1
|
Shin S, Kim J, Song E, Han S, Hohng S. Analytical techniques for nucleic acid and protein detection with single-molecule sensitivity. Exp Mol Med 2025:10.1038/s12276-025-01453-w. [PMID: 40307572 DOI: 10.1038/s12276-025-01453-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 01/13/2025] [Accepted: 03/10/2025] [Indexed: 05/02/2025] Open
Abstract
Nucleic acids and proteins serve as crucial biomarkers used in the diagnosis, prognosis and therapy monitoring across various diseases. Traditionally, these biomarkers are identified at an ensemble level following the amplification of target or signaling molecules. However, these methods have limitations in addressing contemporary challenges in molecular diagnostics, such as low sensitivity, specificity, throughput and imprecise quantification. To overcome these limitations, various analytical techniques offering single-molecule sensitivity have been developed. Here we aim to provide a concise overview of historically notable and potentially promising analytical techniques to detect nucleic acids and proteins with single-molecule sensitivity. Our focus is on their potential in liquid biopsy, delineating their strengths and weaknesses, providing insights into their ability to revolutionize biomarker analysis and paving the way for more advanced technologies.
Collapse
Affiliation(s)
- Soochul Shin
- Department of Physics and Astronomy, Institute of Applied Physics, Seoul National University, Seoul, Republic of Korea
| | - Juyoung Kim
- Department of Physics and Astronomy, Institute of Applied Physics, Seoul National University, Seoul, Republic of Korea
| | - Eunho Song
- Department of Physics and Astronomy, Institute of Applied Physics, Seoul National University, Seoul, Republic of Korea
| | - Sun Han
- Department of Physics and Astronomy, Institute of Applied Physics, Seoul National University, Seoul, Republic of Korea
| | - Sungchul Hohng
- Department of Physics and Astronomy, Institute of Applied Physics, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Kato R, Solanki HS, Ozakinci H, Desai B, Gundlapalli H, Yang YC, Aronchik I, Singh M, Johnson J, Marusyk A, Boyle TA, Haura EB. In Situ RAS:RAF Binding Correlates with Response to KRASG12C Inhibitors in KRASG12C-Mutant Non-Small Cell Lung Cancer. Clin Cancer Res 2025; 31:1150-1162. [PMID: 39836411 PMCID: PMC11924342 DOI: 10.1158/1078-0432.ccr-24-3714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/19/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
PURPOSE Therapeutic efficacy of KRASG12C(OFF) inhibitors (KRASG12Ci) in KRASG12C-mutant non-small cell lung cancer (NSCLC) varies widely. The activation status of RAS signaling in tumors with KRASG12C mutation remains unclear, as its ability to cycle between the active GTP-bound and inactive GDP-bound states may influence downstream pathway activation and therapeutic responses. We hypothesized that the interaction between RAS and its downstream effector RAF in tumors may serve as indicators of RAS activity, rendering NSCLC tumors with a high degree of RAS engagement and downstream effects more responsive to KRASG12Ci compared with tumors with lower RAS-RAF interactions. EXPERIMENTAL DESIGN We developed a method for measuring in situ RAS binding to RAF in cancer samples using proximity ligation assays (PLA) designed to detect panRAS-CRAF interactions. RESULTS The panRAS-CRAF PLA signal correlated with levels of both RAS-GTP and phosphorylated ERK protein, suggesting that this assay can effectively assess active RAS signaling. We found that elevated panRAS-CRAF PLA signals were associated with increased sensitivity to KRASG12Ci in KRASG12C-mutant NSCLC cell lines, xenograft models, and patient samples. Applying a similar PLA approach to measure the interactions between EGFR and its adapter protein growth factor receptor-bound protein 2 as a surrogate for EGFR activity, we found no relationship between EGFR activity and response to KRASG12Ci in the same samples. CONCLUSIONS Our study highlights the importance of evaluating in situ RAS-RAF interactions as a potential predictive biomarker for identifying patients with NSCLC most likely to benefit from KRASG12Ci. The PLA developed for quantifying these interactions represents a valuable tool for guiding treatment strategies.
Collapse
Affiliation(s)
- Ryoji Kato
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Hitendra S. Solanki
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Hilal Ozakinci
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Bina Desai
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, Florida, USA
| | - Harika Gundlapalli
- Translational Sciences, Revolution Medicines, Redwood City, California, USA
| | - Yu Chi Yang
- Translational Sciences, Revolution Medicines, Redwood City, California, USA
| | - Ida Aronchik
- Translational Sciences, Revolution Medicines, Redwood City, California, USA
| | - Mallika Singh
- Translational Sciences, Revolution Medicines, Redwood City, California, USA
| | - Joseph Johnson
- Analytic Microscopy Core Facility, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Andriy Marusyk
- Department of Metabolism and Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Theresa A. Boyle
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| | - Eric B. Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
| |
Collapse
|
3
|
Chun C, Byun JM, Cha M, Lee H, Choi B, Kim H, Hong S, Lee Y, Park H, Koh Y, Yoon TY. Profiling protein-protein interactions to predict the efficacy of B-cell-lymphoma-2-homology-3 mimetics for acute myeloid leukaemia. Nat Biomed Eng 2024; 8:1379-1395. [PMID: 39025942 PMCID: PMC11584402 DOI: 10.1038/s41551-024-01241-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 06/28/2024] [Indexed: 07/20/2024]
Abstract
B-cell-lymphoma-2 (BCL2) homology-3 (BH3) mimetics are inhibitors of protein-protein interactions (PPIs) that saturate anti-apoptotic proteins in the BCL2 family to induce apoptosis in cancer cells. Despite the success of the BH3-mimetic ABT-199 for the treatment of haematological malignancies, only a fraction of patients respond to the drug and most patients eventually develop resistance to it. Here we show that the efficacy of ABT-199 can be predicted by profiling the rewired status of the PPI network of the BCL2 family via single-molecule pull-down and co-immunoprecipitation to quantify more than 20 types of PPI from a total of only 1.2 × 106 cells per sample. By comparing the obtained multidimensional data with BH3-mimetic efficacies determined ex vivo, we constructed a model for predicting the efficacy of ABT-199 that designates two complexes of the BCL2 protein family as the primary mediators of drug effectiveness and resistance, and applied it to prospectively assist therapeutic decision-making for patients with acute myeloid leukaemia. The characterization of PPI complexes in clinical specimens opens up opportunities for individualized protein-complex-targeting therapies.
Collapse
Affiliation(s)
- Changju Chun
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Ja Min Byun
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Minkwon Cha
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, South Korea
| | - Hongwon Lee
- Department of Biomarker Discovery, PROTEINA Co., Ltd, Seoul, South Korea
| | - Byungsan Choi
- Department of Biomarker Discovery, PROTEINA Co., Ltd, Seoul, South Korea
| | - Hyunwoo Kim
- Department of Biomarker Discovery, PROTEINA Co., Ltd, Seoul, South Korea
| | - Saem Hong
- Department of Biomarker Discovery, PROTEINA Co., Ltd, Seoul, South Korea
| | - Yunseo Lee
- Department of Biomarker Discovery, PROTEINA Co., Ltd, Seoul, South Korea
| | - Hayoung Park
- Department of Biomarker Discovery, PROTEINA Co., Ltd, Seoul, South Korea
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Youngil Koh
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, South Korea.
| | - Tae-Young Yoon
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul, South Korea.
- Department of Biomarker Discovery, PROTEINA Co., Ltd, Seoul, South Korea.
| |
Collapse
|
4
|
Mayse L, Wang Y, Ahmad M, Movileanu L. Real-Time Measurement of a Weak Interaction of a Transcription Factor Motif with a Protein Hub at Single-Molecule Precision. ACS NANO 2024; 18:20468-20481. [PMID: 39049818 PMCID: PMC11308778 DOI: 10.1021/acsnano.4c04857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Transcription factors often interact with other protein cofactors, regulating gene expression. Direct detection of these brief events using existing technologies remains challenging due to their transient nature. In addition, intrinsically disordered domains, intranuclear location, and lack of cofactor-dependent active sites of transcription factors further complicate the quantitative analysis of these critical processes. Here, we create a genetically encoded label-free sensor to identify the interaction between a motif of the MYC transcription factor, a primary cancer driver, and WDR5, a chromatin-associated protein hub. Using an engineered nanopore equipped with this motif, WDR5 is probed through reversible captures and releases in a one-by-one and time-resolved fashion. Our single-molecule kinetic measurements indicate a weak-affinity interaction arising from a relatively slow complex association and a fast dissociation of WDR5 from the tethered motif. Further, we validate this subtle interaction by determinations in an ensemble using single nanodisc-wrapped nanopores immobilized on a biolayer interferometry sensor. This study also provides the proof-of-concept for a sensor that reveals unique recognition signatures of different protein binding sites. Our foundational work may be further developed to produce sensing elements for analytical proteomics and cancer nanomedicine.
Collapse
Affiliation(s)
- Lauren
A. Mayse
- Department
of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244, United States
- Department
of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, New York 13244, United States
| | - Yazheng Wang
- Department
of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244, United States
- Department
of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, New York 13244, United States
| | - Mohammad Ahmad
- Department
of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244, United States
| | - Liviu Movileanu
- Department
of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244, United States
- Department
of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, New York 13244, United States
- Department
of Biology, Syracuse University, 114 Life Sciences Complex, Syracuse, New York 13244, United States
- The
BioInspired Institute, Syracuse University, Syracuse, New York 13244, United States
| |
Collapse
|
5
|
Wardhani K, Levina A, Grau GER, Lay PA. Fluorescent, phosphorescent, magnetic resonance contrast and radioactive tracer labelling of extracellular vesicles. Chem Soc Rev 2024; 53:6779-6829. [PMID: 38828885 DOI: 10.1039/d2cs00238h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
This review focusses on the significance of fluorescent, phosphorescent labelling and tracking of extracellular vesicles (EVs) for unravelling their biology, pathophysiology, and potential diagnostic and therapeutic uses. Various labeling strategies, such as lipid membrane, surface protein, luminal, nucleic acid, radionuclide, quantum dot labels, and metal complex-based stains, are evaluated for visualizing and characterizing EVs. Direct labelling with fluorescent lipophilic dyes is simple but generally lacks specificity, while surface protein labelling offers selectivity but may affect EV-cell interactions. Luminal and nucleic acid labelling strategies have their own advantages and challenges. Each labelling approach has strengths and weaknesses, which require a suitable probe and technique based on research goals, but new tetranuclear polypyridylruthenium(II) complexes as phosphorescent probes have strong phosphorescence, selective staining, and stability. Future research should prioritize the design of novel fluorescent probes and labelling platforms that can significantly enhance the efficiency, accuracy, and specificity of EV labeling, while preserving their composition and functionality. It is crucial to reduce false positive signals and explore the potential of multimodal imaging techniques to gain comprehensive insights into EVs.
Collapse
Affiliation(s)
- Kartika Wardhani
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia.
- Biochemistry and Biotechnology (B-TEK) Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, USA
| | - Aviva Levina
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia.
| | - Georges E R Grau
- Sydney Nano, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Sydney Cancer Network, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Marie Bashir Institute, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Vascular Immunology Unit, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Peter A Lay
- School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia.
- Sydney Nano, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Sydney Cancer Network, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Marie Bashir Institute, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Sydney Analytical, The University of Sydney, Sydney, New South Wales, 2006, Australia
| |
Collapse
|
6
|
Kim SH, Chun C, Yoon TY. Profiling of BCLxL Protein Complexes in Non-Small Cell Lung Cancer Cells via Multiplexed Single-Molecule Pull-Down and Co-Immunoprecipitation. Anal Chem 2024; 96:8932-8941. [PMID: 38728439 DOI: 10.1021/acs.analchem.3c05801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
We introduce multiplexed single-molecule pull-down and co-immunoprecipitation, named m-SMPC, an analysis tool for profiling multiple protein complexes within a single reaction chamber using single-molecule fluorescence imaging. We employed site-selective conjugation of biotin and fluorescent dye directly onto the monoclonal antibodies, which completed an independent sandwich immunoassay without the issue of host cross-reactivity. We applied this technique to profile endogenous B-cell lymphoma extra-large (BCLxL) complexes in non-small cell lung cancer (NSCLC) cells. Up to three distinct BCLxL complexes were successfully detected simultaneously within a single reaction chamber without fluorescence signal crosstalk. Notably, the NSCLC cell line EBC-1 exhibited high BCLxL-BAX and BCLxL-BAK levels, which closely paralleled a strong response to the BCLxL inhibitor A-1331852. This streamlined method offers the potential for quantitative biomarkers derived from protein complex profiling, paving the way for their application in protein complex-targeted therapies.
Collapse
Affiliation(s)
- Shi Ho Kim
- Department of Biomarker Discovery, PROTEINA Co., Ltd, Seoul 08826, South Korea
| | - Changju Chun
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea
- Institute for Molecular Biology and Genetics, Seoul National University, Seoul 08826, South Korea
| | - Tae-Young Yoon
- Department of Biomarker Discovery, PROTEINA Co., Ltd, Seoul 08826, South Korea
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea
- Institute for Molecular Biology and Genetics, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
7
|
Wang Z, Xie X, Jin K, Xia D, Zhu J, Zhang J. Amplified and Specific Staining of Protein Dimerization on Cell Membrane Catalyzed by Responsively Installed DNA Nanomachines for Cancer Diagnosis. Adv Healthc Mater 2024; 13:e2303398. [PMID: 38183379 DOI: 10.1002/adhm.202303398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/27/2023] [Indexed: 01/08/2024]
Abstract
In situ staining of protein dimerization on cell membrane has an important significance in accurate diagnosis during perioperative period, yet facile integration of specific recognition function and local signal conversion/amplification abilities on membrane surface remains a great challenge. Herein, a two-stage catalytic strategy is developed by installing DNA nanomachines and employing. Specifically, dual-aptamer-assisted DNA scaffold perform a "bispecific recognition-then-computing" operation and the output signal initiate a membrane-anchored biocatalysis for self-assembly of DNA catalytic converters, that is, G-quadruplex nanowire/hemin DNAzyme. Then, localized-deposition of chromogenic polydopamine is chemically catalyzed by horseradish peroxidase-mimicking DNAzyme and guided by supramolecular interactions between conjugate rigid plane of G-tetrad and polydopamine oligomer. The catalytic products exhibit nanofiber morphology with a diameter of 80-120 nm and a length of 1-10 µm, and one-to-one localize on DNA scaffold for amplified and specific staining of protein dimers. The bispecific staining leads to a higher (≈3.4-fold) signal intensity than traditional immunohistochemistry, which is beneficial for direct visualization. Moreover, an efficient discrimination ability of the bispecific staining strategy is observed in co-culture model staining. This study provides a novel catalytic method for controlling deposition of chromogens and paves a new avenue to sensitively stain of protein-protein interactions in disease diagnosis.
Collapse
Affiliation(s)
- Zhenqiang Wang
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, No. 183 Xinqiao Road, Chongqing, 400037, China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No.174 Shazheng Road, Chongqing, 400044, China
| | - Xiyue Xie
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No.174 Shazheng Road, Chongqing, 400044, China
| | - Kaifei Jin
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No.174 Shazheng Road, Chongqing, 400044, China
| | - Daqing Xia
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No.174 Shazheng Road, Chongqing, 400044, China
| | - Jing Zhu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No.174 Shazheng Road, Chongqing, 400044, China
| | - Jixi Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No.174 Shazheng Road, Chongqing, 400044, China
| |
Collapse
|
8
|
Zhao Q, Shen Y, Li X, Li Y, Tian F, Yu X, Liu Z, Tong R, Park H, Yobas L, Huang P. Nanobead-based single-molecule pulldown for single cells. Heliyon 2023; 9:e22306. [PMID: 38027957 PMCID: PMC10679481 DOI: 10.1016/j.heliyon.2023.e22306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 12/01/2023] Open
Abstract
Investigation of cell-to-cell variability holds critical physiological and clinical implications. Thus, numerous new techniques have been developed for studying cell-to-cell variability, and these single-cell techniques can also be used to investigate rare cells. Moreover, for studying protein-protein interactions (PPIs) in single cells, several techniques have been developed based on the principle of the single-molecule pulldown (SiMPull) assay. However, the applicability of these single-cell SiMPull (sc-SiMPull) techniques is limited because of their high technical barrier and special requirements for target cells and molecules. Here, we report a highly innovative nanobead-based approach for sc-SiMPull that is based on our recently developed microbead-based, improved version of SiMPull for cell populations. In our sc-SiMPull method, single cells are captured in microwells and lysed in situ, after which commercially available, pre-surface-functionalized magnetic nanobeads are placed in the microwells to specifically capture proteins of interest together with their binding partners from cell extracts; subsequently, the PPIs are examined under a microscope at the single-molecule level. Relative to previously published methods, nanobead-based sc-SiMPull is considerably faster, easier to use, more reproducible, and more versatile for distinct cell types and protein molecules, and yet provides similar sensitivity and signal-to-background ratio. These crucial features should enable universal application of our method to the study of PPIs in single cells.
Collapse
Affiliation(s)
- Qirui Zhao
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Yusheng Shen
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, China
| | - Xiaofen Li
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Yulin Li
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Fang Tian
- Department of Physics, Hong Kong University of Science and Technology, Hong Kong, China
| | - Xiaojie Yu
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Zhengzhao Liu
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Rongbiao Tong
- Department of Chemistry, Hong Kong University of Science and Technology, Hong Kong, China
| | - Hyokeun Park
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
- Department of Physics, Hong Kong University of Science and Technology, Hong Kong, China
| | - Levent Yobas
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, China
- Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong, China
| | - Pingbo Huang
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, China
- State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China
- HKUST Shenzhen Research Institute, Hong Kong University of Science and Technology, Hong Kong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| |
Collapse
|
9
|
Wang C, Xu S, Sun D, Liu ZP. ActivePPI: quantifying protein-protein interaction network activity with Markov random fields. Bioinformatics 2023; 39:btad567. [PMID: 37698984 PMCID: PMC10516639 DOI: 10.1093/bioinformatics/btad567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/11/2023] [Accepted: 09/11/2023] [Indexed: 09/14/2023] Open
Abstract
MOTIVATION Protein-protein interactions (PPI) are crucial components of the biomolecular networks that enable cells to function. Biological experiments have identified a large number of PPI, and these interactions are stored in knowledge bases. However, these interactions are often restricted to specific cellular environments and conditions. Network activity can be characterized as the extent of agreement between a PPI network (PPIN) and a distinct cellular environment measured by protein mass spectrometry, and it can also be quantified as a statistical significance score. Without knowing the activity of these PPI in the cellular environments or specific phenotypes, it is impossible to reveal how these PPI perform and affect cellular functioning. RESULTS To calculate the activity of PPIN in different cellular conditions, we proposed a PPIN activity evaluation framework named ActivePPI to measure the consistency between network architecture and protein measurement data. ActivePPI estimates the probability density of protein mass spectrometry abundance and models PPIN using a Markov-random-field-based method. Furthermore, empirical P-value is derived based on a nonparametric permutation test to quantify the likelihood significance of the match between PPIN structure and protein abundance data. Extensive numerical experiments demonstrate the superior performance of ActivePPI and result in network activity evaluation, pathway activity assessment, and optimal network architecture tuning tasks. To summarize it succinctly, ActivePPI is a versatile tool for evaluating PPI network that can uncover the functional significance of protein interactions in crucial cellular biological processes and offer further insights into physiological phenomena. AVAILABILITY AND IMPLEMENTATION All source code and data are freely available at https://github.com/zpliulab/ActivePPI.
Collapse
Affiliation(s)
- Chuanyuan Wang
- Department of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Shiyu Xu
- Department of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Duanchen Sun
- School of Mathematics, Shandong University, Jinan, Shandong 250100, China
| | - Zhi-Ping Liu
- Department of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan, Shandong 250061, China
| |
Collapse
|
10
|
Cha M, Jeong SH, Bae S, Park JH, Baeg Y, Han DW, Kim SS, Shin J, Park JE, Oh SW, Gho YS, Shon MJ. Efficient Labeling of Vesicles with Lipophilic Fluorescent Dyes via the Salt-Change Method. Anal Chem 2023; 95:5843-5849. [PMID: 36990442 PMCID: PMC10100391 DOI: 10.1021/acs.analchem.2c05166] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Fluorescent labeling allows for imaging and tracking of vesicles down to single-particle level. Among several options to introduce fluorescence, staining of lipid membranes with lipophilic dyes provides a straightforward approach without interfering with vesicle content. However, incorporating lipophilic molecules into vesicle membranes in an aqueous solution is generally not efficient because of their low water solubility. Here, we describe a simple, fast (<30 min), and highly effective procedure for fluorescent labeling of vesicles including natural extracellular vesicles. By adjusting the ionic strength of the staining buffer with NaCl, the aggregation status of DiI, a representative lipophilic tracer, can be controlled reversibly. Using cell-derived vesicles as a model system, we show that dispersion of DiI under low-salt condition improved its incorporation into vesicles by a factor of 290. In addition, increasing NaCl concentration after labeling induced free dye molecules to form aggregates, which can be filtered and thus effectively removed without ultracentrifugation. We consistently observed 6- to 85-fold increases in the labeled vesicle count across different types of dyes and vesicles. The method is expected to reduce the concern about off-target labeling resulting from the use of high concentrations of dyes.
Collapse
Affiliation(s)
- Minkwon Cha
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- POSTECH Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic Korea
| | - Sang Hyeok Jeong
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Seoyoon Bae
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jun Hyuk Park
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Yoonjin Baeg
- Biodrone Research Institute, MDimune Inc., Seoul 04790, Republic of Korea
| | - Dong Woo Han
- Biodrone Research Institute, MDimune Inc., Seoul 04790, Republic of Korea
| | - Sang Soo Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jaehyeon Shin
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Jeong Eun Park
- Biodrone Research Institute, MDimune Inc., Seoul 04790, Republic of Korea
| | - Seung Wook Oh
- Biodrone Research Institute, MDimune Inc., Seoul 04790, Republic of Korea
| | - Yong Song Gho
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Min Ju Shon
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
11
|
Cai S, Hu T, Venkatesan M, Allam M, Schneider F, Ramalingam SS, Sun SY, Coskun AF. Multiplexed protein profiling reveals spatial subcellular signaling networks. iScience 2022; 25:104980. [PMID: 36093051 PMCID: PMC9460555 DOI: 10.1016/j.isci.2022.104980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 05/25/2022] [Accepted: 08/16/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Shuangyi Cai
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Thomas Hu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Mythreye Venkatesan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Mayar Allam
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Frank Schneider
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, GA 30322, USA
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Suresh S. Ramalingam
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Shi-Yong Sun
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ahmet F. Coskun
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Corresponding author
| |
Collapse
|
12
|
Zhao Q, Shen Y, Li X, Tian F, Yu X, Yobas L, Park H, Duan Y, Huang P. Analyzing protein-protein interactions in rare cells using microbead-based single-molecule pulldown assay. LAB ON A CHIP 2021; 21:3137-3149. [PMID: 34165117 DOI: 10.1039/d1lc00260k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
For studying protein-protein interactions (PPIs) in general, a powerful and commonly used technique is conventional coimmunoprecipitation (co-IP/pulldown) followed by western blotting. However, the technique does not provide precise information regarding the kinetics and stoichiometry of PPIs. Another drawback is that the sensitivity of conventional co-IP is not suitable for examining PPIs in rare cells such as sensory hair cells, circulating tumor cells, embryonic stem cells, and subsets of immune cells. The current single-molecule pulldown (SiMPull) assay can potentially be used for studying PPIs in rare cells but its wide application is hindered by the high technical barrier and time consumption. We report an innovative, agarose microbead-based approach for SiMPull. We used commercially available, pre-surface-functionalized agarose microbeads to capture the protein of interest together with its binding partners specifically from cell extracts and observed these interactions under a microscope at the single-molecule level. Relative to the original method, microbead-based SiMPull is considerably faster, easier to use, and more reproducible and yet provides similar sensitivity and signal-to-background ratio; specifically, with the new method, sample-preparation time is substantially decreased (from ∼10 to ∼3 h). These crucial features should facilitate wide application of the powerful and versatile SiMPull method in common biological and clinical laboratories. Notably, by exploiting the simplicity and ultrahigh sensitivity of microbead-based SiMPull, we used the method in the study of rare auditory hair cells and γδ T cells for the first time.
Collapse
Affiliation(s)
- Qirui Zhao
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China.
| | - Yusheng Shen
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, China
| | - Xiaofen Li
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, China
| | - Fang Tian
- Department of Physics, Hong Kong University of Science and Technology, Hong Kong, China
| | - Xiaojie Yu
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China.
| | - Levent Yobas
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, China and Department of Electronic and Computer Engineering, Hong Kong University of Science and Technology, Hong Kong, China
| | - Hyokeun Park
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China. and Department of Physics, Hong Kong University of Science and Technology, Hong Kong, China
| | - Yuanyuan Duan
- Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong, China
| | - Pingbo Huang
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China. and Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong, China and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Hong Kong, China and HKUST Shenzhen Research Institute, Hong Kong University of Science and Technology, Hong Kong, China and Hong Kong Branch of Guangdong Southern Marine Science and Engineering Laboratory (Guangzhou), Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
13
|
Su B, Zhang X, Li L, Abbas S, Yu M, Cui Y, Baluška F, Hwang I, Shan X, Lin J. Dynamic spatial reorganization of BSK1 complexes in the plasma membrane underpins signal-specific activation for growth and immunity. MOLECULAR PLANT 2021; 14:588-603. [PMID: 33524551 DOI: 10.1016/j.molp.2021.01.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 05/25/2023]
Abstract
Growth and immunity are opposing processes that compete for cellular resources, and proper resource allocation is crucial for plant survival. BSK1 plays a key role in the regulation of both growth and immunity by associating with BRI1 and FLS2, respectively. However, it remains unclear how two antagonistic signals co-opt BSK1 to induce signal-specific activation. Here we show that the dynamic spatial reorganization of BSK1 within the plasma membrane underlies the mechanism of signal-specific activation for growth or immunity. Resting BSK1 localizes to membrane rafts as complexes. Unlike BSK1-associated FLS2 and BRI1, flg22 or exogenous brassinosteroid (BR) treatment did not decrease BSK1 levels at the plasma membrane (PM) but rather induced BSK1 multimerization and dissociation from FLS2/BSK1 or BRI1/BSK1, respectively. Moreover, flg22-activated BSK1 translocated from membrane rafts to non-membrane-raft regions, whereas BR-activated BSK1 remained in membrane rafts. When applied together with flg22, BR suppressed various flg22-induced BSK1 activities such as BSK1 dissociation from FLS2/BSK1, BSK1 interaction with MAPKKK5, and BSK translocation together with MAPKKK5. Taken together, this study provides a unique insight into how the precise control of BSK1 spatiotemporal organization regulates the signaling specificity to balance plant growth and immunity.
Collapse
Affiliation(s)
- Bodan Su
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Xi Zhang
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Li Li
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Sammar Abbas
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Meng Yu
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yaning Cui
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - František Baluška
- Institute of Cellular and Molecular Botany, University of Bonn, Bonn, 53115, Germany
| | - Inhwan Hwang
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing 100083, China; Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Xiaoyi Shan
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing 100083, China.
| | - Jinxing Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China; College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
14
|
Choi B, Cha M, Eun GS, Lee DH, Lee S, Ehsan M, Chae PS, Heo WD, Park Y, Yoon TY. Single-molecule functional anatomy of endogenous HER2-HER3 heterodimers. eLife 2020; 9:53934. [PMID: 32267234 PMCID: PMC7176432 DOI: 10.7554/elife.53934] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 04/07/2020] [Indexed: 12/14/2022] Open
Abstract
Human epidermal growth factor receptors (HERs) are the primary targets of many directed cancer therapies. However, the reason a specific dimer of HERs generates a stronger proliferative signal than other permutations remains unclear. Here, we used single-molecule immunoprecipitation to develop a biochemical assay for endogenously-formed, entire HER2-HER3 heterodimers. We observed unexpected, large conformational fluctuations in juxta-membrane and kinase domains of the HER2-HER3 heterodimer. Nevertheless, the individual HER2-HER3 heterodimers catalyze tyrosine phosphorylation at an unusually high rate, while simultaneously interacting with multiple copies of downstream signaling effectors. Our results suggest that the high catalytic rate and multi-tasking capability make a concerted contribution to the strong signaling potency of the HER2-HER3 heterodimers.
Collapse
Affiliation(s)
- Byoungsan Choi
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea.,Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Minkwon Cha
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Gee Sung Eun
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | | | - Seul Lee
- Proteina Co. Ltd., Seoul, Republic of Korea
| | - Muhammad Ehsan
- Department of Bionanotechnology, Hanyang University, Ansan, Republic of Korea
| | - Pil Seok Chae
- Department of Bionanotechnology, Hanyang University, Ansan, Republic of Korea
| | - Won Do Heo
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| | - YongKeun Park
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Tae-Young Yoon
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
15
|
Yoon TY, Lee HW. Shedding light on complexity of protein–protein interactions in cancer. Curr Opin Chem Biol 2019; 53:75-81. [DOI: 10.1016/j.cbpa.2019.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/02/2019] [Indexed: 12/20/2022]
|
16
|
Ryu JY, Kim J, Shon MJ, Sun J, Jiang X, Lee W, Yoon TY. Profiling protein-protein interactions of single cancer cells with in situ lysis and co-immunoprecipitation. LAB ON A CHIP 2019; 19:1922-1928. [PMID: 31073561 DOI: 10.1039/c9lc00139e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Heterogeneity in a tumor allows a small portion of cancer cells to survive and regrow upon targeted cancer therapy, eventually leading to cancer relapse. Such drug-resistant cells often exhibit dynamic adaptation of their signaling pathways at the level of protein-protein interactions (PPIs). To probe the rewiring of signaling pathways and the heterogeneity across individual cancer cells, we developed a single-cell version of the co-immunoprecipitation (co-IP) analysis that examines the amount and PPIs of target proteins immunoprecipitated from individual cells. The method captures cancer cells at predefined locations using a microfluidic chip, pulls down target proteins on the surface using antibodies, and lyses the captured cells in situ. Then, subsequent addition of eGFP-labeled downstream proteins enables the determination of the corresponding PPIs for the minimal amount of target proteins sampled from a single cell. We applied the technique to probe epidermal growth factor receptors (EGFRs) in PC9 lung adenocarcinoma cells. The results reveal that the strength of EGFR PPIs can be largely uncorrelated with the expression level of EGFRs in single cells. In addition, the individual PC9 cells showed markedly different patterns of PPIs, indicating a high heterogeneity in EGFR signaling within a genetically homogeneous population.
Collapse
Affiliation(s)
- Ji Young Ryu
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul 08826, South Korea. and R&D Center, Proteina, Inc., Seoul 08826, South Korea
| | - Jihye Kim
- Graduate School of Nanoscience and Technology, KAIST, Daejeon 34141, South Korea.
| | - Min Ju Shon
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul 08826, South Korea.
| | - Jiashu Sun
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
| | - Xingyu Jiang
- Department of Biomedical Engineering, Southern University of Science and Technology, 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong Province, China
| | - Wonhee Lee
- Graduate School of Nanoscience and Technology, KAIST, Daejeon 34141, South Korea. and Department of Physics, KAIST, Daejeon 34141, South Korea
| | - Tae-Young Yoon
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
17
|
Croop B, Han KY. Facile single-molecule pull-down assay for analysis of endogenous proteins. Phys Biol 2019; 16:035002. [PMID: 30769341 DOI: 10.1088/1478-3975/ab0792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The single-molecule pull-down (SiMPull) assay analyzes molecular complexes in physiological conditions from cell or tissue lysates. Currently the approach requires a lengthy sample preparation process, which has largely prevented the widespread adoption of this technique in bioanalysis. Here, we present a simplified SiMPull assay based upon dichlorodimethylsilane-Tween-20 passivation and F(ab) fragment labeling. Our passivation is a much shorter process than the standard polyethylene glycol passivation used in most single-molecule studies. The use of F(ab) fragments for indirect fluorescent labeling rather than divalent F(ab')2 or whole IgG antibodies allows for the pre-incubation of the detection antibodies, reducing the sample preparation time for single-molecule immunoprecipitation samples. We examine the applicability of our approach to recombinant proteins and endogenous proteins from mammalian cell lysates.
Collapse
Affiliation(s)
- Benjamin Croop
- CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, FL, United States of America
| | | |
Collapse
|
18
|
Croop B, Zhang C, Lim Y, Gelfand RM, Han KY. Recent advancement of light-based single-molecule approaches for studying biomolecules. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2019; 11:e1445. [PMID: 30724484 DOI: 10.1002/wsbm.1445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/01/2018] [Accepted: 01/08/2019] [Indexed: 12/27/2022]
Abstract
Recent advances in single-molecule techniques have led to new discoveries in analytical chemistry, biophysics, and medicine. Understanding the structure and behavior of single biomolecules provides a wealth of information compared to studying large ensembles. However, developing single-molecule techniques is challenging and requires advances in optics, engineering, biology, and chemistry. In this paper, we will review the state of the art in single-molecule applications with a focus over the last few years of development. The advancements covered will mainly include light-based in vitro methods, and we will discuss the fundamentals of each with a focus on the platforms themselves. We will also summarize their limitations and current and future applications to the wider biological and chemical fields. This article is categorized under: Laboratory Methods and Technologies > Imaging Laboratory Methods and Technologies > Macromolecular Interactions, Methods Analytical and Computational Methods > Analytical Methods.
Collapse
Affiliation(s)
- Benjamin Croop
- CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, Florida
| | - Chenyi Zhang
- CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, Florida
| | - Youngbin Lim
- Department of Bioengineering, Stanford University, Stanford, California
| | - Ryan M Gelfand
- CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, Florida
| | - Kyu Young Han
- CREOL, The College of Optics and Photonics, University of Central Florida, Orlando, Florida
| |
Collapse
|
19
|
Al-Suhaimi E, Ravinayagam V, Jermy BR, Mohamad T, Elaissari A. Protein/ Hormone Based Nanoparticles as Carriers for Drugs Targeting Protein-Protein Interactions. Curr Top Med Chem 2019; 19:444-456. [PMID: 30836918 DOI: 10.2174/1568026619666190304152320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 01/02/2019] [Accepted: 01/24/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND In this review, protein-protein interactions (PPIs) were defined, and their behaviors in normal in disease conditions are discussed. Their status at nuclear, molecular and cellular level was underscored, as for their interference in many diseases. Finally, the use of protein nanoscale structures as possible carriers for drugs targeting PPIs was highlighted. OBJECTIVE The objective of this review is to suggest a novel approach for targeting PPIs. By using protein nanospheres and nanocapsules, a promising field of study can be emerged. METHODS To solidify this argument, PPIs and their biological significance was discussed, same as their role in hormone signaling. RESULTS We shed the light on the drugs that targets PPI and we suggested the use of nanovectors to encapsulate these drugs to possibly achieve better results. CONCLUSION Protein based nanoparticles, due to their advantages, can be suitable carriers for drugs targeting PPIs. This can open a new opportunity in the emerging field of multifunctional therapeutics.
Collapse
Affiliation(s)
- Ebtesam Al-Suhaimi
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Vijaya Ravinayagam
- Deanship of Scientific Research & Nanomedicine Research Department, Institute of Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - B Rabindran Jermy
- Nanomedicine Research Department, Institute of Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Tarhini Mohamad
- University Lyon, University Claude Bernard Lyon-1, CNRS, LAGEP-UMR 5007, F- 69622 Lyon, France
| | - Abdelhamid Elaissari
- University Lyon, University Claude Bernard Lyon-1, CNRS, LAGEP-UMR 5007, F- 69622 Lyon, France
| |
Collapse
|
20
|
Surfaceome nanoscale organization and extracellular interaction networks. Curr Opin Chem Biol 2018; 48:26-33. [PMID: 30308468 DOI: 10.1016/j.cbpa.2018.09.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/16/2018] [Accepted: 09/19/2018] [Indexed: 12/19/2022]
Abstract
The reductionist view of 'one target-one drug' has fueled the development of therapeutic agents to treat human disease. However, many compounds that have efficacy in vitro are inactive in complex in vivo systems. It has become clear that a molecular understanding of signaling networks is needed to address disease phenotypes in the human body. Protein signaling networks function at the molecular level through information transfer via protein-protein interactions. Cell surface exposed proteins, termed the surfaceome, are the gatekeepers between the intra- and extracellular signaling networks, translating extracellular cues into intracellular responses and vice versa. As 66% of drugs in the DrugBank target the surfaceome, these proteins are a key source for potential diagnostic and therapeutic agents. In this review article, we will discuss current knowledge about the spatial organization and molecular interactions of the surfaceome and provide a perspective on the technologies available for studying the extracellular surfaceome interaction network.
Collapse
|
21
|
Sung MS, Jung JH, Jeong C, Yoon TY, Park JH. Single-Molecule Co-Immunoprecipitation Reveals Functional Inheritance of EGFRs in Extracellular Vesicles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1802358. [PMID: 30239124 DOI: 10.1002/smll.201802358] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/09/2018] [Indexed: 06/08/2023]
Abstract
Cancer cells actively release extracellular vesicles (EVs) as important carriers of cellular information to tumor microenvironments. Although the composition and quantity of the proteins contained in EVs are characterized, it remains unknown how these proteins in EVs are related to those in the original cells at the functional level. With epidermal growth factor receptor (EGFR) in lung adenocarcinoma cells as a model oncoprotein, it is studied how distinct types of EVs, microvesicles and exosomes, represent their original cells at the protein and protein-protein interaction (PPI) level. Using the recently developed single-molecule immunolabeling and co-immunoprecipitation schemes, the quantity and PPI strengths of EGFRs derived from EVs and the original lung adenocarcinoma cells are determined. It is found that the microvesicles exhibit higher correlations with the original cells than the exosomes in terms of the EGFR levels and their PPI patterns. In spite of these detailed differences between the microvesicles and exosomes, the EGFR PPI strengths measured for EVs generally show a tight correlation with those determined for the original cells. The results suggest that EGFRs contained in EVs closely reflect the cellular EGFR in terms of their downstream signaling capacity.
Collapse
Affiliation(s)
- Mi Sook Sung
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 30722, South Korea
- Yonsei-IBS Institute, Yonsei University, Seoul, 30722, South Korea
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul, 08826, South Korea
| | - Jik-Han Jung
- Department of Bio and Brain Engineering and KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| | - Cherlhyun Jeong
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, 02447, South Korea
| | - Tae-Young Yoon
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, 30722, South Korea
- Yonsei-IBS Institute, Yonsei University, Seoul, 30722, South Korea
- School of Biological Sciences and Institute for Molecular Biology and Genetics, Seoul National University, Seoul, 08826, South Korea
| | - Ji-Ho Park
- Department of Bio and Brain Engineering and KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea
| |
Collapse
|
22
|
Testing cancer inhibitors at scale. Nat Biomed Eng 2018; 2:203-204. [DOI: 10.1038/s41551-018-0226-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|