1
|
Yin X, Zhang Z, Zhou R, Zuo P, Sang D, Zhou S, Shi B, Chen L, Wu C, Guo Y, Wang F, Zhang EE, Li Q, Yanagisawa M, Liu Q. Calcineurin governs baseline and homeostatic regulations of non-rapid eye movement sleep in mice. Proc Natl Acad Sci U S A 2025; 122:e2418317122. [PMID: 39847332 PMCID: PMC11789068 DOI: 10.1073/pnas.2418317122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 12/23/2024] [Indexed: 01/24/2025] Open
Abstract
Sleep need accumulates during waking and dissipates during sleep to maintain sleep homeostasis (process S). Besides the regulation of daily (baseline) sleep amount, homeostatic sleep regulation commonly refers to the universal phenomenon that sleep deprivation (SD) causes an increase of sleep need, hence, the amount and intensity of subsequent recovery sleep. The central regulators and signaling pathways that govern the baseline and homeostatic sleep regulations in mammals remain unclear. Here, we report that enhanced activity of calcineurin Aα (CNAα)-a catalytic subunit of calcineurin-in the mouse brain neurons sharply increases the amount (to ~17-h/d) and delta power-a measure of intensity-of non-rapid eye movement sleep (NREMS). Knockout of the regulatory (CnB1) or catalytic (CnAα and CnAβ) subunits of calcineurin diminishes the amount (to ~4-h/d) and delta power of baseline NREMS, but also nearly abrogates the homeostatic recovery NREMS following SD. Accordingly, mathematical modeling of process S reveals an inability to accumulate sleep need during spontaneous or forced wakefulness in calcineurin deficient mice. Moreover, calcineurin promotes baseline NREMS by antagonizing wake-promoting protein kinase A and, in part, by activating sleep-promoting kinase SIK3. Together, these results indicate that calcineurin is an important regulator of sleep need and governs both baseline and homeostatic regulations of NREMS in mice.
Collapse
Affiliation(s)
- Xin Yin
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Peking University, Beijing100871, China
- National Institute of Biological Sciences, Beijing102206, China
| | - Zihan Zhang
- National Institute of Biological Sciences, Beijing102206, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing100730, China
| | - Rui Zhou
- National Institute of Biological Sciences, Beijing102206, China
| | - Peng Zuo
- National Institute of Biological Sciences, Beijing102206, China
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing100084, China
| | - Di Sang
- National Institute of Biological Sciences, Beijing102206, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing100730, China
| | - Shuang Zhou
- National Institute of Biological Sciences, Beijing102206, China
- College of Life Sciences, Beijing Normal University, Beijing100875, China
| | - Bihan Shi
- National Institute of Biological Sciences, Beijing102206, China
| | - Lin Chen
- National Institute of Biological Sciences, Beijing102206, China
| | - Chongyang Wu
- National Institute of Biological Sciences, Beijing102206, China
| | - Ying Guo
- National Institute of Biological Sciences, Beijing102206, China
| | - Fengchao Wang
- National Institute of Biological Sciences, Beijing102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing102206, China
| | - Eric Erquan Zhang
- National Institute of Biological Sciences, Beijing102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing102206, China
| | - Qi Li
- National Institute of Biological Sciences, Beijing102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing102206, China
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba305-8575, Japan
| | - Qinghua Liu
- National Institute of Biological Sciences, Beijing102206, China
- New Cornerstone Science Laboratory, Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing102206, China
| |
Collapse
|
2
|
Wang G, Li Q, Xu J, Zhao S, Zhou R, Chen Z, Jiang W, Gao X, Zhou S, Chen Z, Sun Q, Ma C, Chen L, Shi B, Guo Y, Wang H, Wang X, Li H, Cai T, Wang Y, Chen Z, Wang F, Liu Q. Somatic Genetics Analysis of Sleep in Adult Mice. J Neurosci 2022; 42:5617-5640. [PMID: 35667851 PMCID: PMC9295845 DOI: 10.1523/jneurosci.0089-22.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 11/21/2022] Open
Abstract
Classical forward and reverse mouse genetics require germline mutations and, thus, are unwieldy to study sleep functions of essential genes or redundant pathways. It is also time-consuming to conduct EEG/EMG-based mouse sleep screening because of labor-intensive surgeries and genetic crosses. Here, we describe a highly accurate SleepV (video) system and adeno-associated virus (AAV)-based adult brain chimeric (ABC)-expression/KO platform for somatic genetics analysis of sleep in adult male or female mice. A pilot ABC screen identifies CREB and CRTC1, of which constitutive or inducible expression significantly reduces quantity and/or quality of non-rapid eye movement sleep. Whereas ABC-KO of exon 13 of Sik3 by AAV-Cre injection in Sik3-E13flox/flox adult mice phenocopies Sleepy (Sik3 Slp/+ ) mice, ABC-CRISPR of Slp/Sik3 reverses hypersomnia of Sleepy mice, indicating a direct role of SLP/SIK3 kinase in sleep regulation. Multiplex ABC-CRISPR of both orexin/hypocretin receptors causes narcolepsy episodes, enabling one-step analysis of redundant genes in adult mice. Therefore, this somatic genetics approach should facilitate high-throughput analysis of sleep regulatory genes, especially for essential or redundant genes, in adult mice by skipping mouse development and minimizing genetic crosses.SIGNIFICANCE STATEMENT The molecular mechanisms of mammalian sleep regulation remain unclear. Classical germline mouse genetics are unwieldy to study sleep functions of essential genes or redundant pathways. The EEG/EMG-based mouse sleep screening is time-consuming because of labor-intensive surgeries and lengthy genetic crosses. To overcome these "bottlenecks," we developed a highly accurate video-based sleep analysis system and adeno-associated virus-mediated ABC-expression/KO platform for somatic genetics analysis of sleep in adult mice. These methodologies facilitate rapid identification of sleep regulatory genes, but also efficient mechanistic studies of the molecular pathways of sleep regulation in mice.
Collapse
Affiliation(s)
- Guodong Wang
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Qi Li
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
| | - Junjie Xu
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
- College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Shuai Zhao
- Institute of Automation, Chinese Academy of Sciences, Beijing, 100080, China
| | - Rui Zhou
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
- College of Biological Sciences, China Agriculture University, Beijing, 100094, China
| | - Zhenkang Chen
- Children's Medical Center Research Institute, UT Southwestern Medical Center, Dallas, Texas 75235
| | - Wentong Jiang
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Xue Gao
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
| | - Shuang Zhou
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
- College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Zhiyu Chen
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
| | - Quanzhi Sun
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
| | - Chengyuan Ma
- Chinese Institute of Brain Science, Beijing, 102206, China
| | - Lin Chen
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
| | - Bihan Shi
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
| | - Ying Guo
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
| | - Haiyan Wang
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
| | - Xia Wang
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
| | - Huaiye Li
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
| | - Tao Cai
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
| | - Yibing Wang
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
| | - Zhineng Chen
- Institute of Automation, Chinese Academy of Sciences, Beijing, 100080, China
| | - Fengchao Wang
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
| | - Qinghua Liu
- National Institute of Biological Sciences, Beijing, 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, 305-8575, Japan
| |
Collapse
|
3
|
Subramanian D, Natarajan J. Leveraging big data bioinformatics approaches to extract knowledge from Staphylococcus aureus public omics data. Crit Rev Microbiol 2022; 49:391-413. [PMID: 35468027 DOI: 10.1080/1040841x.2022.2065905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Staphylococcus aureus is a notorious pathogen posing challenges in the medical industry due to drug resistance and biofilm formation. The horizon of knowledge on S. aureus pathogenesis has expanded with the advancement of data-driven bioinformatics techniques. Mining information from sequenced genomes and their expression data is an economic approach that alleviates wastage of resources and redundancy in experiments. The current review covers how big data bioinformatics has been used in the analysis of S. aureus from publicly available -omics data to uncover mechanisms of infection and inhibition. Particularly, advances in the past two decades in biomarker discovery, host responses, phenotype identification, consolidation of information, and drug development are discussed highlighting the challenges and shortcomings. Overall, the review summarizes the diverse aspects of scrupulous re-analysis of S. aureus proteomic and transcriptomic expression datasets retrieved from public repositories in terms of the efforts taken, benefits offered, and follow-up actions. The detailed review thus serves as a reference and aid for (i) Computational biologists by briefing the approaches utilized for bacterial omics re-analysis concerning S. aureus and (ii) Experimental biologists by elucidating the potential of bioinformatics in biological research to generate reliable postulates in a prompt and economical manner.
Collapse
Affiliation(s)
- Devika Subramanian
- Data Mining and Text Mining Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore, India
| | - Jeyakumar Natarajan
- Data Mining and Text Mining Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore, India
| |
Collapse
|
4
|
Applications of Tandem Mass Spectrometry (MS/MS) in Protein Analysis for Biomedical Research. Molecules 2022; 27:molecules27082411. [PMID: 35458608 PMCID: PMC9031286 DOI: 10.3390/molecules27082411] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 01/27/2023] Open
Abstract
Mass Spectrometry (MS) allows the analysis of proteins and peptides through a variety of methods, such as Electrospray Ionization-Mass Spectrometry (ESI-MS) or Matrix-Assisted Laser Desorption Ionization-Mass Spectrometry (MALDI-MS). These methods allow identification of the mass of a protein or a peptide as intact molecules or the identification of a protein through peptide-mass fingerprinting generated upon enzymatic digestion. Tandem mass spectrometry (MS/MS) allows the fragmentation of proteins and peptides to determine the amino acid sequence of proteins (top-down and middle-down proteomics) and peptides (bottom-up proteomics). Furthermore, tandem mass spectrometry also allows the identification of post-translational modifications (PTMs) of proteins and peptides. Here, we discuss the application of MS/MS in biomedical research, indicating specific examples for the identification of proteins or peptides and their PTMs as relevant biomarkers for diagnostic and therapy.
Collapse
|
5
|
Minami Y, Yuan Y, Ueda HR. High-throughput Genetically Modified Animal Experiments Achieved by Next-generation Mammalian Genetics. J Biol Rhythms 2022; 37:135-151. [PMID: 35137623 DOI: 10.1177/07487304221075002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Animal models are essential tools for modern scientists to conduct biological experiments and investigate their hypotheses in vivo. However, for the past decade, raising the throughput of such animal experiments has been a great challenge. Conventionally, in vivo high-throughput assay was achieved through large-scale mutagen-driven forward genetic screening, which took years to find causal genes. In contrast, reverse genetics accelerated the causal gene identification process, but its throughput was also limited by 2 barriers, that is, the genome modification step and the time-consuming crossing step. Defined as genetics without crossing, next-generation genetics is able to produce gene-modified animals that can be analyzed at the founder generation (F0). This method is or can be accomplished through recent technological advances in gene editing and virus-based efficient gene modifications. Notably, next-generation genetics has accelerated the process of cross-species studies, and it will be a useful technique during animal experiments as it can provide genetic perturbation at an individual level without crossing. In this review, we begin by introducing the history of animal-based high-throughput analysis, with a specific focus on chronobiology. We then describe ways that gene modification efficiency during animal experiments was enhanced and why crossing remained a barrier to reaching higher efficiency. Moreover, we mention the Triple CRISPR as a critical technique for achieving next-generation genetics. Finally, we discuss the potential applications and limitations of next-generation mammalian genetics.
Collapse
Affiliation(s)
- Yoichi Minami
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yufei Yuan
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroki R Ueda
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Suita, Japan
| |
Collapse
|
6
|
Minami Y, Yuan Y, Ueda HR. Towards organism-level systems biology by next-generation genetics and whole-organ cell profiling. Biophys Rev 2021; 13:1113-1126. [PMID: 35059031 PMCID: PMC8724464 DOI: 10.1007/s12551-021-00859-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/18/2021] [Indexed: 02/06/2023] Open
Abstract
The system-level identification and analysis of molecular and cellular networks in mammals can be accelerated by "next-generation" genetics, which is defined as genetics that can achieve desired genetic makeup in a single generation without any animal crossing. We recently established a highly efficient procedure for producing knock-out (KO) mice using the "Triple-CRISPR" method, which targets a single gene by triple gRNAs in the CRISPR/Cas9 system. This procedure achieved an almost perfect KO efficiency (96-100%). We also established a highly efficient procedure, the "ES-mouse" method, for producing knock-in (KI) mice within a single generation. In this method, ES cells were treated with three inhibitors to keep their potency and then injected into 8-cell-stage embryos. These procedures dramatically shortened the time required to produce KO or KI mice from years down to about 3 months. The produced KO and KI mice can also be systematically profiled at a single-cell resolution by the "whole-organ cell profiling," which was realized by tissue-clearing methods, such as CUBIC, and an advanced light-sheet microscopy. The review describes the establishment and application of these technologies above in analyzing the three states (NREM sleep, REM sleep, and awake) of mammalian brains. It also discusses the role of calcium and muscarinic receptors in these states as well as the current challenges and future opportunities in the next-generation mammalian genetics and whole-organ cell profiling for organism-level systems biology.
Collapse
Affiliation(s)
- Yoichi Minami
- Department of Systems Pharmacology, Graduate School of Medicine, the University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Yufei Yuan
- Department of Systems Pharmacology, Graduate School of Medicine, the University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Hiroki R. Ueda
- Department of Systems Pharmacology, Graduate School of Medicine, the University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033 Japan
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, 1-3 Yamadaoka, Suita, Osaka 565-0871 Japan
| |
Collapse
|
7
|
CRISPR/Cas9-based genetic screen of SCNT-reprogramming resistant genes identifies critical genes for male germ cell development in mice. Sci Rep 2021; 11:15438. [PMID: 34326397 PMCID: PMC8322354 DOI: 10.1038/s41598-021-94851-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/19/2021] [Indexed: 11/23/2022] Open
Abstract
Male germ cells undergo complex developmental processes eventually producing spermatozoa through spermatogenesis, although the molecular mechanisms remain largely elusive. We have previously identified somatic cell nuclear transfer-reprogramming resistant genes (SRRGs) that are highly enriched for genes essential for spermatogenesis, although many of them remain uncharacterized in knockout (KO) mice. Here, we performed a CRISPR-based genetic screen using C57BL/6N mice for five uncharacterized SRRGs (Cox8c, Cox7b2, Tuba3a/3b, Faiml, and Gm773), together with meiosis essential gene Majin as a control. RT-qPCR analysis of mouse adult tissues revealed that the five selected SRRGs were exclusively expressed in testis. Analysis of single-cell RNA-seq datasets of adult testis revealed stage-specific expression (pre-, mid-, or post-meiotic expression) in testicular germ cells. Examination of testis morphology, histology, and sperm functions in CRISPR-injected KO adult males revealed that Cox7b2, Gm773, and Tuba3a/3b are required for the production of normal spermatozoa. Specifically, Cox7b2 KO mice produced poorly motile infertile spermatozoa, Gm773 KO mice produced motile spermatozoa with limited zona penetration abilities, and Tuba3a/3b KO mice completely lost germ cells at the early postnatal stages. Our genetic screen focusing on SRRGs efficiently identified critical genes for male germ cell development in mice, which also provides insights into human reproductive medicine.
Collapse
|
8
|
Abstract
The kexin-like proprotein convertases perform the initial proteolytic cleavages that ultimately generate a variety of different mature peptide and proteins, ranging from brain neuropeptides to endocrine peptide hormones, to structural proteins, among others. In this review, we present a general introduction to proprotein convertase structure and biochemistry, followed by a comprehensive discussion of each member of the kexin-like subfamily of proprotein convertases. We summarize current knowledge of human proprotein convertase insufficiency syndromes, including genome-wide analyses of convertase polymorphisms, and compare these to convertase null and mutant mouse models. These mouse models have illuminated our understanding of the roles specific convertases play in human disease and have led to the identification of convertase-specific substrates; for example, the identification of procorin as a specific PACE4 substrate in the heart. We also discuss the limitations of mouse null models in interpreting human disease, such as differential precursor cleavage due to species-specific sequence differences, and the challenges presented by functional redundancy among convertases in attempting to assign specific cleavages and/or physiological roles. However, in most cases, knockout mouse models have added substantively both to our knowledge of diseases caused by human proprotein convertase insufficiency and to our appreciation of their normal physiological roles, as clearly seen in the case of the furin, proprotein convertase 1/3, and proprotein convertase 5/6 mouse models. The creation of more sophisticated mouse models with tissue- or temporally-restricted expression of specific convertases will improve our understanding of human proprotein convertase insufficiency and potentially provide support for the emerging concept of therapeutic inhibition of convertases.
Collapse
Affiliation(s)
- Manita Shakya
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Iris Lindberg
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
9
|
Miura K, Ogura A, Kobatake K, Honda H, Kaminuma O. Progress of genome editing technology and developmental biology useful for radiation research. JOURNAL OF RADIATION RESEARCH 2021; 62:i53-i63. [PMID: 33978171 PMCID: PMC8114227 DOI: 10.1093/jrr/rraa127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/26/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Following the development of genome editing technology, it has become more feasible to create genetically modified animals such as knockout (KO), knock-in, and point-mutated animals. The genome-edited animals are useful to investigate the roles of various functional genes in many fields of biological science including radiation research. Nevertheless, some researchers may experience difficulty in generating genome-edited animals, probably due to the requirement for equipment and techniques for embryo manipulation and handling. Furthermore, after obtaining F0 generation, genome-edited animals generally need to be expanded and maintained for analyzing the target gene function. To investigate genes essential for normal birth and growth, the generation of conditional KO (cKO) animals in which a tissue- or stage-specific gene mutation can be introduced is often required. Here, we describe the basic principle and application of genome editing technology including zinc-finger nuclease, transcription-activator-like effector nuclease, and clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR associated protein (Cas) systems. Recently advanced developmental biology methods have enabled application of the technology, especially CRISPR/Cas, to zygotes, leading to the prompt production of genome-edited animals. For pre-implantation embryos, genome editing via oviductal nucleic acid delivery has been developed as an embryo manipulation- or handling-free method. Examining the gene function at F0 generation is becoming possible by employing triple-target CRISPR technology. This technology, in combination with a blastocyst complementation method enables investigation of even birth- and growth-responsible genes without establishing cKO strains. We hope that this review is helpful for understanding and expanding genome editing-related technology and for progressing radiation research.
Collapse
Affiliation(s)
- Kento Miura
- Department of Disease Model, Research Institute of Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
- RIKEN BioResource Research Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Atsuo Ogura
- RIKEN BioResource Research Center, Tsukuba, Ibaraki 305-0074, Japan
- RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Kohei Kobatake
- Department of Disease Model, Research Institute of Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
- Department of Urology, Hiroshima University, Hiroshima 734-8553, Japan
| | - Hiroaki Honda
- Field of Human Disease Models, Major in Advanced Life Sciences and Medicine, Institute of Laboratory Animals, Tokyo Women's Medical University, Tokyo 162-8666, Japan
| | - Osamu Kaminuma
- Department of Disease Model, Research Institute of Radiation Biology and Medicine, Hiroshima University, Hiroshima 734-8553, Japan
- RIKEN BioResource Research Center, Tsukuba, Ibaraki 305-0074, Japan
| |
Collapse
|
10
|
Funano SI, Tone D, Ukai H, Ueda HR, Tanaka Y. Rapid and easy-to-use ES cell manipulation device with a small groove near culturing wells. BMC Res Notes 2020; 13:453. [PMID: 33012292 PMCID: PMC7534166 DOI: 10.1186/s13104-020-05294-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 09/15/2020] [Indexed: 11/11/2022] Open
Abstract
Objective Production of genetically modified mice including Knock-out (KO) or Knock-in (KI) mice is necessary for organism-level phenotype analysis. Embryonic stem cell (ESC)-based technologies can produce many genetically modified mice with less time without crossing. However, a complicated manual operation is required to increase the number of ESC colonies. Here, the objective of this study was to design and demonstrate a new device to easily find colonies and carry them to microwells. Results We developed a polydimethylsiloxane-based device for easy manipulation and isolation of ESC colonies. By introducing ESC colonies into the groove placed near culturing microwells, users can easily find, pick up and carry ESC colonies to microwells. By hydrophilic treatment using bovine serum albumin, 2-μL droplets including colonies reached the microwell bottom. Operation time using this device was shortened for both beginners (2.3-fold) and experts (1.5-fold) compared to the conventional colony picking operation. Isolated ESC colonies were confirmed to have maintained pluripotency. This device is expected to promote research by shortening the isolation procedure for ESC colonies or other large cells (e.g. eggs or embryos) and shortening training time for beginners as a simple sorter.
Collapse
Affiliation(s)
- Shun-Ichi Funano
- Laboratory for Integrated Biodevice, Center for Biosystems Dynamics Research, RIKEN, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Daisuke Tone
- Laboratory for Synthetic Biology, Center for Biosystems Dynamics Research, RIKEN, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hideki Ukai
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-0033, Japan
| | - Hiroki R Ueda
- Laboratory for Synthetic Biology, Center for Biosystems Dynamics Research, RIKEN, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-0033, Japan
| | - Yo Tanaka
- Laboratory for Integrated Biodevice, Center for Biosystems Dynamics Research, RIKEN, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
11
|
Paternal knockout of Slc38a4/SNAT4 causes placental hypoplasia associated with intrauterine growth restriction in mice. Proc Natl Acad Sci U S A 2019; 116:21047-21053. [PMID: 31570606 DOI: 10.1073/pnas.1907884116] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The placenta is critical in mammalian embryonic development because the embryo's supply of nutrients, including amino acids, depends solely on mother-to-embryo transport through it. However, the molecular mechanisms underlying this amino acid supply are poorly understood. In this study, we focused on system A amino acid transporters Slc38a1/SNAT1, Slc38a2/SNAT2, and Slc38a4/SNAT4, which carry neutral, short-side-chain amino acids, to determine their involvement in placental or embryonic development. A triple-target CRISPR screen identified Slc38a4/SNAT4 as the critical amino acid transporter for placental development in mice. We established mouse lines from the CRISPR founders with large deletions in Slc38a4 and found that, consistent with the imprinted paternal expression of Slc38a4/SNAT4 in the placenta, paternal knockout (KO) but not maternal KO of Slc38a4/SNAT4 caused placental hypoplasia associated with reduced fetal weight. Immunostaining revealed that SNAT4 was widely expressed in differentiating cytotrophoblasts and maturing trophoblasts at the maternal-fetal interface. A blood metabolome analysis revealed that amino acid concentrations were globally reduced in Slc38a4/SNAT4 mutant embryos. These results indicated that SNAT4-mediated amino acid transport in mice plays a major role in placental and embryonic development. Given that expression of Slc38a4 in the placenta is conserved in other species, our Slc38a4/SNAT4 mutant mice could be a promising model for the analysis of placental defects leading to intrauterine growth restriction in mammals.
Collapse
|
12
|
Chowdhury D, Wang C, Lu AP, Zhu HL. Understanding Quantitative Circadian Regulations Are Crucial Towards Advancing Chronotherapy. Cells 2019; 8:cells8080883. [PMID: 31412622 PMCID: PMC6721722 DOI: 10.3390/cells8080883] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/01/2019] [Accepted: 08/09/2019] [Indexed: 12/19/2022] Open
Abstract
Circadian rhythms have a deep impact on most aspects of physiology. In most organisms, especially mammals, the biological rhythms are maintained by the indigenous circadian clockwork around geophysical time (~24-h). These rhythms originate inside cells. Several core components are interconnected through transcriptional/translational feedback loops to generate molecular oscillations. They are tightly controlled over time. Also, they exert temporal controls over many fundamental physiological activities. This helps in coordinating the body’s internal time with the external environments. The mammalian circadian clockwork is composed of a hierarchy of oscillators, which play roles at molecular, cellular, and higher levels. The master oscillation has been found to be developed at the hypothalamic suprachiasmatic nucleus in the brain. It acts as the core pacemaker and drives the transmission of the oscillation signals. These signals are distributed across different peripheral tissues through humoral and neural connections. The synchronization among the master oscillator and tissue-specific oscillators offer overall temporal stability to mammals. Recent technological advancements help us to study the circadian rhythms at dynamic scale and systems level. Here, we outline the current understanding of circadian clockwork in terms of molecular mechanisms and interdisciplinary concepts. We have also focused on the importance of the integrative approach to decode several crucial intricacies. This review indicates the emergence of such a comprehensive approach. It will essentially accelerate the circadian research with more innovative strategies, such as developing evidence-based chronotherapeutics to restore de-synchronized circadian rhythms.
Collapse
Affiliation(s)
- Debajyoti Chowdhury
- HKBU Institute for Research and Continuing Education, Shenzhen 518057, China
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
| | - Chao Wang
- HKBU Institute for Research and Continuing Education, Shenzhen 518057, China
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China
| | - Ai-Ping Lu
- HKBU Institute for Research and Continuing Education, Shenzhen 518057, China.
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
| | - Hai-Long Zhu
- HKBU Institute for Research and Continuing Education, Shenzhen 518057, China.
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong 999077, China.
| |
Collapse
|
13
|
Ukai H, Sumiyama K, Ueda HR. Next-generation human genetics for organism-level systems biology. Curr Opin Biotechnol 2019; 58:137-145. [PMID: 30954899 DOI: 10.1016/j.copbio.2019.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 02/15/2019] [Accepted: 03/01/2019] [Indexed: 01/10/2023]
Abstract
Systems-biological approaches, such as comprehensive identification and analysis of system components and networks, are necessary to understand design principles of human physiology and pathology. Although reverse genetics using mouse models have been used previously, it is a low throughput method because of the need for repetitive crossing to produce mice having all cells of the body with knock-out or knock-in mutations. Moreover, there are often issues from the interspecific gap between humans and mice. To overcome these problems, high-throughput methods for producing knock-out or knock-in mice are necessary. In this review, we describe 'next-generation' human genetics, which can be defined as high-throughput mammalian genetics without crossing to knock out human-mouse ortholog genes or to knock in genetically humanized mutations.
Collapse
Affiliation(s)
- Hideki Ukai
- ES-mouse/Virus Core, International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kenta Sumiyama
- Laboratory for Mouse Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroki R Ueda
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan; International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
14
|
Abstract
Drugs modulate disease states through their actions on targets in the body. Determining these targets aids the focused development of new treatments, and helps to better characterize those already employed. One means of accomplishing this is through the deployment of in silico methodologies, harnessing computational analytical and predictive power to produce educated hypotheses for experimental verification. Here, we provide an overview of the current state of the art, describe some of the well-established methods in detail, and reflect on how they, and emerging technologies promoting the incorporation of complex and heterogeneous data-sets, can be employed to improve our understanding of (poly)pharmacology.
Collapse
Affiliation(s)
- Ryan Byrne
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | - Gisbert Schneider
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland.
| |
Collapse
|
15
|
Nevárez N, de Lecea L. Recent advances in understanding the roles of hypocretin/orexin in arousal, affect, and motivation. F1000Res 2018; 7. [PMID: 30254737 PMCID: PMC6127742 DOI: 10.12688/f1000research.15097.1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/24/2018] [Indexed: 12/11/2022] Open
Abstract
The hypocretins (Hcrts) are two alternatively spliced neuropeptides (Hcrt1/Ox-A and Hcrt2/Ox-B) that are synthesized exclusively in the hypothalamus. Data collected in the 20 years since their discovery have supported the view that the Hcrts play a broad role in the control of arousal with a particularly important role in the maintenance of wakefulness and sleep-to-wake transitions. While this latter point has received an overwhelming amount of research attention, a growing literature has begun to broaden our understanding of the many diverse roles that the Hcrts play in physiology and behavior. Here, we review recent advances in the neurobiology of Hcrt in three sections. We begin by surveying findings on Hcrt function within normal sleep/wake states as well as situations of aberrant sleep (that is, narcolepsy). In the second section, we discuss research establishing a role for Hcrt in mood and affect (that is, anxiety, stress, and motivation). Finally, in the third section, we briefly discuss future directions for the field and place an emphasis on analytical modeling of Hcrt neural activity. We hope that the data discussed here provide a broad overview of recent progress in the field and make clear the diversity of roles played by these neuromodulators.
Collapse
Affiliation(s)
- Natalie Nevárez
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, California, USA
| | - Luis de Lecea
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, California, USA
| |
Collapse
|
16
|
Eban-Rothschild A, Appelbaum L, de Lecea L. Neuronal Mechanisms for Sleep/Wake Regulation and Modulatory Drive. Neuropsychopharmacology 2018; 43:937-952. [PMID: 29206811 PMCID: PMC5854814 DOI: 10.1038/npp.2017.294] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 11/17/2017] [Accepted: 11/24/2017] [Indexed: 12/17/2022]
Abstract
Humans have been fascinated by sleep for millennia. After almost a century of scientific interrogation, significant progress has been made in understanding the neuronal regulation and functions of sleep. The application of new methods in neuroscience that enable the analysis of genetically defined neuronal circuits with unprecedented specificity and precision has been paramount in this endeavor. In this review, we first discuss electrophysiological and behavioral features of sleep/wake states and the principal neuronal populations involved in their regulation. Next, we describe the main modulatory drives of sleep and wakefulness, including homeostatic, circadian, and motivational processes. Finally, we describe a revised integrative model for sleep/wake regulation.
Collapse
Affiliation(s)
| | - Lior Appelbaum
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| |
Collapse
|
17
|
Wasilczuk AZ, Maier KL, Kelz MB. The Mouse as a Model Organism for Assessing Anesthetic Sensitivity. Methods Enzymol 2018; 602:211-228. [PMID: 29588030 DOI: 10.1016/bs.mie.2018.01.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The mouse has been used in many medical fields as a powerful model to reveal the genetic basis of human physiology and disease. The past two decades have witnessed an enormous wealth of genetic and informatic resources dedicated to this humble organism. With the ongoing revolution in mapping neural circuitry governing behavior, the mouse is an ideal model organism poised to unravel the mysteries of general anesthetic action. This chapter will describe and provide guidelines for anesthetic phenotyping in the mouse including both motor-dependent and motor-independent assessments.
Collapse
Affiliation(s)
- Andrzej Z Wasilczuk
- University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States
| | - Kaitlyn L Maier
- University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States
| | - Max B Kelz
- University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States; Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, United States.
| |
Collapse
|