faculty of Health SciencesOsaka Aoyama UniversityMinohJapan
| | - Shinji Takai
- Department of Pharmacology, Faculty of MedicineOsaka Medical and Pharmaceutical UniversityTakatsukiJapan
- Department of Innovative Medicine, Graduate School of MedicineOsaka Medical and Pharmaceutical UniversityTakatsukiJapan
| |
Collapse
|
2
|
Miyoshi Y, Lucena-Cacace A, Tian Y, Matsumura Y, Tani K, Nishikawa M, Narita M, Kimura T, Ono K, Yoshida Y. SMAD3 mediates the specification of human induced pluripotent stem cell-derived epicardium into progenitors for the cardiac pericyte lineage. Stem Cell Reports 2024; 19:1399-1416. [PMID: 39332407 PMCID: PMC11561457 DOI: 10.1016/j.stemcr.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/29/2024] Open
Abstract
Understanding the molecular mechanisms of epicardial epithelial-to-mesenchymal transition (EMT), particularly in directing cell fate toward epicardial derivatives, is crucial for regenerative medicine using human induced pluripotent stem cell (iPSC)-derived epicardium. Although transforming growth factor β (TGF-β) plays a pivotal role in epicardial biology, orchestrating EMT during embryonic development via downstream signaling through SMAD proteins, the function of SMAD proteins in the epicardium in maintaining vascular homeostasis or mediating the differentiation of various epicardial-derived cells (EPDCs) is not yet well understood. Our study reveals that TGF-β-independent SMAD3 expression autonomously predicts epicardial cell specification and lineage maintenance, acting as a key mediator in promoting the angiogenic-oriented specification of the epicardium into cardiac pericyte progenitors. This finding uncovers a novel role for SMAD3 in the human epicardium, particularly in generating cardiac pericyte progenitors that enhance cardiac microvasculature angiogenesis. This insight opens new avenues for leveraging epicardial biology in developing more effective cardiac regeneration strategies.
Collapse
Affiliation(s)
- Yutaro Miyoshi
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan; Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Antonio Lucena-Cacace
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan.
| | - Yu Tian
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan; Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Yasuko Matsumura
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Kanae Tani
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan; Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Misato Nishikawa
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Megumi Narita
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Koh Ono
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Yoshinori Yoshida
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan.
| |
Collapse
|
3
|
Li XX, Zhang DC, Wang Y, Wen J, Wang XJ, Cao YL, Jiang R, Li JR, Li YN, Liu HH, Xie WH, Xu ZF, Hu P, Zou K. Cadherin-18 loss in prospermatogonia and spermatogonial stem cells enhances cell adhesion through a compensatory mechanism. Zool Res 2024; 45:1048-1060. [PMID: 39147719 PMCID: PMC11491781 DOI: 10.24272/j.issn.2095-8137.2023.373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 04/12/2024] [Indexed: 08/17/2024] Open
Abstract
Extracellular membrane proteins are crucial for mediating cell attachment, recognition, and signal transduction in the testicular microenvironment, particularly germline stem cells. Cadherin 18 (CDH18), a type II classical cadherin, is primarily expressed in the nervous and reproductive systems. Here, we investigated the expression of CDH18 in neonatal porcine prospermatogonia (ProSGs) and murine spermatogonial stem cells (SSCs). Disruption of CDH18 expression did not adversely affect cell morphology, proliferation, self-renewal, or differentiation in cultured porcine ProSGs, but enhanced cell adhesion and prolonged cell maintenance. Transcriptomic analysis indicated that the down-regulation of CDH18 in ProSGs significantly up-regulated genes and signaling pathways associated with cell adhesion. To further elucidate the function of CDH18 in germ cells, Cdh18 knockout mice were generated, which exhibited normal testicular morphology, histology, and spermatogenesis. Transcriptomic analysis showed increased expression of genes associated with adhesion, consistent with the observations in porcine ProSGs. The interaction of CDH18 with β-catenin and JAK2 in both porcine ProSGs and murine SSCs suggested an inhibitory effect on the canonical Wnt and JAK-STAT signaling pathways during CDH18 deficiency. Collectively, these findings highlight the crucial role of CDH18 in regulating cell adhesion in porcine ProSGs and mouse SSCs. Understanding this regulatory mechanism provides significant insights into the testicular niche.
Collapse
Affiliation(s)
- Xiao-Xiao Li
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Dan-Chen Zhang
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yan Wang
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210004, China
| | - Jian Wen
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xing-Ju Wang
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yu-Lu Cao
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Ru Jiang
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jia-Rui Li
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yi-Nuo Li
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - He-He Liu
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Wen-Hai Xie
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Zheng-Feng Xu
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210004, China. E-mail:
| | - Ping Hu
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu 210004, China. E-mail:
| | - Kang Zou
- Germline Stem Cells and Microenvironment Lab, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Stem Cell Research and Translation Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China. E-mail:
| |
Collapse
|
4
|
Guo D, Dong Y, Li H, Li H, Yang B. Proteomics and digital subtraction angiography approaches reveal CDH18 as a potential target for therapy of moyamoya disease. Biol Direct 2024; 19:76. [PMID: 39238003 PMCID: PMC11378584 DOI: 10.1186/s13062-024-00522-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024] Open
Abstract
Moyamoya disease, characterized by basal cerebral artery obstruction, was studied for differential protein expression to elucidate its pathogenesis. Proteomic analysis of cerebrospinal fluid from 10 patients, categorized by postoperative angiography into good and poor prognosis groups, revealed 46 differentially expressed proteins. Notably, cadherin 18 (CDH18) was the most significantly upregulated in the good prognosis group. In addition, the expression of cadherin 18 (CDH18) and phenotypic transformation-related proteins were measured by qRT-PCR and western blot. The effects of CDH18 in vascular smooth muscle cells were detected by CCK-8, EdU, transwell and wound healing assays. The overexpression of CDH18 in vascular smooth muscle cells (VSMCs) was found to inhibit proliferation, migration, and phenotypic transformation. These findings suggest CDH18 as a potential therapeutic target in moyamoya disease.
Collapse
Affiliation(s)
- Dong Guo
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yang Dong
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, China
| | - Hongbin Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Hongwei Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, China.
| | - Bo Yang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, China.
| |
Collapse
|
5
|
Teng X, He H, Yu H, Zhang X, Xing J, Shen J, Li C, Wang M, Shao L, Wang Z, Yang H, Zhang Y, Wu Q. LncRNAs in the Dlk1-Dio3 Domain Are Essential for Mid-Embryonic Heart Development. Int J Mol Sci 2024; 25:8184. [PMID: 39125754 PMCID: PMC11311489 DOI: 10.3390/ijms25158184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
The Dlk1-Dio3 domain is important for normal embryonic growth and development. The heart is the earliest developing and functioning organ of the embryo. In this study, we constructed a transcriptional termination model by inserting termination sequences and clarified that the lack of long non-coding RNA (lncRNA) expression in the Dlk1-Dio3 domain caused the death of maternal insertion mutant (MKI) and homozygous mutant (HOMO) mice starting from E13.5. Parental insertion mutants (PKI) can be born and grow normally. Macroscopically, dying MKI and HOMO embryos showed phenomena such as embryonic edema and reduced heart rate. Hematoxylin and eosin (H.E.) staining showed thinning of the myocardium in MKI and HOMO embryos. In situ hybridization (IHC) and quantitative reverse-transcription polymerase chain reaction (qRT-PCR) showed downregulation of lncGtl2, Rian, and Mirg expression in MKI and HOMO hearts. The results of single-cell RNA sequencing (scRNA-Seq) analysis indicated that the lack of lncRNA expression in the Dlk1-Dio3 domain led to reduced proliferation of epicardial cells and may be an important cause of cardiac dysplasia. In conclusion, this study demonstrates that Dlk1-Dio3 domain lncRNAs play an integral role in ventricular development.
Collapse
Affiliation(s)
- Xiangqi Teng
- Faculty of Life Sciences and Medicine, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China; (X.T.); (H.H.); (H.Y.); (X.Z.); (J.X.); (J.S.); (C.L.); (M.W.); (L.S.); (Z.W.); (H.Y.); (Y.Z.)
| | - Hongjuan He
- Faculty of Life Sciences and Medicine, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China; (X.T.); (H.H.); (H.Y.); (X.Z.); (J.X.); (J.S.); (C.L.); (M.W.); (L.S.); (Z.W.); (H.Y.); (Y.Z.)
| | - Haoran Yu
- Faculty of Life Sciences and Medicine, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China; (X.T.); (H.H.); (H.Y.); (X.Z.); (J.X.); (J.S.); (C.L.); (M.W.); (L.S.); (Z.W.); (H.Y.); (Y.Z.)
| | - Ximeijia Zhang
- Faculty of Life Sciences and Medicine, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China; (X.T.); (H.H.); (H.Y.); (X.Z.); (J.X.); (J.S.); (C.L.); (M.W.); (L.S.); (Z.W.); (H.Y.); (Y.Z.)
| | - Jie Xing
- Faculty of Life Sciences and Medicine, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China; (X.T.); (H.H.); (H.Y.); (X.Z.); (J.X.); (J.S.); (C.L.); (M.W.); (L.S.); (Z.W.); (H.Y.); (Y.Z.)
| | - Jiwei Shen
- Faculty of Life Sciences and Medicine, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China; (X.T.); (H.H.); (H.Y.); (X.Z.); (J.X.); (J.S.); (C.L.); (M.W.); (L.S.); (Z.W.); (H.Y.); (Y.Z.)
| | - Chenghao Li
- Faculty of Life Sciences and Medicine, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China; (X.T.); (H.H.); (H.Y.); (X.Z.); (J.X.); (J.S.); (C.L.); (M.W.); (L.S.); (Z.W.); (H.Y.); (Y.Z.)
| | - Mengyun Wang
- Faculty of Life Sciences and Medicine, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China; (X.T.); (H.H.); (H.Y.); (X.Z.); (J.X.); (J.S.); (C.L.); (M.W.); (L.S.); (Z.W.); (H.Y.); (Y.Z.)
| | - Lan Shao
- Faculty of Life Sciences and Medicine, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China; (X.T.); (H.H.); (H.Y.); (X.Z.); (J.X.); (J.S.); (C.L.); (M.W.); (L.S.); (Z.W.); (H.Y.); (Y.Z.)
| | - Ziwen Wang
- Faculty of Life Sciences and Medicine, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China; (X.T.); (H.H.); (H.Y.); (X.Z.); (J.X.); (J.S.); (C.L.); (M.W.); (L.S.); (Z.W.); (H.Y.); (Y.Z.)
| | - Haopeng Yang
- Faculty of Life Sciences and Medicine, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China; (X.T.); (H.H.); (H.Y.); (X.Z.); (J.X.); (J.S.); (C.L.); (M.W.); (L.S.); (Z.W.); (H.Y.); (Y.Z.)
| | - Yan Zhang
- Faculty of Life Sciences and Medicine, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China; (X.T.); (H.H.); (H.Y.); (X.Z.); (J.X.); (J.S.); (C.L.); (M.W.); (L.S.); (Z.W.); (H.Y.); (Y.Z.)
| | - Qiong Wu
- Faculty of Life Sciences and Medicine, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China; (X.T.); (H.H.); (H.Y.); (X.Z.); (J.X.); (J.S.); (C.L.); (M.W.); (L.S.); (Z.W.); (H.Y.); (Y.Z.)
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
6
|
Foglio E, D'Avorio E, Nieri R, Russo MA, Limana F. Epicardial EMT and cardiac repair: an update. Stem Cell Res Ther 2024; 15:219. [PMID: 39026298 PMCID: PMC11264588 DOI: 10.1186/s13287-024-03823-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/30/2024] [Indexed: 07/20/2024] Open
Abstract
Epicardial epithelial-to-mesenchymal transition (EMT) plays a pivotal role in both heart development and injury response and involves dynamic cellular changes that are essential for cardiogenesis and myocardial repair. Specifically, epicardial EMT is a crucial process in which epicardial cells lose polarity, migrate into the myocardium, and differentiate into various cardiac cell types during development and repair. Importantly, following EMT, the epicardium becomes a source of paracrine factors that support cardiac growth at the last stages of cardiogenesis and contribute to cardiac remodeling after injury. As such, EMT seems to represent a fundamental step in cardiac repair. Nevertheless, endogenous EMT alone is insufficient to stimulate adequate repair. Redirecting and amplifying epicardial EMT pathways offers promising avenues for the development of innovative therapeutic strategies and treatment approaches for heart disease. In this review, we present a synthesis of recent literature highlighting the significance of epicardial EMT reactivation in adult heart disease patients.
Collapse
Affiliation(s)
- Eleonora Foglio
- Technoscience, Parco Scientifico e Tecnologico Pontino, Latina, Italy
| | - Erica D'Avorio
- Dipartimento di Promozione delle Scienze Umane e della Qualità della Vita, San Raffaele University of Rome, Rome, Italy
| | - Riccardo Nieri
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Federica Limana
- Dipartimento di Promozione delle Scienze Umane e della Qualità della Vita, San Raffaele University of Rome, Rome, Italy.
- Laboratorio di Patologia Cellulare e Molecolare, IRCCS San Raffaele Roma, Rome, Italy.
| |
Collapse
|
7
|
Liu G, Tan M, Liu R, Lu X, Jiang X, Bai Y, Guo Z, Lu F. Identification of the CDH18 gene associated with age-related macular degeneration using weighted gene co-expression network analysis. Front Genet 2024; 15:1378340. [PMID: 39081806 PMCID: PMC11286549 DOI: 10.3389/fgene.2024.1378340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/20/2024] [Indexed: 08/02/2024] Open
Abstract
Purpose: Age-related macular degeneration (AMD) is a chronic and progressive macular degenerative disease that culminates in a gradual deterioration of central vision. Despite its prevalence, the key biomarkers for AMD have not yet been fully elucidated. In this study, we aimed to efficiently identify biomarkers crucial for diagnosing AMD. Methods: Three datasets pertaining to retinal pigment epithelium (RPE)/choroid tissues associated with AMD were selected from the GEO database. The GSE50195 dataset was utilized to conduct weighted gene co-expression network analysis (WGCNA) for identifying module genes linked to AMD. KEGG and GO enrichment analyses were subsequently conducted on these module genes. GSE29801 and GSE135092 datasets were subjected to differential expression analysis to pinpoint the DEGs intersecting with the module genes. Subsequently, wet AMD (wAMD) and dry AMD (dAMD) mouse models were developed, from which RPE/choroid tissues were harvested to validate the hub genes via RT-qPCR and Western blot. Results: Using the WGCNA, we selected the "antiquewhite4" module (r = 0.91 and p = 7e-07), which contains a total of 325 genes. Through the intersection of module genes with DEGs, nine hub genes were identified. Pathways involved in complement and coagulation cascades, ECM-receptor interactions, unsaturated fatty acid biosynthesis, and fatty acid elongation play important roles in AMD. Notably, CDH18 demonstrated notable variance across all three datasets. Post validation using RT-qPCR experiments revealed a significant downregulation of CDH18 in both dAMD and wAMD. EGLN3 was expressed at low levels in wAMD. In dAMD, EYA2, LTB, and PODXL were significantly downregulated, whereas APOC1 was notably upregulated. Western blot confirmed that CDH18 was lowly expressed in dAMD and wAMD mouse models. Conclusion: CDH18 was identified as the key gene involved in the pathogenesis of AMD. An imbalance of the complement and coagulation cascades is a potential mechanism of AMD. This study provides a novel idea for diagnosing and treating AMD in the future.
Collapse
Affiliation(s)
- Guina Liu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Mingqi Tan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Department of Cardiac Surgery, Chest Hospital, Tianjin University, Tianjin, China
| | - Rui Liu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Xuejin Lu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoshuang Jiang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Yunpeng Bai
- Department of Cardiac Surgery, Chest Hospital, Tianjin University, Tianjin, China
| | - Zhigang Guo
- Department of Cardiac Surgery, Chest Hospital, Tianjin University, Tianjin, China
| | - Fang Lu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Liang X, Duan Q, Li B, Wang Y, Bu Y, Zhang Y, Kuang Z, Mao L, An X, Wang H, Yang X, Wan N, Feng Z, Shen W, Miao W, Chen J, Liu S, Storz JF, Liu J, Nevo E, Li K. Genomic structural variation contributes to evolved changes in gene expression in high-altitude Tibetan sheep. Proc Natl Acad Sci U S A 2024; 121:e2322291121. [PMID: 38913905 PMCID: PMC11228492 DOI: 10.1073/pnas.2322291121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/06/2024] [Indexed: 06/26/2024] Open
Abstract
Tibetan sheep were introduced to the Qinghai Tibet plateau roughly 3,000 B.P., making this species a good model for investigating genetic mechanisms of high-altitude adaptation over a relatively short timescale. Here, we characterize genomic structural variants (SVs) that distinguish Tibetan sheep from closely related, low-altitude Hu sheep, and we examine associated changes in tissue-specific gene expression. We document differentiation between the two sheep breeds in frequencies of SVs associated with genes involved in cardiac function and circulation. In Tibetan sheep, we identified high-frequency SVs in a total of 462 genes, including EPAS1, PAPSS2, and PTPRD. Single-cell RNA-Seq data and luciferase reporter assays revealed that the SVs had cis-acting effects on the expression levels of these three genes in specific tissues and cell types. In Tibetan sheep, we identified a high-frequency chromosomal inversion that exhibited modified chromatin architectures relative to the noninverted allele that predominates in Hu sheep. The inversion harbors several genes with altered expression patterns related to heart protection, brown adipocyte proliferation, angiogenesis, and DNA repair. These findings indicate that SVs represent an important source of genetic variation in gene expression and may have contributed to high-altitude adaptation in Tibetan sheep.
Collapse
Affiliation(s)
- Xiaolong Liang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Qijiao Duan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Bowen Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Yinjia Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Yueting Bu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Yonglu Zhang
- Fengjia Town Health Center, Rushan City, Weihai City264200, China
| | - Zhuoran Kuang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Leyan Mao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Xuan An
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Huihua Wang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing100193, China
| | - Xiaojie Yang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Na Wan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Zhilong Feng
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Wei Shen
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Weilan Miao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Jiaqi Chen
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Sanyuan Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Jay F. Storz
- School of Biological Sciences, University of Nebraska, Lincoln, NE68588
| | - Jianquan Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| | - Eviatar Nevo
- Institute of Evolution, University of Haifa, Haifa3498838, Israel
| | - Kexin Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou730000, China
| |
Collapse
|
9
|
Goel K, Chhetri A, Ludhiadch A, Munshi A. Current Update on Categorization of Migraine Subtypes on the Basis of Genetic Variation: a Systematic Review. Mol Neurobiol 2024; 61:4804-4833. [PMID: 38135854 DOI: 10.1007/s12035-023-03837-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023]
Abstract
Migraine is a complex neurovascular disorder that is characterized by severe behavioral, sensory, visual, and/or auditory symptoms. It has been labeled as one of the ten most disabling medical illnesses in the world by the World Health Organization (Aagaard et al Sci Transl Med 6(237):237ra65, 2014). According to a recent report by the American Migraine Foundation (Shoulson et al Ann Neurol 25(3):252-9, 1989), around 148 million people in the world currently suffer from migraine. On the basis of presence of aura, migraine is classified into two major subtypes: migraine with aura (Aagaard et al Sci Transl Med 6(237):237ra65, 2014) and migraine without aura. (Aagaard K et al Sci Transl Med 6(237):237ra65, 2014) Many complex genetic mechanisms have been proposed in the pathophysiology of migraine but specific pathways associated with the different subtypes of migraine have not yet been explored. Various approaches including candidate gene association studies (CGAS) and genome-wide association studies (Fan et al Headache: J Head Face Pain 54(4):709-715, 2014). have identified the genetic markers associated with migraine and its subtypes. Several single nucleotide polymorphisms (Kaur et al Egyp J Neurol, Psychiatry Neurosurg 55(1):1-7, 2019) within genes involved in ion homeostasis, solute transport, synaptic transmission, cortical excitability, and vascular function have been associated with the disorder. Currently, the diagnosis of migraine is majorly behavioral with no focus on the genetic markers and thereby the therapeutic intervention specific to subtypes. Therefore, there is a need to explore genetic variants significantly associated with MA and MO as susceptibility markers in the diagnosis and targets for therapeutic interventions in the specific subtypes of migraine. Although the proper characterization of pathways based on different subtypes is yet to be studied, this review aims to make a first attempt to compile the information available on various genetic variants and the molecular mechanisms involved with the development of MA and MO. An attempt has also been made to suggest novel candidate genes based on their function to be explored by future research.
Collapse
Affiliation(s)
- Kashish Goel
- Complex Disease Genomics and Precision Medicine Laboratory, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India, 151401
| | - Aakash Chhetri
- Complex Disease Genomics and Precision Medicine Laboratory, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India, 151401
| | - Abhilash Ludhiadch
- Complex Disease Genomics and Precision Medicine Laboratory, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India, 151401
| | - Anjana Munshi
- Complex Disease Genomics and Precision Medicine Laboratory, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India, 151401.
| |
Collapse
|