1
|
Borrow R, Tomasi Cont L, Toneatto D, Bambini S, Bobde S, Sohn WY, Biolchi A, Masignani V, Beernink PT, Lattanzi M. Methods to evaluate the performance of a multicomponent meningococcal serogroup B vaccine. mSphere 2025; 10:e0089824. [PMID: 40197090 PMCID: PMC12039234 DOI: 10.1128/msphere.00898-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025] Open
Abstract
Meningococcal serogroup B (MenB) vaccine licensure was based on the assessment of vaccine-induced immune responses by human serum bactericidal antibody (hSBA) assay against a small number of antigen-specific strains complemented by strain coverage predictions. However, the evaluation of vaccine strain coverage is challenging because of genotypic and phenotypic diversity in surface-exposed MenB strain antigens. This narrative review considers the principal methods applied to assess the performance of a multicomponent MenB vaccine at different stages of its development. Traditional hSBA assay against a limited panel of strains is useful at all stages, while predicted strain coverage methods, such as the meningococcal antigen typing system, are used independent of clinical trials. A new method, the endogenous complement hSBA assay, has been developed to evaluate a vaccine's ability to induce a bactericidal immune response in clinical trials, in conditions that approximate real-world settings through the use of each vaccinee's serum as a source of complement and by testing against a panel of 110 epidemiologically representative MenB strains. Each assay, therefore, has a different scope during the vaccine's development and all complement each other, enabling comprehensive evaluation of the performance of multicomponent MenB vaccines, in advance of real-world evidence of vaccine effectiveness and vaccine impact.
Collapse
Affiliation(s)
- Ray Borrow
- Meningococcal Reference Unit, UK Health Security Agency, Manchester Royal Infirmary, Manchester, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
McKechnie JL, Kepl E, Louth J, Sun CJ, Lucidarme J, Weatherly SM, Braun R, Feldhaus A, Borrow R, Holtzman D. Nanoparticles displaying fHbp elicit an enhanced antibody response against meningococcal B isolates compared to low valency fHbp antigens. Vaccine 2025; 51:126885. [PMID: 39983538 DOI: 10.1016/j.vaccine.2025.126885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 02/23/2025]
Abstract
Serogroup B meningococcus (MenB) is one of the leading causes of invasive meningococcal disease (IMD) in Western countries. While outbreaks of IMD are rare, this disease can lead to long-term disabilities and even death. These outbreaks typically occur in infants, children, and young adults. There are currently two licensed MenB vaccines: 4CMenB (Bexsero®; GSK Vaccines, Srl, Italy) and MenB-FHbp (Trumenba®, bivalent rLP2086; Pfizer Inc., Collegeville, PA). The effectiveness of these vaccines is dependent upon their ability to elicit a protective antibody response against the various disease-causing strains that are currently circulating. Real-world data has demonstrated that MenB vaccination is effective at preventing IMD. However, it has also been shown that the number of isolates covered by vaccination is limited and can vary from year to year as well as by geographical location. This suggests that a new MenB vaccine which elicits greater breadth of protection would be beneficial. Here we describe the generation of a nanoparticle (NP) displaying a meningococcal factor H-binding protein (fHbp) on its surface. Mice immunized with this fHbp-NP had higher binding antibody titers to both homologous and heterologous fHbp variants compared to mice immunized with low valency fHbp antigens. Importantly, sera from fHbp-NP immunized mice had significantly higher serum bactericidal antibody activity against a range of MenB isolates than mice immunized with low valency antigens or MenB-FHbp. Overall, these studies demonstrate that display of fHbp on nanoparticles elicits a potent and broad antibody response.
Collapse
Affiliation(s)
- Julia L McKechnie
- Icosavax, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, 1930 Boren Ave, Suite 1000, Seattle, WA 98101, USA.
| | - Elizabeth Kepl
- Icosavax, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, 1930 Boren Ave, Suite 1000, Seattle, WA 98101, USA.
| | - Jennifer Louth
- Meningococcal Reference and Vaccine Evaluation Units, UK Health Security Agency, Clinical Sciences Building 2, Manchester Royal Infirmary, Manchester, UK.
| | - Christina J Sun
- Icosavax, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, 1930 Boren Ave, Suite 1000, Seattle, WA 98101, USA.
| | - Jay Lucidarme
- Meningococcal Reference and Vaccine Evaluation Units, UK Health Security Agency, Clinical Sciences Building 2, Manchester Royal Infirmary, Manchester, UK.
| | - Sonia M Weatherly
- Icosavax, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, 1930 Boren Ave, Suite 1000, Seattle, WA 98101, USA.
| | - Ralph Braun
- Icosavax, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, 1930 Boren Ave, Suite 1000, Seattle, WA 98101, USA
| | - Andrew Feldhaus
- Icosavax, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, 1930 Boren Ave, Suite 1000, Seattle, WA 98101, USA
| | - Ray Borrow
- Meningococcal Reference and Vaccine Evaluation Units, UK Health Security Agency, Clinical Sciences Building 2, Manchester Royal Infirmary, Manchester, UK.
| | - Douglas Holtzman
- Icosavax, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, 1930 Boren Ave, Suite 1000, Seattle, WA 98101, USA
| |
Collapse
|
3
|
Clark SA, Willerton L, Claus H, Carannante A, Stefanelli P, Abad R, Vázquez JA, Borrow R. Exploring the sequence diversity and surface expression of Factor H-Binding Protein among invasive serogroup B meningococcal strains from selected European countries. Hum Vaccin Immunother 2024; 20:2427471. [PMID: 39536321 PMCID: PMC11562907 DOI: 10.1080/21645515.2024.2427471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/21/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
Factor H-Binding Protein (fHbp) is a key component of meningococcal vaccines such as MenB-fHbp, licensed in the EU, UK, and other countries. Sufficient expression of fHbp on the bacterial surface is necessary for vaccine-induced antibodies to bind and exert bactericidal activity. The flow cytometric MEASURE assay quantifies fHbp expression in vitro, and previous studies have shown that strains with a Mean Fluorescence Intensity (MFI) >1000 are likely to be killed by MenB-fHbp-induced antibodies. This study assessed fHbp peptide distribution and expression among 451 invasive group B strains collected in 2016 across England, Wales, and Northern Ireland (EW&NI), Germany, Italy, and Spain. We found that 92% of the strains expressed fHbp above the MFI 1000 threshold. The strain distribution across EW&NI, Germany, and Italy was similar, with coverage ranging from 92.1% to 94.6%, dominated by a small number of clonal complexes and fHbp peptides. Although, the Spanish subset had a higher proportion of lower-expressing strains, particularly clonal complex 213, resulting in a lower predicted coverage for Spain (84%). These results, along with other published MEASURE data, can provide a basis for genotypic MenB-fHbp coverage predictions, however, inclusion of the upstream intergenic sequence of the fHbp gene in the prediction improved its accuracy by distinguishing between low- and high-expressing strains. Future MEASURE analyses of strains with less common fHbp variants would serve to further refine vaccine coverage predictions.
Collapse
Affiliation(s)
- Stephen A. Clark
- Meningococcal Reference Unit, UK Health Security Agency, Manchester Royal Infirmary, Manchester, UK
| | - Laura Willerton
- Meningococcal Reference Unit, UK Health Security Agency, Manchester Royal Infirmary, Manchester, UK
| | - Heike Claus
- National Reference Centre for Meningococci and Haemophilus Influenzae, Institute for Hygiene and Microbiology, Julius-Maximilian University of Wuerzburg, Wuerzburg, Germany
| | - Anna Carannante
- Department Infectious Diseases, Instituto Superiore di Sanità, Rome, Italy
| | - Paola Stefanelli
- Department Infectious Diseases, Instituto Superiore di Sanità, Rome, Italy
| | - Raquel Abad
- Reference Laboratory for Meningococci, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Julio A. Vázquez
- Reference Laboratory for Meningococci, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Ray Borrow
- Meningococcal Reference Unit, UK Health Security Agency, Manchester Royal Infirmary, Manchester, UK
| |
Collapse
|
4
|
Presa J, Burman C, Tort MJ, Cane A, Bocchini JA. Serum bactericidal activity against circulating and reference strains of meningococcal serogroup B in the United States: A review of the strain coverage of meningococcal serogroup B (MenB) vaccines in adolescents and young adults. Hum Vaccin Immunother 2023; 19:2212570. [PMID: 37257838 DOI: 10.1080/21645515.2023.2212570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/24/2023] [Accepted: 05/06/2023] [Indexed: 06/02/2023] Open
Abstract
Invasive meningococcal disease (IMD) is rare but associated with high morbidity and mortality. In the United States, the most vulnerable age groups are infants and adolescents/young adults, and the most common type of IMD is caused by serogroup B (MenB). MenB is preventable among adolescents and young adults with the use of two licensed vaccines, MenB-FHbp (Trumenba®, bivalent rLP2086; Pfizer Inc, Collegeville, PA) and MenB-4C (Bexsero®; GSK Vaccines, Srl, Italy). Because the effectiveness of MenB vaccination is dependent on broad vaccine coverage across circulating disease-causing strains, we reviewed the available clinical and real-world evidence regarding breadth of coverage of the two licensed vaccines in adolescents and young adults in the United States. Both vaccines protect against various MenB strains. More controlled data regarding breadth of coverage across MenB strains are available for MenB-FHbp compared with MenB-4C, whereas more observational data regarding US outbreak strain susceptibility are available for MenB-4C.
Collapse
Affiliation(s)
- Jessica Presa
- Vaccines Medical Development & Scientific/Clinical Affairs, Pfizer Inc, Collegeville, PA, USA
| | - Cynthia Burman
- Vaccines Medical Development & Scientific/Clinical Affairs, Pfizer Inc, Collegeville, PA, USA
| | - Maria J Tort
- Vaccines Medical Development & Scientific/Clinical Affairs, Pfizer Inc, Collegeville, PA, USA
| | - Alejandro Cane
- Vaccines Medical Development & Scientific/Clinical Affairs, Pfizer Inc, Collegeville, PA, USA
| | - Joseph A Bocchini
- Pediatric Infectious Disease, Willis-Knighton Health System, Shreveport, LA, USA
| |
Collapse
|
5
|
Borrow R, Martinón-Torres F, Abitbol V, Andani A, Preiss S, Muzzi A, Serino L, Sohn WY. Use of expanded Neisseria meningitidis serogroup B panels with the serum bactericidal antibody assay for the evaluation of meningococcal B vaccine effectiveness. Expert Rev Vaccines 2023; 22:738-748. [PMID: 37622470 DOI: 10.1080/14760584.2023.2244596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023]
Abstract
INTRODUCTION Neisseria meningitidis serogroup B (NmB) antigens are inherently diverse with variable expression among strains. Prediction of meningococcal B (MenB) vaccine effectiveness therefore requires an assay suitable for use against large panels of epidemiologically representative disease-causing NmB strains. Traditional serum bactericidal antibody assay using exogenous human complement (hSBA) is limited to the quantification of MenB vaccine immunogenicity on a small number of indicator strains. AREAS COVERED Additional and complementary methods for assessing strain coverage developed previously include the Meningococcal Antigen Typing System (MATS), Meningococcal Antigen Surface Expression (MEASURE) assay, and genotyping approaches, but these do not estimate vaccine effectiveness. We provide a narrative review of these methods, highlighting a more recent approach involving the hSBA assay in conjunction with expanded NmB strain panels: hSBA assay using endogenous complement in each vaccinated person's serum (enc-hSBA) against a 110-strain NmB panel and the traditional hSBA assay against 14 (4 + 10) NmB strains. EXPERT OPINION The enc-hSBA is a highly standardized, robust method that can be used in clinical trials to measure the immunological effectiveness of MenB vaccines under conditions that mimic real-world settings as closely as possible, through the use of endogenous complement and a diverse, epidemiologically representative panel of NmB strains.
Collapse
Affiliation(s)
- Ray Borrow
- Meningococcal Reference Unit, UK Health Security Agency, Manchester Royal Infirmary, Manchester, UK
| | - Federico Martinón-Torres
- Pediatrics Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago and Universidad de Santiago de Compostela, Galicia, Spain
- Translational Pediatrics and Infectious Diseases, Pediatrics Department, Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain
- Consorcio Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
6
|
Genetic Features of a Representative Panel of 110 Meningococcal B Isolates to Assess the Efficacy of Meningococcal B Vaccines. mSphere 2022; 7:e0038522. [PMID: 36129279 PMCID: PMC9599336 DOI: 10.1128/msphere.00385-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Predictions of vaccine efficacy against Neisseria meningitidis serogroup B (NmB) disease are hindered by antigenic variability, limiting the representativeness of individual NmB isolates. A qualitative human serum bactericidal assay using endogenous complements of individual subjects (enc-hSBA) enables large panels of NmB isolates to be tested. A 110-isolate panel was randomly selected from 442 invasive NmB isolates from United States cases reported to the Centers for Disease Control (CDC) from 2000 to 2008. Typing analyses confirmed the 110-isolate panel is representative of the 442 isolates. The genetic features of the 110-isolate panel were compared against over 4,200 invasive NmB isolates collected from 2000 to 2018 in the United States, Australia, Canada, and nine European countries. Clonal complexes in the 110-isolate panel are also present in each geographical region; cumulative percentages show that these account for around 81% of the clonal complexes found in NmB isolates in other panels. For the antigens (fHbp, NHBA, PorA1.4, NadA) included in the currently licensed meningococcal serogroup B (MenB) vaccines, specifically considering the presence of at least one antigen with a matched genotype, the 110-isolate panel represents approximately 89% of the NmB isolates circulating worldwide, ranging from 87% for the European isolates to 95% and 97% for NmB isolates in the United States and Australia, respectively. The 110-isolate panel includes the most prevalent clonal complexes and genetic variants of MenB vaccine antigens found in a multinational collection of invasive NmB isolates. This panel is useful for assessing the efficacy of MenB vaccines in clinical trials worldwide. IMPORTANCENeisseria meningitidis serogroup B (NmB) is a major cause of invasive meningococcal disease (IMD). Predicting the effectiveness of vaccines against NmB is difficult because NmB is an uncommon disease and because antigens targeted by meningococcal serogroup B (MenB) vaccines have highly variable genetic features and expression levels. Therefore, a large number of NmB isolates from different regions would need to be tested to comprehensively assess vaccine effectiveness. We examined a panel of 110 isolates obtained from NmB IMD cases in the United States and compared the genetic features of this panel with those of panels from different countries around the world. We found the 110-isolate panel included the most common clonal complexes and genetic variants of MenB vaccine antigens that exist in the global collections of invasive NmB isolates. This confirms the value of the NmB 110-isolate panel in understanding the effectiveness of MenB vaccines in clinical trials worldwide.
Collapse
|
7
|
Findlow J, Borrow R, Stephens DS, Liberator P, Anderson AS, Balmer P, Jodar L. Correlates of protection for meningococcal surface protein vaccines; current approaches for the determination of breadth of coverage. Expert Rev Vaccines 2022; 21:753-769. [PMID: 35469524 DOI: 10.1080/14760584.2022.2064850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The two currently licensed surface protein non capsular meningococcal serogroup B (MenB) vaccines both have the purpose of providing broad coverage against diverse MenB strains. However, the different antigen compositions and approaches used to assess breadth of coverage currently make direct comparisons complex. AREAS COVERED In the second of two companion papers, we comprehensively review the serology and factors influencing breadth of coverage assessments for two currently licensed MenB vaccines. EXPERT OPINION Surface protein MenB vaccines were developed using different approaches, resulting in unique formulations and thus their breadth of coverage. The surface proteins used as vaccine antigens can vary among meningococcal strains due to gene presence/absence, sequence diversity and differences in protein expression. Assessment of the breadth of coverage provided by vaccines is influenced by the ability to induce cross-reactive functional immune responses to sequence diverse protein variants; the characteristics of the circulating invasive strains from specific geographic locations; methodological differences in the immunogenicity assays; differences in human immune responses between individuals; and the maintenance of protective antibody levels over time. Understanding the proportion of meningococcal strains which are covered by the two licensed vaccines is important in understanding protection from disease and public health use.
Collapse
Affiliation(s)
- Jamie Findlow
- Vaccine Medical Development, Scientific and Clinical Affairs, Pfizer Ltd, Tadworth, UK
| | - Ray Borrow
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, UK
| | - David S Stephens
- Woodruff Health Sciences Center, Emory University, Atlanta, Georgia, USA
| | - Paul Liberator
- Vaccine Research and Development, Pfizer Inc, Pearl River, New York, USA
| | | | - Paul Balmer
- Vaccine Medical Development, Scientific and Clinical Affairs, Pfizer Inc, Collegeville, PA, USA
| | - Luis Jodar
- Vaccine Medical Development, Scientific and Clinical Affairs, Pfizer Inc, Collegeville, PA, USA
| |
Collapse
|
8
|
Taha MK, Martinon-Torres F, Köllges R, Bonanni P, Safadi MAP, Booy R, Smith V, Garcia S, Bekkat-Berkani R, Abitbol V. Equity in vaccination policies to overcome social deprivation as a risk factor for invasive meningococcal disease. Expert Rev Vaccines 2022; 21:659-674. [PMID: 35271781 DOI: 10.1080/14760584.2022.2052048] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Social deprivation is associated with poorer healthcare access. Vaccination is among the most effective public health interventions and achieving equity in vaccination access is vitally important. However, vaccines are often reimbursed by public funds only when recommended in national immunization programs (NIPs), which can increase inequity between high and low socioeconomic groups. Invasive meningococcal disease (IMD) is a serious vaccination-preventable disease. This review focuses on vaccination strategies against IMD designed to reduce inequity. AREAS COVERED We reviewed meningococcal epidemiology and current vaccination recommendations worldwide. We also reviewed studies demonstrating an association between social deprivation and risk of meningococcal disease, as well as studies demonstrating an impact of social deprivation on uptake of meningococcal vaccines. We discuss factors influencing inclusion of meningococcal vaccines in NIPs. EXPERT OPINION Incorporating meningococcal vaccines in NIPs is necessary to reduce inequity, but insufficient alone. Inclusion provides clear guidance to healthcare professionals and helps to ensure that vaccines are offered universally to all target groups. Beyond NIPs, cost of vaccination should be reimbursed especially for disadvantaged individuals. These approaches should help to achieve optimal protection against IMD, by increasing access and immunization rates, eventually reducing social inequities, and helping to protect those at greatest risk.
Collapse
Affiliation(s)
- Muhamed-Kheir Taha
- Institut Pasteur, Invasive Bacterial Infections Unit, National Reference Centre for Meningococci and Haemophilus Influenza, Paris, France
| | - Federico Martinon-Torres
- Genetics, Vaccines, Infectious Diseases, Pediatrics Research Group (GENVIP), Instituto de Investigación Sanitaria de Santiago and Universidad de Santiago de Compostela, Galicia, Spain.,Translational Pediatrics and Infectious Diseases, Pediatrics Department, Hospital Clínico Universitario de Santiago, Santiago de Compostela, Spain.,Consorcio Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-ES), Madrid, Spain
| | - Ralph Köllges
- Praxis für Kinder und Jugendliche, Ralph Köllges und Partner, Mönchengladbach, Germany
| | - Paolo Bonanni
- Department of Health Sciences, University of Florence, Florence, Italy
| | | | - Robert Booy
- Department of Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.,Sydney Institute of Infectious Diseases, University of Sydney, Sydney, NSW, Australia
| | | | | | | | | |
Collapse
|
9
|
Drazan D, Czajka H, Maguire JD, Pregaldien JL, Maansson R, O'Neill R, Anderson AS, Balmer P, Beeslaar J, Perez JL. A phase 3 study to assess the immunogenicity, safety, and tolerability of MenB-FHbp administered as a 2-dose schedule in adolescents and young adults. Vaccine 2021; 40:351-358. [PMID: 34961633 DOI: 10.1016/j.vaccine.2021.11.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 11/15/2022]
Abstract
BACKGROUND The MenB-FHbp vaccine is licensed to prevent meningococcal serogroup B disease on either a 2-dose (0, 6 months) or 3-dose (0, 1-2, 6 months) series. This phase 3 study further assessed the immunogenicity and safety of the 2-dose MenB-FHbp schedule. METHODS Subjects 10-25 years of age received MenB-FHbp (months 0, 6) and the quadrivalent meningococcal conjugate vaccine MenACWY-CRM (month 0). Primary immunogenicity endpoints included percentages of subjects achieving ≥ 4-fold increases from baseline in serum bactericidal antibody using human complement (hSBA) titers for 4 diverse, vaccine-heterologous primary serogroup B test strains and titers ≥ lower limit of quantitation (LLOQ; 1:8 or 1:16) for all 4 primary strains combined (composite response) after dose 2; a titer ≥ 1:4 is the accepted correlate of protection. Percentages of participants with hSBA titers ≥ LLOQ for 10 additional vaccine-heterologous strains were also assessed; positive predictive values of primary strain responses for secondary strain responses were determined. Safety was assessed. RESULTS Overall, 1057 subjects received dose 1 and 946 received dose 2 of MenB-FHbp. Percentages of participants achieving ≥ 4-fold increases in hSBA titers against each primary strain after dose 2 ranged from 67.4% to 95.0% and the composite response was 74.3%. Primary strain responses were highly predictive of secondary strain responses. Most reactogenicity events were mild-to-moderate in severity and did not lead to withdrawal from the study. Adverse events (AEs) considered by the investigator to be related to vaccination occurred in 4.2% (44/1057) of subjects, and there were no serious AEs or newly diagnosed chronic medical conditions considered related to vaccination. CONCLUSIONS MenB-FHbp administered at 0, 6 months was well tolerated and induced protective bactericidal antibody responses against diverse serogroup B strains. Findings provide further support for the continued use of MenB-FHbp on a 2-dose schedule in this population.
Collapse
Affiliation(s)
- Daniel Drazan
- General Practice for Children and Adolescents, Jindrichuv Hradec, Czech Republic
| | - Hanna Czajka
- Faculty of Medicine, University of Rzeszów, Rzeszów, Poland and Individual Specialist Medical Practice, Krakow, Poland
| | - Jason D Maguire
- Vaccine Research and Development, Pfizer Inc, Pearl River, NY, USA.
| | | | - Roger Maansson
- Vaccine Research and Development, Pfizer Inc, Collegeville, PA, USA
| | - Robert O'Neill
- Vaccine Research and Development, Pfizer Inc, Pearl River, NY, USA
| | | | - Paul Balmer
- Vaccine Medical and Scientific Affairs, Pfizer Inc, Collegeville, PA, USA
| | | | - John L Perez
- Vaccine Research and Development, Pfizer Inc, Collegeville, PA, USA
| |
Collapse
|
10
|
Findlow J, Lucidarme J, Taha MK, Burman C, Balmer P. Correlates of protection for meningococcal surface protein vaccines: lessons from the past. Expert Rev Vaccines 2021; 21:739-751. [PMID: 34287103 DOI: 10.1080/14760584.2021.1940144] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Recombinant surface protein meningococcal serogroup B (MenB) vaccines are available but with different antigen compositions, leading to differences between vaccines in their immunogenicity and likely breadth of coverage. The serology and breadth of coverage assessment for MenB vaccines are multifaceted areas, and a comprehensive understanding of these complexities is required to appropriately compare licensed vaccines and those under development. AREAS COVERED In the first of two companion papers that comprehensively review the serology and breadth of coverage assessment for MenB vaccines, the history of early meningococcal vaccines is considered in this narrative review to identify transferable lessons applicable to the currently licensed MenB vaccines and those under development, as well as their serology. EXPERT OPINION Understanding correlates of protection and the breadth of coverage assessment for meningococcal surface protein vaccines is significantly more complex than that for capsular polysaccharide vaccines. Determination and understanding of the breadth of coverage of surface protein vaccines are clinically important and unique to each vaccine formulation. It is essential to estimate the proportion of MenB cases that are preventable by a specific vaccine to assess its overall potential impact and to compare the benefits and limitations of different vaccines in preventing invasive meningococcal disease.
Collapse
Affiliation(s)
- Jamie Findlow
- Vaccine Medical Development, Scientific and Clinical Affairs, Pfizer Ltd, Tadworth, UK
| | - Jay Lucidarme
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, UK
| | | | - Cynthia Burman
- Vaccine Medical Development, Scientific and Clinical Affairs, Pfizer Inc, Collegeville, PA, USA
| | - Paul Balmer
- Vaccine Medical Development, Scientific and Clinical Affairs, Pfizer Inc, Collegeville, PA, USA
| |
Collapse
|
11
|
Abad R, García-Amil C, Navarro C, Martín E, Martín-Díaz A, Vázquez JA. Molecular characterization of invasive serogroup B Neisseria meningitidis isolates from Spain during 2015-2018: Evolution of the vaccine antigen factor H binding protein (FHbp). J Infect 2021; 82:37-44. [PMID: 33610688 DOI: 10.1016/j.jinf.2021.01.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/21/2020] [Accepted: 01/04/2021] [Indexed: 11/28/2022]
Abstract
Studies of meningococcal genetic population structure, including the potential associations between surface proteins variants and clonal complexes, are important to understand how new protein MenB vaccines might impact in specific scenarios. With the aim to analyze the diversity of Spanish invasive MenB strains, and genetic variability of the fHbp vaccine antigen, all MenB isolates received at National Reference Laboratory (NRL) from 2015 to 2018 were molecularly characterized. MATERIAL AND METHODS 108, 103, 87 and 112 invasive MenB strains isolated during 2015-2018, respectively, were received at NRL. The strains were whole genome sequenced, and porA, fetA, MLST and fHbp variability was analyzed. Potential impact on MenB vaccines coverage was also assessed. RESULTS A total of 42, 38 and 3 different FHbp subfamily A, B and A/B hybrid peptides, respectively, were found. FHbp subfamily A peptides were harboured by most of the strains (65.9%), being the most prevalent peptide 45 which was associated with genosubtype 22,14 and cc213. FHbp subfamily B peptides were harboured by 32.4% of the strains, and 6 strains harbouring subfamily A/B hybrid peptides were also found. The 64.15% of the strains showed FHbp variants "exact-match" or "cross-reactive" to the FHbp variants included in rLP2086 vaccine according to hSBA assays in the rLP2086 clinical development, and 15.85% showed FHbp peptides defined as predictors of FHbp-coverage for 4CMenB vaccine by gMATS. CONCLUSIONS Due to invasive meningococcal strains temporal variability (eg prevalence of the cc213 increased from 3.6% in 2007 to 33% in 2018) affecting to the presence and distribution of the vaccine antigens, continuous detailed meningococcal surveillance and monitoring of the vaccine antigens is needed to determine the degree and durability of coverage provided by these protein vaccine.
Collapse
Affiliation(s)
- Raquel Abad
- National Reference Laboratory for meningococci, National Centre for Microbiology, Instituto de Salud Carlos III, Ctra, Majadahonda-Pozuelo, Km2., 28220 Majadahonda, Madrid, Spain.
| | - Cristina García-Amil
- National Reference Laboratory for meningococci, National Centre for Microbiology, Instituto de Salud Carlos III, Ctra, Majadahonda-Pozuelo, Km2., 28220 Majadahonda, Madrid, Spain.
| | - Carmen Navarro
- National Reference Laboratory for meningococci, National Centre for Microbiology, Instituto de Salud Carlos III, Ctra, Majadahonda-Pozuelo, Km2., 28220 Majadahonda, Madrid, Spain.
| | - Elena Martín
- National Reference Laboratory for meningococci, National Centre for Microbiology, Instituto de Salud Carlos III, Ctra, Majadahonda-Pozuelo, Km2., 28220 Majadahonda, Madrid, Spain.
| | - Ariadna Martín-Díaz
- National Reference Laboratory for meningococci, National Centre for Microbiology, Instituto de Salud Carlos III, Ctra, Majadahonda-Pozuelo, Km2., 28220 Majadahonda, Madrid, Spain
| | - Julio A Vázquez
- National Reference Laboratory for meningococci, National Centre for Microbiology, Instituto de Salud Carlos III, Ctra, Majadahonda-Pozuelo, Km2., 28220 Majadahonda, Madrid, Spain.
| |
Collapse
|
12
|
Findlow J, Bayliss CD, Beernink PT, Borrow R, Liberator P, Balmer P. Broad vaccine protection against Neisseria meningitidis using factor H binding protein. Vaccine 2020; 38:7716-7727. [PMID: 32878710 PMCID: PMC8082720 DOI: 10.1016/j.vaccine.2020.08.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/27/2020] [Accepted: 08/12/2020] [Indexed: 11/29/2022]
Abstract
Neisseria meningitidis, the causative agent of invasive meningococcal disease (IMD), is classified into different serogroups defined by their polysaccharide capsules. Meningococcal serogroups A, B, C, W, and Y are responsible for most IMD cases, with serogroup B (MenB) causing a substantial percentage of IMD cases in many regions. Vaccines using capsular polysaccharides conjugated to carrier proteins have been successfully developed for serogroups A, C, W, and Y. However, because the MenB capsular polysaccharide is poorly immunogenic, MenB vaccine development has focused on alternative antigens. The 2 currently available MenB vaccines (MenB-4C and MenB-FHbp) both include factor H binding protein (FHbp), a surface-exposed protein harboured by nearly all meningococcal isolates that is important for survival of the bacteria in human blood. MenB-4C contains a nonlipidated FHbp from subfamily B in addition to other antigens, including Neisserial Heparin Binding Antigen, Neisserial adhesin A, and outer membrane vesicles, whereas MenB-FHbp contains a lipidated FHbp from each subfamily (A and B). FHbp is highly immunogenic and a main target of bactericidal activity of antibodies elicited by both licensed MenB vaccines. FHbp is also an important vaccine component, in contrast to some other meningococcal antigens that may have limited cross-protection across strains, as FHbp-specific antibodies can provide broad cross-protection within each subfamily. Limited cross-protection between subfamilies necessitates the inclusion of FHbp variants from both subfamilies to achieve broad FHbp-based vaccine coverage. Additionally, immune responses to the lipidated form of FHbp have a superior cross-reactive profile to those elicited by the nonlipidated form. Taken together, the inclusion of lipidated FHbp variants from both FHbp subfamilies is expected to provide broad protection against the diverse disease-causing meningococcal strains expressing a wide range of FHbp sequence variants. This review describes the development of vaccines for MenB disease prevention, with a focus on the FHbp antigen.
Collapse
Affiliation(s)
- Jamie Findlow
- Vaccine Medical Development, Scientific and Clinical Affairs, Pfizer Ltd, Tadworth, UK.
| | | | - Peter T Beernink
- Department of Pediatrics, School of Medicine, University of California, San Francisco, San Francisco, CA, USA.
| | - Ray Borrow
- Public Health England, Manchester Royal Infirmary, Manchester, UK.
| | - Paul Liberator
- Vaccine Research and Development, Pfizer Inc, Pearl River, NY, USA.
| | - Paul Balmer
- Vaccine Medical Development, Scientific and Clinical Affairs, Pfizer Inc, Collegeville, PA, USA.
| |
Collapse
|