1
|
Powlowski P, Matheson J, Le Foll B, Andreazza AC, Ross RA. Acute Cannabis Administration Transiently Reduces Mitochondrial DNA in Young Adults: Findings from a Secondary Analysis of a Double-Blind, Placebo-Controlled, Randomized Clinical Trial. Cannabis Cannabinoid Res 2025; 10:e314-e322. [PMID: 38923954 DOI: 10.1089/can.2023.0282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024] Open
Abstract
Background: Cannabis is one of the world's most commonly used substances; however, many questions remain unanswered as to how cannabis impacts the body. Recently, there has been a resurgence of research into the effects of plant-derived cannabinoids on mitochondrial health. In particular, a number of studies implicate mitochondrial-Δ9-tetrahydrocannabinol (Δ9-THC) interactions with altered memory, metabolism, and catalepsy in mice. Although the research in this field is expanding rapidly, there is little known about the effects of cannabis on mitochondria health in human subjects either in acute or chronic term use. Methods: Blood samples were obtained from a double-blind, placebo-controlled, parallel-group randomized clinical trial in which adults who regularly use cannabis (1-4 days/week) aged 19-25 years were randomized 2:1 to receive either an active (12.5% Δ9-THC) cigarette or placebo (<0.01% Δ9-THC) cigarette containing 750 mg of cannabis before driving simulator testing. DNA was extracted from whole blood using commercial spin columns, followed by measurement of mt-ND1, mt-ND4, and β2M using quantitative polymerase chain reaction. One-way repeated measures analysis of variance (ANOVA) followed by Dunnett's multiple comparisons test was used to observe changes in mitochondrial DNA (mtDNA) copy number over time. A two-tailed Pearsons R test was used to assess correlations between mtDNA copy number and cannabinoid levels (Δ9-THC and metabolites) in blood. Results: We found that exposure to active cannabis containing Δ9-THC, as opposed to placebo, was associated with an acute reduction in mitochondrial DNA copy number in whole blood at 15 min and 1 h after smoking. The observed decrease in mtDNA copy number negatively correlated with blood concentrations of 11-hydroxy-Δ9-tetrahydrocannabinol (11-OH-THC) and 11-Nor-9-carboxy-Δ9-tetrahydrocannabinol (THC-COOH), the two primary metabolites of Δ9-THC, but not Δ9-THC itself. Further, the negative correlation between 11-OH THC and THC-COOH concentrations and mtDNA copy number was found in only a subgroup of participants who use cannabis infrequently, suggesting a tolerance effect. Conclusions: These results illuminate mitochondrial alterations attributed to Δ9-THC consumption, which may be mediated by metabolites. These results appear to suggest stronger effects in individuals who consume cannabis less frequently, suggesting some form of tolerance to the effects of Δ9-THC and its metabolites on mtDNA content in whole blood. Keywords: Mitochondria; mtDNA; cannabis; THC; THC metabolites; blood; THC-COOH; 11-OH-THC.
Collapse
Affiliation(s)
- Pavel Powlowski
- Department of Pharmacology & Toxicology, Medical Sciences Building, University of Toronto, Toronto, Canada
| | - Justin Matheson
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, Toronto, Canada
| | - Bernard Le Foll
- Translational Addiction Research Laboratory, Centre for Addiction and Mental Health, Toronto, Canada
- Institute for Mental Health Policy Research, Centre for Addiction and Mental Health, Toronto, Canada
- Department of Family and Community Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Acute Care Program, Centre for Addiction and Mental Health, Toronto, Canada
- Waypoint Research Institute, Waypoint Centre for Mental Health Care, Penetanguishene, Canada
| | - Ana C Andreazza
- Department of Pharmacology & Toxicology, Medical Sciences Building, University of Toronto, Toronto, Canada
| | - Ruth A Ross
- Department of Pharmacology & Toxicology, Medical Sciences Building, University of Toronto, Toronto, Canada
| |
Collapse
|
2
|
Kageyama Y, Okura S, Sukigara A, Matsunaga A, Maekubo K, Oue T, Ishihara K, Deguchi Y, Inoue K. The Association Among Bipolar Disorder, Mitochondrial Dysfunction, and Reactive Oxygen Species. Biomolecules 2025; 15:383. [PMID: 40149919 PMCID: PMC11940798 DOI: 10.3390/biom15030383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/04/2025] [Accepted: 03/04/2025] [Indexed: 03/29/2025] Open
Abstract
Mitochondria, often known as the cell's powerhouses, are primarily responsible for generating energy through aerobic oxidative phosphorylation. However, their functions extend far beyond just energy production. Mitochondria play crucial roles in maintaining calcium balance, regulating apoptosis (programmed cell death), supporting cellular signaling, influencing cell metabolism, and synthesizing reactive oxygen species (ROS). Recent research has highlighted a strong link between bipolar disorder (BD) and mitochondrial dysfunction. Mitochondrial dysfunction contributes to oxidative stress, particularly through the generation of ROS, which are implicated in the pathophysiology of BD. Oxidative stress arises when there is an imbalance between the production of ROS and the cell's ability to neutralize them. In neurons, excessive ROS can damage various cellular components, including proteins in neuronal membranes and intracellular enzymes. Such damage may interfere with neurotransmitter reuptake and the function of critical enzymes, potentially affecting brain regions involved in mood regulation and emotional control, which are key aspects of BD. In this review, we will explore how various types of mitochondrial dysfunction contribute to the production of ROS. These include disruptions in energy metabolism, impaired ROS management, and defects in mitochondrial quality control mechanisms such as mitophagy (the process by which damaged mitochondria are selectively degraded). We will also examine how abnormalities in calcium signaling, which is crucial for synaptic plasticity, can lead to mitochondrial dysfunction. Additionally, we will discuss the specific mitochondrial dysfunctions observed in BD, highlighting how these defects may contribute to the disorder's pathophysiology. Finally, we will identify potential therapeutic targets to improve mitochondrial function, which could pave the way for new treatments to manage or mitigate symptoms of BD.
Collapse
|
3
|
Mendes-Silva AP, Nikolova YS, Rajji TK, Kennedy JL, Diniz BS, Gonçalves VF, Vieira EL. Exosome-associated mitochondrial DNA in late-life depression: Implications for cognitive decline in older adults. J Affect Disord 2024; 362:217-224. [PMID: 38945405 PMCID: PMC11316645 DOI: 10.1016/j.jad.2024.06.092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/26/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND Disrupted cellular communication, inflammatory responses and mitochondrial dysfunction are consistently observed in late-life depression (LLD). Exosomes (EXs) mediate cellular communication by transporting molecules, including mitochondrial DNA (EX-mtDNA), playing critical role in immunoregulation alongside tumor necrosis factor (TNF). Changes in EX-mtDNA are indicators of impaired mitochondrial function and might increase vulnerability to adverse health outcomes. Our study examined EX-mtDNA levels and integrity, exploring their associations with levels of TNF receptors I and II (TNFRI and TNFRII), and clinical outcomes in LLD. METHODS Ninety older adults (50 LLD and 40 controls (HC)) participated in the study. Blood was collected and exosomes were isolated using size-exclusion chromatography. DNA was extracted and EX-mtDNA levels and deletion were assessed using qPCR. Plasma TNFRI and TNFRII levels were quantified by multiplex immunoassay. Correlation analysis explored relationships between EX-mtDNA, clinical outcomes, and inflammatory markers. RESULTS Although no differences were observed in EX-mtDNA levels between groups, elevated levels correlated with poorer cognitive performance (r = -0.328, p = 0.002) and increased TNFRII levels (r = 0.367, p = 0.004). LLD exhibited higher deletion rates (F(83,1) = 4.402, p = 0.039), with a trend remaining after adjusting for covariates (p = 0.084). Deletion correlated with poorer cognitive performance (r = -0.335, p = 0.002). No other associations were found. LIMITATION Cross-sectional study with a small number of participants from a specialized geriatric psychiatry treatment center. CONCLUSION Our findings suggest that EX-mtDNA holds promise as an indicator of cognitive outcomes in LLD. Additional research is needed to further comprehend the role of EX-mtDNA levels/integrity in LLD, paving the way for its clinical application in the future.
Collapse
MESH Headings
- Humans
- DNA, Mitochondrial/genetics
- DNA, Mitochondrial/blood
- Male
- Female
- Aged
- Cognitive Dysfunction/blood
- Cognitive Dysfunction/genetics
- Exosomes/genetics
- Receptors, Tumor Necrosis Factor, Type II/blood
- Receptors, Tumor Necrosis Factor, Type II/genetics
- Receptors, Tumor Necrosis Factor, Type I/blood
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Aged, 80 and over
- Depression/blood
- Depression/genetics
- Case-Control Studies
- Biomarkers/blood
Collapse
Affiliation(s)
- Ana Paula Mendes-Silva
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Yuliya S Nikolova
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Tarek K Rajji
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - James L Kennedy
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Breno S Diniz
- UConn Center on Aging & Department of Psychiatry, UConn School of Medicine, University of Connecticut Health Center, USA
| | - Vanessa F Gonçalves
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Erica L Vieira
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto, ON, Canada
| |
Collapse
|
4
|
Bodenstein DF, Siebiger G, Zhao Y, Clasky AJ, Mukkala AN, Beroncal EL, Banh L, Aslostovar L, Brijbassi S, Hogan SE, McCully JD, Mehrabian M, Petersen TH, Robinson LA, Walker M, Zachos C, Viswanathan S, Gu FX, Rotstein OD, Cypel M, Radisic M, Andreazza AC. Bridging the gap between in vitro and in vivo models: a way forward to clinical translation of mitochondrial transplantation in acute disease states. Stem Cell Res Ther 2024; 15:157. [PMID: 38816774 PMCID: PMC11140916 DOI: 10.1186/s13287-024-03771-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/27/2024] [Indexed: 06/01/2024] Open
Abstract
Mitochondrial transplantation and transfer are being explored as therapeutic options in acute and chronic diseases to restore cellular function in injured tissues. To limit potential immune responses and rejection of donor mitochondria, current clinical applications have focused on delivery of autologous mitochondria. We recently convened a Mitochondrial Transplant Convergent Working Group (CWG), to explore three key issues that limit clinical translation: (1) storage of mitochondria, (2) biomaterials to enhance mitochondrial uptake, and (3) dynamic models to mimic the complex recipient tissue environment. In this review, we present a summary of CWG conclusions related to these three issues and provide an overview of pre-clinical studies aimed at building a more robust toolkit for translational trials.
Collapse
Affiliation(s)
- David F Bodenstein
- Department of Pharmacology and Toxicology, University of Toronto, Medical Science Building, Room 4211, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Mitochondrial Innovation Initiative (MITO2i), Toronto, Canada
| | - Gabriel Siebiger
- Institute of Medical Science (IMS), University of Toronto, Toronto, Canada
- Latner Thoracic Research Laboratories, Toronto General Hospital, Toronto, Canada
- Mitochondrial Innovation Initiative (MITO2i), Toronto, Canada
| | - Yimu Zhao
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
- Mitochondrial Innovation Initiative (MITO2i), Toronto, Canada
| | - Aaron J Clasky
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
- Mitochondrial Innovation Initiative (MITO2i), Toronto, Canada
| | - Avinash N Mukkala
- Institute of Medical Science (IMS), University of Toronto, Toronto, Canada
- Keenan Research Centre for Biomedical Science, Unity Health Toronto, Toronto, Canada
- Mitochondrial Innovation Initiative (MITO2i), Toronto, Canada
| | - Erika L Beroncal
- Department of Pharmacology and Toxicology, University of Toronto, Medical Science Building, Room 4211, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Mitochondrial Innovation Initiative (MITO2i), Toronto, Canada
| | - Lauren Banh
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, Canada
- Krembil Research Institute, University Health Network, Toronto, Canada
| | - Lili Aslostovar
- Centre for Commercialization of Regenerative Medicine, Toronto, Canada
| | - Sonya Brijbassi
- Mitochondrial Innovation Initiative (MITO2i), Toronto, Canada
| | - Sarah E Hogan
- Regenerative Medicine Department, United Therapeutics Corporation, Silver Spring, USA
| | - James D McCully
- Harvard Medical School, Boston, USA
- Department of Cardiac Surgery, Boston Children's Hospital, Boston, USA
| | | | - Thomas H Petersen
- Regenerative Medicine Department, United Therapeutics Corporation, Silver Spring, USA
| | - Lisa A Robinson
- Program in Cell Biology, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Melanie Walker
- Department of Neurological Surgery, University of Washington, Seattle, USA
| | | | - Sowmya Viswanathan
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, Canada
- Mitochondrial Innovation Initiative (MITO2i), Toronto, Canada
| | - Frank X Gu
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
- Mitochondrial Innovation Initiative (MITO2i), Toronto, Canada
- Acceleration Consortium, University of Toronto, Toronto, ON, Canada
| | - Ori D Rotstein
- Mitochondrial Innovation Initiative (MITO2i), Toronto, Canada
- Li Ka Shing Knowledge Institute, Unity Health Toronto, Toronto, Canada
- Department of Surgery, University of Toronto, Toronto, Canada
| | - Marcelo Cypel
- Latner Thoracic Research Laboratories, Toronto General Hospital, Toronto, Canada
- Mitochondrial Innovation Initiative (MITO2i), Toronto, Canada
- Toronto Lung Transplant Program, Division of Thoracic Surgery, Department of Surgery, University Health Network, University of Toronto, Toronto, ON, M5G 2C4, Canada
| | - Milica Radisic
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
- Mitochondrial Innovation Initiative (MITO2i), Toronto, Canada
- Acceleration Consortium, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, M5G 2C4, Canada
- Terence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, M5S 3E1, Canada
| | - Ana C Andreazza
- Department of Pharmacology and Toxicology, University of Toronto, Medical Science Building, Room 4211, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
- Mitochondrial Innovation Initiative (MITO2i), Toronto, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
5
|
Ceylan D, Arat-Çelik HE, Aksahin IC. Integrating mitoepigenetics into research in mood disorders: a state-of-the-art review. Front Physiol 2024; 15:1338544. [PMID: 38410811 PMCID: PMC10895490 DOI: 10.3389/fphys.2024.1338544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/24/2024] [Indexed: 02/28/2024] Open
Abstract
Mood disorders, including major depressive disorder and bipolar disorder, are highly prevalent and stand among the leading causes of disability. Despite the largely elusive nature of the molecular mechanisms underpinning these disorders, two pivotal contributors-mitochondrial dysfunctions and epigenetic alterations-have emerged as significant players in their pathogenesis. This state-of-the-art review aims to present existing data on epigenetic alterations in the mitochondrial genome in mood disorders, laying the groundwork for future research into their pathogenesis. Associations between abnormalities in mitochondrial function and mood disorders have been observed, with evidence pointing to notable changes in mitochondrial DNA (mtDNA). These changes encompass variations in copy number and oxidative damage. However, information on additional epigenetic alterations in the mitochondrial genome remains limited. Recent studies have delved into alterations in mtDNA and regulations in the mitochondrial genome, giving rise to the burgeoning field of mitochondrial epigenetics. Mitochondrial epigenetics encompasses three main categories of modifications: mtDNA methylation/hydroxymethylation, modifications of mitochondrial nucleoids, and mitochondrial RNA alterations. The epigenetic modulation of mitochondrial nucleoids, lacking histones, may impact mtDNA function. Additionally, mitochondrial RNAs, including non-coding RNAs, present a complex landscape influencing interactions between the mitochondria and the nucleus. The exploration of mitochondrial epigenetics offers valuable perspectives on how these alterations impact neurodegenerative diseases, presenting an intriguing avenue for research on mood disorders. Investigations into post-translational modifications and the role of mitochondrial non-coding RNAs hold promise to unravel the dynamics of mitoepigenetics in mood disorders, providing crucial insights for future therapeutic interventions.
Collapse
Affiliation(s)
- Deniz Ceylan
- Department of Psychiatry, School of Medicine, Koç University, Istanbul, Türkiye
- Koç University Research Center for Translational Medicine (KUTTAM), Affective Laboratory, Istanbul, Türkiye
| | | | - Izel Cemre Aksahin
- Koç University Research Center for Translational Medicine (KUTTAM), Affective Laboratory, Istanbul, Türkiye
- Graduate School of Health Sciences, Koç University, Istanbul, Türkiye
| |
Collapse
|
6
|
Giménez-Palomo A, Guitart-Mampel M, Meseguer A, Borràs R, García-García FJ, Tobías E, Valls L, Alsina-Restoy X, Roqué G, Sánchez E, Roca J, Anmella G, Valentí M, Bracco L, Andreu H, Salmerón S, Colomer L, Radua J, Verdolini N, Berk M, Vieta E, Garrabou G, Pacchiarotti I. Reduced mitochondrial respiratory capacity in patients with acute episodes of bipolar disorder: Could bipolar disorder be a state-dependent mitochondrial disease? Acta Psychiatr Scand 2024; 149:52-64. [PMID: 38030136 DOI: 10.1111/acps.13635] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Bipolar disorder (BD) is a chronic and recurrent disease characterized by acute mood episodes and periods of euthymia. The available literature postulates that a biphasic dysregulation of mitochondrial bioenergetics might underpin the neurobiology of BD. However, most studies focused on inter-subject differences rather than intra-subject variations between different mood states. To test this hypothesis, in this preliminary proof-of-concept study, we measured in vivo mitochondrial respiration in patients with BD during a mood episode and investigated differences compared to healthy controls (HC) and to the same patients upon clinical remission. METHODS This longitudinal study recruited 20 patients with BD admitted to our acute psychiatric ward with a manic (n = 15) or depressive (n = 5) episode, and 10 matched HC. We assessed manic and depressive symptoms using standardized psychometric scales. Different mitochondrial oxygen consumption rates (OCRs: Routine, Leak, electron transport chain [ETC], Rox) were assessed during the acute episode (T0) and after clinical remission (T1) using high-resolution respirometry at 37°C by polarographic oxygen sensors in a two-chamber Oxygraph-2k system in one million of peripheral blood mononuclear cells (PMBC). Specific OCRs were expressed as mean ± SD in picomoles of oxygen per million cells. Significant results were adjusted for age, sex, and body mass index. RESULTS The longitudinal analysis showed a significant increase in the maximal oxygen consumption capacity (ETC) in clinical remission (25.7 ± 16.7) compared to the acute episodes (19.1 ± 11.8, p = 0.025), and was observed separately for patients admitted with a manic episode (29.2 ± 18.9 in T1, 22.3 ± 11.9 in T0, p = 0.076), and at a trend-level for patients admitted with a depressive episode (15.4 ± 3.9 in T1 compared to 9.4 ± 3.2 in T0, p = 0.107). Compared to HC, significant differences were observed in ETC in patients with a bipolar mood episode (H = 11.7; p = 0.003). Individuals with bipolar depression showed lower ETC than those with a manic episode (t = -3.7, p = 0.001). Also, significant differences were observed in ETC rates between HC and bipolar depression (Z = 1.000, p = 0.005). CONCLUSIONS Bioenergetic and mitochondrial dysregulation could be present in both manic and depressive phases in BD and, importantly, they may restore after clinical remission. These preliminary results suggest that mitochondrial respiratory capacity could be a biomarker of illness activity and clinical response in BD. Further studies with larger samples and similar approaches are needed to confirm these results and identify potential biomarkers in different phases of the disease.
Collapse
Affiliation(s)
- Anna Giménez-Palomo
- Department of Psychiatry and Psychology, Institute of Neuroscience, Hospital Clínic de Barcelona, Barcelona, Spain
- Bipolar and Depressive Disorders Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Biomedical Research Networking Centre Consortium on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Medicine, School of Medicine and Health Sciences, Institute of Neurosciences (UBNeuro), University of Barcelona (UB), Barcelona, Spain
| | - Mariona Guitart-Mampel
- Inherited Metabolic Diseases and Muscular Disorders Research Lab, Cellex-IDIBAPS, Faculty of Medicine and Health Sciences-University of Barcelona, Internal Medicine Department-Hospital Clinic of Barcelona and CIBERER, Barcelona, Spain
| | - Ana Meseguer
- Department of Psychiatry and Psychology, Institute of Neuroscience, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Roger Borràs
- Biomedical Research Networking Centre Consortium on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Cardiovascular Institute, Hospital Clínic, IDIBAPS, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Francesc Josep García-García
- Inherited Metabolic Diseases and Muscular Disorders Research Lab, Cellex-IDIBAPS, Faculty of Medicine and Health Sciences-University of Barcelona, Internal Medicine Department-Hospital Clinic of Barcelona and CIBERER, Barcelona, Spain
| | - Esther Tobías
- Inherited Metabolic Diseases and Muscular Disorders Research Lab, Cellex-IDIBAPS, Faculty of Medicine and Health Sciences-University of Barcelona, Internal Medicine Department-Hospital Clinic of Barcelona and CIBERER, Barcelona, Spain
| | - Laura Valls
- Inherited Metabolic Diseases and Muscular Disorders Research Lab, Cellex-IDIBAPS, Faculty of Medicine and Health Sciences-University of Barcelona, Internal Medicine Department-Hospital Clinic of Barcelona and CIBERER, Barcelona, Spain
| | | | - Gemma Roqué
- Pneumology Department, Hospital Clínic of Barcelona, IDIBAPS, Barcelona, Spain
| | - Ester Sánchez
- Pneumology Department, Hospital Clínic of Barcelona, IDIBAPS, Barcelona, Spain
| | - Josep Roca
- Pneumology Department, Hospital Clínic of Barcelona, IDIBAPS, Barcelona, Spain
| | - Gerard Anmella
- Department of Psychiatry and Psychology, Institute of Neuroscience, Hospital Clínic de Barcelona, Barcelona, Spain
- Bipolar and Depressive Disorders Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Biomedical Research Networking Centre Consortium on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Medicine, School of Medicine and Health Sciences, Institute of Neurosciences (UBNeuro), University of Barcelona (UB), Barcelona, Spain
| | - Marc Valentí
- Department of Psychiatry and Psychology, Institute of Neuroscience, Hospital Clínic de Barcelona, Barcelona, Spain
- Bipolar and Depressive Disorders Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Biomedical Research Networking Centre Consortium on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Medicine, School of Medicine and Health Sciences, Institute of Neurosciences (UBNeuro), University of Barcelona (UB), Barcelona, Spain
| | - Lorenzo Bracco
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Helena Andreu
- Department of Psychiatry and Psychology, Institute of Neuroscience, Hospital Clínic de Barcelona, Barcelona, Spain
- Bipolar and Depressive Disorders Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Biomedical Research Networking Centre Consortium on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Medicine, School of Medicine and Health Sciences, Institute of Neurosciences (UBNeuro), University of Barcelona (UB), Barcelona, Spain
| | - Sergi Salmerón
- Department of Psychiatry and Psychology, Institute of Neuroscience, Hospital Clínic de Barcelona, Barcelona, Spain
- Bipolar and Depressive Disorders Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Biomedical Research Networking Centre Consortium on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Medicine, School of Medicine and Health Sciences, Institute of Neurosciences (UBNeuro), University of Barcelona (UB), Barcelona, Spain
| | - Lluc Colomer
- Department of Psychiatry and Psychology, Institute of Neuroscience, Hospital Clínic de Barcelona, Barcelona, Spain
- Bipolar and Depressive Disorders Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Biomedical Research Networking Centre Consortium on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Medicine, School of Medicine and Health Sciences, Institute of Neurosciences (UBNeuro), University of Barcelona (UB), Barcelona, Spain
| | - Joaquim Radua
- Department of Psychiatry and Psychology, Institute of Neuroscience, Hospital Clínic de Barcelona, Barcelona, Spain
- Bipolar and Depressive Disorders Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Biomedical Research Networking Centre Consortium on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Medicine, School of Medicine and Health Sciences, Institute of Neurosciences (UBNeuro), University of Barcelona (UB), Barcelona, Spain
| | - Norma Verdolini
- Local Health Unit Umbria 1, Department of Mental Health, Mental Health Center of Perugia, Perugia, Italy
| | - Michael Berk
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia
| | - Eduard Vieta
- Department of Psychiatry and Psychology, Institute of Neuroscience, Hospital Clínic de Barcelona, Barcelona, Spain
- Bipolar and Depressive Disorders Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Biomedical Research Networking Centre Consortium on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Medicine, School of Medicine and Health Sciences, Institute of Neurosciences (UBNeuro), University of Barcelona (UB), Barcelona, Spain
| | - Glòria Garrabou
- Inherited Metabolic Diseases and Muscular Disorders Research Lab, Cellex-IDIBAPS, Faculty of Medicine and Health Sciences-University of Barcelona, Internal Medicine Department-Hospital Clinic of Barcelona and CIBERER, Barcelona, Spain
| | - Isabella Pacchiarotti
- Department of Psychiatry and Psychology, Institute of Neuroscience, Hospital Clínic de Barcelona, Barcelona, Spain
- Bipolar and Depressive Disorders Unit, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Biomedical Research Networking Centre Consortium on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Department of Medicine, School of Medicine and Health Sciences, Institute of Neurosciences (UBNeuro), University of Barcelona (UB), Barcelona, Spain
| |
Collapse
|
7
|
Ceylan D, Karacicek B, Tufekci KU, Aksahin IC, Senol SH, Genc S. Mitochondrial DNA oxidation, methylation, and copy number alterations in major and bipolar depression. Front Psychiatry 2023; 14:1304660. [PMID: 38161720 PMCID: PMC10755902 DOI: 10.3389/fpsyt.2023.1304660] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Background Mood disorders are common disabling psychiatric disorders caused by both genetic and environmental factors. Mitochondrial DNA (mtDNA) modifications and epigenetics are promising areas of research in depression since mitochondrial dysfunction has been associated with depression. In this study we aimed to investigate the mtDNA changes in depressive disorder (MDD) and bipolar disorder (BD). Methods Displacement loop methylation (D-loop-met), relative mtDNA copy number (mtDNA-cn) and mtDNA oxidation (mtDNA-oxi) were investigated in DNA samples of individuals with MDD (n = 34), BD (n = 23), and healthy controls (HC; n = 40) using the Real-Time Polymerase Chain Reaction (RT-PCR). Blood samples were obtained from a subset of individuals with MDD (n = 15) during a depressive episode (baseline) and after remission (8th week). Results The study groups exhibited significant differences in D-loop-met (p = 0.020), while relative mtDNA-cn and mtDNA-oxi showed comparable results. During the remission phase (8th week), there were lower levels of relative mtDNA-cn (Z = -2.783, p = 0.005) and D-loop-met (Z = -3.180, p = 0.001) compared to the acute MDD baseline, with no significant change in mtDNA-oxi levels (Z = -1.193, p = 0.233). Conclusion Our findings indicate significantly increased D-loop methylation in MDD compared to BD and HCs, suggesting distinct mtDNA modifications in these conditions. Moreover, the observed alterations in relative mtDNA-cn and D-loop-met during remission suggest a potential role of mtDNA alterations in the pathophysiology of MDD. Future studies may provide valuable insights into the dynamics of mtDNA modifications in both disorders and their response to treatment.
Collapse
Affiliation(s)
- Deniz Ceylan
- Affective Laboratory, Koç University Research Center for Translational Medicine, Istanbul, Türkiye
- Department of Psychiatry, Koç University Hospital, Istanbul, Türkiye
| | - Bilge Karacicek
- Izmir Biomedicine and Genome Center, Genç Lab, Izmir, Türkiye
| | - Kemal Ugur Tufekci
- Brain and Neuroscience Research and Application Center, Izmir Demokrasi University, Izmir, Türkiye
- Vocational School of Health Services, Izmir Democracy University, Izmir, Türkiye
| | - Izel Cemre Aksahin
- Affective Laboratory, Koç University Research Center for Translational Medicine, Istanbul, Türkiye
- Graduate School of Health Sciences, Koç University, Istanbul, Türkiye
| | - Sevin Hun Senol
- Department of Psychiatry, Koç University Hospital, Istanbul, Türkiye
| | - Sermin Genc
- Izmir Biomedicine and Genome Center, Genç Lab, Izmir, Türkiye
| |
Collapse
|
8
|
Tsugiyama LE, Macedo Moraes RC, Cavalcante Moraes YA, Francis-Oliveira J. Promising new pharmacological targets for depression: The search for efficacy. Drug Discov Today 2023; 28:103804. [PMID: 37865307 DOI: 10.1016/j.drudis.2023.103804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/31/2023] [Accepted: 10/16/2023] [Indexed: 10/23/2023]
Abstract
Pharmacological treatment of major depressive disorder (MDD) still relies on the use of serotonergic drugs, despite their limited efficacy. A few mechanistically new drugs have been developed in recent years, but many fail in clinical trials. Several hypotheses have been proposed to explain MDD pathophysiology, indicating that physiological processes such as neuroplasticity, circadian rhythms, and metabolism are potential targets. Here, we review the current state of pharmacological treatments for MDD, as well as the preclinical and clinical evidence for an antidepressant effect of molecules that target non-serotonergic systems. We offer some insights into the challenges facing the development of new antidepressant drugs, and the prospect of finding more effectiveness for each target discussed.
Collapse
Affiliation(s)
- Lucila Emiko Tsugiyama
- Kansai Medical University, Graduate School of Medicine, iPS Cell Applied Medicine, Hirakata, Osaka, Japan
| | - Ruan Carlos Macedo Moraes
- University of Alabama at Birmingham, Department of Psychiatry and Behavioral Neurobiology, Birmingham, AL, USA; Biomedical Sciences Institute, Department of Human Physiology, Sao Paulo University, Sao Paulo, Brazil
| | | | - Jose Francis-Oliveira
- University of Alabama at Birmingham, Department of Psychiatry and Behavioral Neurobiology, Birmingham, AL, USA; Biomedical Sciences Institute, Department of Human Physiology, Sao Paulo University, Sao Paulo, Brazil.
| |
Collapse
|
9
|
Clemente-Suárez VJ, Redondo-Flórez L, Beltrán-Velasco AI, Ramos-Campo DJ, Belinchón-deMiguel P, Martinez-Guardado I, Dalamitros AA, Yáñez-Sepúlveda R, Martín-Rodríguez A, Tornero-Aguilera JF. Mitochondria and Brain Disease: A Comprehensive Review of Pathological Mechanisms and Therapeutic Opportunities. Biomedicines 2023; 11:2488. [PMID: 37760929 PMCID: PMC10526226 DOI: 10.3390/biomedicines11092488] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Mitochondria play a vital role in maintaining cellular energy homeostasis, regulating apoptosis, and controlling redox signaling. Dysfunction of mitochondria has been implicated in the pathogenesis of various brain diseases, including neurodegenerative disorders, stroke, and psychiatric illnesses. This review paper provides a comprehensive overview of the intricate relationship between mitochondria and brain disease, focusing on the underlying pathological mechanisms and exploring potential therapeutic opportunities. The review covers key topics such as mitochondrial DNA mutations, impaired oxidative phosphorylation, mitochondrial dynamics, calcium dysregulation, and reactive oxygen species generation in the context of brain disease. Additionally, it discusses emerging strategies targeting mitochondrial dysfunction, including mitochondrial protective agents, metabolic modulators, and gene therapy approaches. By critically analysing the existing literature and recent advancements, this review aims to enhance our understanding of the multifaceted role of mitochondria in brain disease and shed light on novel therapeutic interventions.
Collapse
Affiliation(s)
- Vicente Javier Clemente-Suárez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (J.F.T.-A.)
- Group de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia
| | - Laura Redondo-Flórez
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, C/Tajo s/n, Villaviciosa de Odón, 28670 Madrid, Spain
| | - Ana Isabel Beltrán-Velasco
- Psychology Department, Facultad de Ciencias de la Vida y la Naturaleza, Universidad Antonio de Nebrija, 28240 Madrid, Spain
| | - Domingo Jesús Ramos-Campo
- LFE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Science-INEF, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Pedro Belinchón-deMiguel
- Department of Nursing and Nutrition, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain;
| | | | - Athanasios A. Dalamitros
- Laboratory of Evaluation of Human Biological Performance, School of Physical Education and Sport Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Rodrigo Yáñez-Sepúlveda
- Faculty of Education and Social Sciences, Universidad Andres Bello, Viña del Mar 2520000, Chile;
| | - Alexandra Martín-Rodríguez
- Faculty of Sports Sciences, Universidad Europea de Madrid, Tajo Street, s/n, 28670 Madrid, Spain; (V.J.C.-S.); (J.F.T.-A.)
| | | |
Collapse
|
10
|
Kwok WTH, Kwak HA, Andreazza AC. N-acetylcysteine modulates rotenone-induced mitochondrial Complex I dysfunction in THP-1 cells. Mitochondrion 2023; 72:1-10. [PMID: 37419232 DOI: 10.1016/j.mito.2023.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/12/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
Mitochondrial Complex I dysfunction and oxidative stress have been part of the pathophysiology of several diseases ranging from mitochondrial disease to chronic diseases such as diabetes, mood disorders and Parkinson's Disease. Nonetheless, to investigate the potential of mitochondria-targeted therapeutic strategies for these conditions, there is a need further our understanding on how cells respond and adapt in the presence of Complex I dysfunction. In this study, we used low doses of rotenone, a classical inhibitor of mitochondrial complex I, to mimic peripheral mitochondrial dysfunction in THP-1 cells, a human monocytic cell line, and explored the effects of N-acetylcysteine on preventing this rotenone-induced mitochondrial dysfunction. Our results show that in THP-1 cells, rotenone exposure led to increases in mitochondrial superoxide, levels of cell-free mitochondrial DNA, and protein levels of the NDUFS7 subunit. N-acetylcysteine (NAC) pre-treatment ameliorated the rotenone-induced increase of cell-free mitochondrial DNA and NDUFS7 protein levels, but not mitochondrial superoxide. Furthermore, rotenone exposure did not affect protein levels of the NDUFV1 subunit but induced NDUFV1 glutathionylation. In summary, NAC may help to mitigate the effects of rotenone on Complex I and preserve the normal function of mitochondria in THP-1 cells.
Collapse
Affiliation(s)
- Winston Tse-Hou Kwok
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Haejin Angela Kwak
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Ana Cristina Andreazza
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Mitochondrial Innovation Initiative, Toronto, ON, Canada.
| |
Collapse
|
11
|
Caddye E, Pineau J, Reyniers J, Ronen I, Colasanti A. Lactate: A Theranostic Biomarker for Metabolic Psychiatry? Antioxidants (Basel) 2023; 12:1656. [PMID: 37759960 PMCID: PMC10526106 DOI: 10.3390/antiox12091656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/01/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023] Open
Abstract
Alterations in neurometabolism and mitochondria are implicated in the pathophysiology of psychiatric conditions such as mood disorders and schizophrenia. Thus, developing objective biomarkers related to brain mitochondrial function is crucial for the development of interventions, such as central nervous system penetrating agents that target brain health. Lactate, a major circulatory fuel source that can be produced and utilized by the brain and body, is presented as a theranostic biomarker for neurometabolic dysfunction in psychiatric conditions. This concept is based on three key properties of lactate that make it an intriguing metabolic intermediate with implications for this field: Firstly, the lactate response to various stimuli, including physiological or psychological stress, represents a quantifiable and dynamic marker that reflects metabolic and mitochondrial health. Second, lactate concentration in the brain is tightly regulated according to the sleep-wake cycle, the dysregulation of which is implicated in both metabolic and mood disorders. Third, lactate universally integrates arousal behaviours, pH, cellular metabolism, redox states, oxidative stress, and inflammation, and can signal and encode this information via intra- and extracellular pathways in the brain. In this review, we expand on the above properties of lactate and discuss the methodological developments and rationale for the use of functional magnetic resonance spectroscopy for in vivo monitoring of brain lactate. We conclude that accurate and dynamic assessment of brain lactate responses might contribute to the development of novel and personalized therapies that improve mitochondrial health in psychiatric disorders and other conditions associated with neurometabolic dysfunction.
Collapse
Affiliation(s)
- Edward Caddye
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, University of Sussex, Falmer BN1 9RR, UK
- Department of Clinical Neuroscience, Brighton and Sussex Medical School, University of Sussex, Falmer BN1 9RR, UK
| | - Julien Pineau
- Independent Researcher, Florianópolis 88062-300, Brazil
| | - Joshua Reyniers
- Department of Clinical Neuroscience, Brighton and Sussex Medical School, University of Sussex, Falmer BN1 9RR, UK
- School of Life Sciences, University of Sussex, Falmer BN1 9RR, UK
| | - Itamar Ronen
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, University of Sussex, Falmer BN1 9RR, UK
| | - Alessandro Colasanti
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, University of Sussex, Falmer BN1 9RR, UK
- Department of Clinical Neuroscience, Brighton and Sussex Medical School, University of Sussex, Falmer BN1 9RR, UK
| |
Collapse
|
12
|
Bodenstein DF, Powlowski P, Zachos KA, El Soufi El Sabbagh D, Jeong H, Attisano L, Edgar L, Wallace DC, Andreazza AC. Optimization of differential filtration-based mitochondrial isolation for mitochondrial transplant to cerebral organoids. Stem Cell Res Ther 2023; 14:202. [PMID: 37580812 PMCID: PMC10426050 DOI: 10.1186/s13287-023-03436-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 07/27/2023] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND Mitochondrial dysfunction is involved in several diseases ranging from genetic mitochondrial disorders to chronic metabolic diseases. An emerging approach to potentially treat mitochondrial dysfunction is the transplantation of autologous live mitochondria to promote cell regeneration. We tested the differential filtration-based mitochondrial isolation protocol established by the McCully laboratory for use in cellular models but found whole cell contaminants in the mitochondrial isolate. METHODS Therefore, we explored alternative types of 5-μm filters (filters A and B) for isolation of mitochondria from multiple cell lines including HEK293 cells and induced pluripotent stem cells (iPSCs). MitoTracker™ staining combined with flow cytometry was used to quantify the concentration of viable mitochondria. A proof-of-principle mitochondrial transplant was performed using mitoDsRed2-tagged mitochondria into a H9-derived cerebral organoid. RESULTS We found that filter B provided the highest quality mitochondria as compared to the 5-μm filter used in the original protocol. Using this method, mitochondria were also successfully isolated from induced pluripotent stem cells. To test for viability, mitoDsRed2-tagged mitochondria were isolated and transplanted into H9-derived cerebral organoids and observed that mitochondria were engulfed as indicated by immunofluorescent co-localization of TOMM20 and MAP2. CONCLUSIONS Thus, use of filter B in a differential filtration approach is ideal for isolating pure and viable mitochondria from cells, allowing us to begin evaluating long-term integration and safety of mitochondrial transplant using cellular sources.
Collapse
Affiliation(s)
- David F Bodenstein
- Department of Pharmacology and Toxicology, University of Toronto, Medical Science Building, Room 4211, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Pavel Powlowski
- Department of Pharmacology and Toxicology, University of Toronto, Medical Science Building, Room 4211, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Kassandra A Zachos
- Department of Pharmacology and Toxicology, University of Toronto, Medical Science Building, Room 4211, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Dana El Soufi El Sabbagh
- Department of Pharmacology and Toxicology, University of Toronto, Medical Science Building, Room 4211, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Hyunjin Jeong
- Department of Pharmacology and Toxicology, University of Toronto, Medical Science Building, Room 4211, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Liliana Attisano
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Landon Edgar
- Department of Pharmacology and Toxicology, University of Toronto, Medical Science Building, Room 4211, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
- Department of Chemistry, University of Toronto, Toronto, ON, Canada
| | - Douglas C Wallace
- Department of Biological Chemistry, Center for Molecular and Mitochondrial Medicine and Genetics, University of California, Irvine, CA, USA
- Division of Human Genetics, Department of Pediatrics, Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, USA
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ana Cristina Andreazza
- Department of Pharmacology and Toxicology, University of Toronto, Medical Science Building, Room 4211, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
13
|
Liu L, Cheng S, Qi X, Meng P, Yang X, Pan C, Chen Y, Zhang H, Zhang Z, Zhang J, Li C, Wen Y, Jia Y, Cheng B, Zhang F. Mitochondria-wide association study observed significant interactions of mitochondrial respiratory and the inflammatory in the development of anxiety and depression. Transl Psychiatry 2023; 13:216. [PMID: 37344456 DOI: 10.1038/s41398-023-02518-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/23/2023] Open
Abstract
The aim of this study was to investigate the possible interaction of mitochondrial dysfunction and inflammatory cytokines in the risk of anxiety and depression. We utilized the UK Biobank for the sample of this study. A mitochondria-wide association(MiWAS) and interaction analysis was performed to investigate the interaction effects of mitochondrial DNA (mtDNA)×C-reactive protein (CRP) on the risks of self-reported anxiety (N = 72,476), general anxiety disorder (GAD-7) scores (N = 80,853), self-reported depression (N = 80,778), Patient Health Questionnaire (PHQ-9) scores (N = 80,520) in total samples, females and males, respectively, adjusting for sex, age, Townsend deprivation index (TDI), education score, alcohol intake, smoking and 10 principal components. In all, 25 mtSNPs and 10 mtSNPs showed significant level of association with self-reported anxiety and GAD-7 score respectively. A total of seven significant mtDNA × CRP interactions were found for anxiety, such as m.3915G>A(MT-ND1) for self-reported anxiety in total subjects (P = 6.59 × 10-3), m.4561T>C(MT-ND2) (P = 3.04 × 10-3) for GAD-7 score in total subjects. For depression, MiWAS identified 17 significant mtSNPs for self-reported depression and 14 significant mtSNPs for PHQ-9 scores. 17 significant mtDNA associations (2 for self-reported depression and 15 for PHQ-9 score) was identified, such as m.14869G>A(MT-CYB; P = 2.22 × 10-3) associated with self-reported depression and m.4561T>C (MT-ND2; P value = 3.02 × 10-8) associated with PHQ-9 score in all subjects. In addition, 5 common mtDNA shared with anxiety and depression were found in MiWAS, and 4 common mtDNA variants were detected to interact with CRP for anxiety and depression, such as m.9899T>C(MT-CO3). Our study suggests the important interaction effects of mitochondrial function and CRP on the risks of anxiety and depression.
Collapse
Affiliation(s)
- Li Liu
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Xin Qi
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, P. R. China
| | - Peilin Meng
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Xuena Yang
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Chuyu Pan
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Yujing Chen
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Huijie Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Zhen Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Jingxi Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Chune Li
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Yumeng Jia
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Bolun Cheng
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China.
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
14
|
Valiente-Pallejà A, Tortajada J, Bulduk BK, Vilella E, Garrabou G, Muntané G, Martorell L. Comprehensive summary of mitochondrial DNA alterations in the postmortem human brain: A systematic review. EBioMedicine 2022; 76:103815. [PMID: 35085849 PMCID: PMC8790490 DOI: 10.1016/j.ebiom.2022.103815] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/24/2021] [Accepted: 01/05/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Mitochondrial DNA (mtDNA) encodes 37 genes necessary for synthesizing 13 essential subunits of the oxidative phosphorylation system. mtDNA alterations are known to cause mitochondrial disease (MitD), a clinically heterogeneous group of disorders that often present with neuropsychiatric symptoms. Understanding the nature and frequency of mtDNA alterations in health and disease could be a cornerstone in disentangling the relationship between biochemical findings and clinical symptoms of brain disorders. This systematic review aimed to summarize the mtDNA alterations in human brain tissue reported to date that have implications for further research on the pathophysiological significance of mtDNA alterations in brain functioning. METHODS We searched the PubMed and Embase databases using distinct terms related to postmortem human brain and mtDNA up to June 10, 2021. Reports were eligible if they were empirical studies analysing mtDNA in postmortem human brains. FINDINGS A total of 158 of 637 studies fulfilled the inclusion criteria and were clustered into the following groups: MitD (48 entries), neurological diseases (NeuD, 55 entries), psychiatric diseases (PsyD, 15 entries), a miscellaneous group with controls and other clinical diseases (5 entries), ageing (20 entries), and technical issues (5 entries). Ten entries were ascribed to more than one group. Pathogenic single nucleotide variants (pSNVs), both homo- or heteroplasmic variants, have been widely reported in MitD, with heteroplasmy levels varying among brain regions; however, pSNVs are rarer in NeuD, PsyD and ageing. A lower mtDNA copy number (CN) in disease was described in most, but not all, of the identified studies. mtDNA deletions were identified in individuals in the four clinical categories and ageing. Notably, brain samples showed significantly more mtDNA deletions and at higher heteroplasmy percentages than blood samples, and several of the deletions present in the brain were not detected in the blood. Finally, mtDNA heteroplasmy, mtDNA CN and the deletion levels varied depending on the brain region studied. INTERPRETATION mtDNA alterations are well known to affect human tissues, including the brain. In general, we found that studies of MitD, NeuD, PsyD, and ageing were highly variable in terms of the type of disease or ageing process investigated, number of screened individuals, studied brain regions and technology used. In NeuD and PsyD, no particular type of mtDNA alteration could be unequivocally assigned to any specific disease or diagnostic group. However, the presence of mtDNA deletions and mtDNA CN variation imply a role for mtDNA in NeuD and PsyD. Heteroplasmy levels and threshold effects, affected brain regions, and mitotic segregation patterns of mtDNA alterations may be involved in the complex inheritance of NeuD and PsyD and in the ageing process. Therefore, more information is needed regarding the type of mtDNA alteration, the affected brain regions, the heteroplasmy levels, and their relationship with clinical phenotypes and the ageing process. FUNDING Hospital Universitari Institut Pere Mata; Institut d'Investigació Sanitària Pere Virgili; Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación (PI18/00514).
Collapse
Affiliation(s)
- Alba Valiente-Pallejà
- Research Department, Hospital Universitari Institut Pere Mata (HUIPM); Institut d'Investigació Sanitària Pere Virgili (IISPV); Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili (URV), 43201 Reus, Catalonia, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), 28029 Madrid, Spain
| | - Juan Tortajada
- Research Department, Hospital Universitari Institut Pere Mata (HUIPM); Institut d'Investigació Sanitària Pere Virgili (IISPV); Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili (URV), 43201 Reus, Catalonia, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), 28029 Madrid, Spain
| | - Bengisu K Bulduk
- Research Department, Hospital Universitari Institut Pere Mata (HUIPM); Institut d'Investigació Sanitària Pere Virgili (IISPV); Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili (URV), 43201 Reus, Catalonia, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), 28029 Madrid, Spain
| | - Elisabet Vilella
- Research Department, Hospital Universitari Institut Pere Mata (HUIPM); Institut d'Investigació Sanitària Pere Virgili (IISPV); Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili (URV), 43201 Reus, Catalonia, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), 28029 Madrid, Spain
| | - Glòria Garrabou
- Laboratory of Muscle Research and Mitochondrial Function, Department of Internal Medicine-Hospital Clínic of Barcelona (HCB); Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS); Faculty of Medicine and Health Sciences, Universitat de Barcelona (UB), 08036 Barcelona, Catalonia, Spain; Biomedical Network Research Centre on Rare Diseases (CIBERER), 28029 Madrid, Spain
| | - Gerard Muntané
- Research Department, Hospital Universitari Institut Pere Mata (HUIPM); Institut d'Investigació Sanitària Pere Virgili (IISPV); Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili (URV), 43201 Reus, Catalonia, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), 28029 Madrid, Spain; Institute of Evolutionary Biology (IBE), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Catalonia, Spain
| | - Lourdes Martorell
- Research Department, Hospital Universitari Institut Pere Mata (HUIPM); Institut d'Investigació Sanitària Pere Virgili (IISPV); Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili (URV), 43201 Reus, Catalonia, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), 28029 Madrid, Spain.
| |
Collapse
|
15
|
The role of mitochondria in the pathophysiology of schizophrenia: A critical review of the evidence focusing on mitochondrial complex one. Neurosci Biobehav Rev 2021; 132:449-464. [PMID: 34864002 DOI: 10.1016/j.neubiorev.2021.11.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/30/2021] [Accepted: 11/30/2021] [Indexed: 12/30/2022]
Abstract
There has been increasing interest in the role of mitochondrial dysfunction in the pathophysiology of schizophrenia. Mitochondrial complex one (MCI) dysfunction may represent a mechanism linking bioenergetic impairment with the alterations in dopamine signalling, glutamatergic dysfunction, and oxidative stress found in the disorder. New lines of evidence from novel approaches make it timely to review evidence for mitochondrial involvement in schizophrenia, with a specific focus on MCI. The most consistent findings in schizophrenia relative to controls are reductions in expression of MCI subunits in post-mortem brain tissue (Cohen's d> 0.8); reductions in MCI function in post-mortem brains (d> 0.7); and reductions in neural glucose utilisation (d= 0.3 to 0.6). Antipsychotics may affect glucose utilisation, and, at least in vitro, affect MC1. The findings overall are consistent with MCI dysfunction in schizophrenia, but also highlight the need for in vivo studies to determine the link between MCI dysfunction and symptoms in patients. If new imaging tools confirm MCI dysfunction in the disease, this could pave the way for new treatments targeting this enzyme.
Collapse
|
16
|
Emmerzaal TL, Nijkamp G, Veldic M, Rahman S, Andreazza AC, Morava E, Rodenburg RJ, Kozicz T. Effect of neuropsychiatric medications on mitochondrial function: For better or for worse. Neurosci Biobehav Rev 2021; 127:555-571. [PMID: 34000348 DOI: 10.1016/j.neubiorev.2021.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/12/2021] [Accepted: 05/04/2021] [Indexed: 01/22/2023]
Abstract
Individuals with mitochondrial disease often present with psychopathological comorbidity, and mitochondrial dysfunction has been proposed as the underlying pathobiology in various psychiatric disorders. Several studies have suggested that medications used to treat neuropsychiatric disorders could directly influence mitochondrial function. This review provides a comprehensive overview of the effect of these medications on mitochondrial function. We collected preclinical information on six major groups of antidepressants and other neuropsychiatric medications and found that the majority of these medications either positively influenced mitochondrial function or showed mixed effects. Only amitriptyline, escitalopram, and haloperidol were identified as having exclusively adverse effects on mitochondrial function. In the absence of formal clinical trials, and until such trials are completed, the data from preclinical studies reported and discussed here could inform medication prescribing practices for individuals with psychopathology and impaired mitochondrial function in the underlying pathology.
Collapse
Affiliation(s)
- Tim L Emmerzaal
- Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Department of Medical Imaging, Anatomy, Nijmegen, The Netherlands; Mayo Clinic, Department of Clinical Genomics, Rochester, MN, USA
| | - Gerben Nijkamp
- Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Department of Medical Imaging, Anatomy, Nijmegen, The Netherlands
| | - Marin Veldic
- Mayo Clinic, Department of Psychiatry, Rochester, MN, USA
| | - Shamima Rahman
- Mitochondrial Research Group, UCL Great Ormond Street Institute of Child Health, London, United Kingdom; Metabolic Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Ana Cristina Andreazza
- University of Toronto, Temerty Faculty of Medicine, Department of Pharmacology & Toxicology and Psychiatry, Toronto, Canada
| | - Eva Morava
- Mayo Clinic, Department of Clinical Genomics, Rochester, MN, USA; Mayo Clinic, Department of Laboratory Medicine and Pathology, Rochester, MN, USA
| | - Richard J Rodenburg
- Radboud Center for Mitochondrial Medicine, Translational Metabolic Laboratory, Department of Pediatrics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Tamas Kozicz
- Radboud University Medical Center, Donders Institute for Brain Cognition and Behaviour, Department of Medical Imaging, Anatomy, Nijmegen, The Netherlands; Mayo Clinic, Department of Clinical Genomics, Rochester, MN, USA; Mayo Clinic, Department of Biochemistry and Molecular Biology, Rochester, MN, USA.
| |
Collapse
|
17
|
Gonzalez S. The Role of Mitonuclear Incompatibility in Bipolar Disorder Susceptibility and Resilience Against Environmental Stressors. Front Genet 2021; 12:636294. [PMID: 33815470 PMCID: PMC8010675 DOI: 10.3389/fgene.2021.636294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/22/2021] [Indexed: 12/23/2022] Open
Abstract
It has been postulated that mitochondrial dysfunction has a significant role in the underlying pathophysiology of bipolar disorder (BD). Mitochondrial functioning plays an important role in regulating synaptic transmission, brain function, and cognition. Neuronal activity is energy dependent and neurons are particularly sensitive to changes in bioenergetic fluctuations, suggesting that mitochondria regulate fundamental aspects of brain function. Vigorous evidence supports the role of mitochondrial dysfunction in the etiology of BD, including dysregulated oxidative phosphorylation, general decrease of energy, altered brain bioenergetics, co-morbidity with mitochondrial disorders, and association with genetic variants in mitochondrial DNA (mtDNA) or nuclear-encoded mitochondrial genes. Despite these advances, the underlying etiology of mitochondrial dysfunction in BD is unclear. A plausible evolutionary explanation is that mitochondrial-nuclear (mitonuclear) incompatibility leads to a desynchronization of machinery required for efficient electron transport and cellular energy production. Approximately 1,200 genes, encoded from both nuclear and mitochondrial genomes, are essential for mitochondrial function. Studies suggest that mitochondrial and nuclear genomes co-evolve, and the coordinated expression of these interacting gene products are essential for optimal organism function. Incompatibilities between mtDNA and nuclear-encoded mitochondrial genes results in inefficiency in electron flow down the respiratory chain, differential oxidative phosphorylation efficiency, increased release of free radicals, altered intracellular Ca2+ signaling, and reduction of catalytic sites and ATP production. This review explores the role of mitonuclear incompatibility in BD susceptibility and resilience against environmental stressors.
Collapse
Affiliation(s)
- Suzanne Gonzalez
- Department of Psychiatry and Behavioral Health, Department of Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| |
Collapse
|
18
|
Bryll A, Krzyściak W, Karcz P, Śmierciak N, Kozicz T, Skrzypek J, Szwajca M, Pilecki M, Popiela TJ. The Relationship between the Level of Anterior Cingulate Cortex Metabolites, Brain-Periphery Redox Imbalance, and the Clinical State of Patients with Schizophrenia and Personality Disorders. Biomolecules 2020; 10:E1272. [PMID: 32899276 PMCID: PMC7565827 DOI: 10.3390/biom10091272] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/17/2020] [Accepted: 08/28/2020] [Indexed: 01/10/2023] Open
Abstract
Schizophrenia is a complex mental disorder whose course varies with periods of deterioration and symptomatic improvement without diagnosis and treatment specific for the disease. So far, it has not been possible to clearly define what kinds of functional and structural changes are responsible for the onset or recurrence of acute psychotic decompensation in the course of schizophrenia, and to what extent personality disorders may precede the appearance of the appropriate symptoms. The work combines magnetic resonance spectroscopy imaging with clinical evaluation and laboratory tests to determine the likely pathway of schizophrenia development by identifying peripheral cerebral biomarkers compared to personality disorders. The relationship between the level of metabolites in the brain, the clinical status of patients according to International Statistical Classification of Diseases and Related Health Problems, 10th Revision ICD-10, duration of untreated psychosis (DUP), and biochemical indices related to redox balance (malondialdehyde), the efficiency of antioxidant systems (FRAP), and bioenergetic metabolism of mitochondria, were investigated. There was a reduction in the level of brain N-acetyl-aspartate and glutamate in the anterior cingulate gyrus of patients with schisophrenia compared to the other groups that seems more to reflect a biological etiopathological factor of psychosis. Decreased activity of brain metabolites correlated with increased peripheral oxidative stress (increased malondialdehyde MDA) associated with decreased efficiency of antioxidant systems (FRAP) and the breakdown of clinical symptoms in patients with schizophrenia in the course of psychotic decompensation compared to other groups. The period of untreated psychosis correlated negatively with glucose value in the brain of people with schizophrenia, and positively with choline level. The demonstrated differences between two psychiatric units, such as schizophrenia and personality disorders in relation to healthy people, may be used to improve the diagnosis and prognosis of schizophrenia compared to other heterogenous psychopathology in the future. The collapse of clinical symptoms of patients with schizophrenia in the course of psychotic decompensation may be associated with the occurrence of specific schizotypes, the determination of which is possible by determining common relationships between changes in metabolic activity of particular brain structures and peripheral parameters, which may be an important biological etiopathological factor of psychosis. Markers of peripheral redox imbalance associated with disturbed bioenergy metabolism in the brain may provide specific biological factors of psychosis however, they need to be confirmed in further studies.
Collapse
Affiliation(s)
- Amira Bryll
- Department of Radiology, Jagiellonian University Medical College, Kopernika 19, 31-501 Krakow, Poland;
| | - Wirginia Krzyściak
- Department of Medical Diagnostics, Jagiellonian University, Medical College, Medyczna 9, 30-688 Krakow, Poland;
| | - Paulina Karcz
- Department of Electroradiology, Jagiellonian University Medical College, Michałowskiego 12, 31-126 Krakow, Poland;
| | - Natalia Śmierciak
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Jagiellonian University, Medical College, Kopernika 21a, 31-501 Krakow, Poland; (N.Ś.); (M.S.); (M.P.)
| | - Tamas Kozicz
- Department of Clinical Genomics, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA;
| | - Justyna Skrzypek
- Department of Medical Diagnostics, Jagiellonian University, Medical College, Medyczna 9, 30-688 Krakow, Poland;
| | - Marta Szwajca
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Jagiellonian University, Medical College, Kopernika 21a, 31-501 Krakow, Poland; (N.Ś.); (M.S.); (M.P.)
| | - Maciej Pilecki
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Jagiellonian University, Medical College, Kopernika 21a, 31-501 Krakow, Poland; (N.Ś.); (M.S.); (M.P.)
| | - Tadeusz J. Popiela
- Department of Radiology, Jagiellonian University Medical College, Kopernika 19, 31-501 Krakow, Poland;
| |
Collapse
|