1
|
Chen Y, Yu K, Jiang Z, Yang G. CRISPR-based genetically modified scaffold-free biomaterials for tissue engineering and regenerative medicine. Biomater Sci 2025. [PMID: 40326747 DOI: 10.1039/d5bm00194c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
CRISPR-based genetically modified scaffold-free biomaterials, including extracellular vehicles, cell sheets, cell aggregates, organoids and organs, have attracted significant attention in the fields of regenerative medicine and tissue engineering in recent years. With a wide range of applications in gene therapy, modeling disease, tissue regeneration, organ xenotransplantation, modeling organogenesis as well as gene and drug screening, they are at a critical juncture from clinical trials to therapeutic applications. Xenografts have already been tested on non-human primates and humans. However, we have to admit that a series of obstacles still need to be addressed, such as immune response, viral infection, off-target effects, difficulty in mass production, and ethical issues. Therefore, future research should pay more attention to improving their safety, accuracy of gene editing, flexibility of production, and ethical rationality. This review summarizes various types of CRISPR-based genetically modified scaffold-free biomaterials, including their preparation procedures, applications, and possible improvements.
Collapse
Affiliation(s)
- Yunxuan Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| | - Ke Yu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| | - Zhiwei Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou 310000, China.
| |
Collapse
|
2
|
Liu X, Gao M, Bao J. Precisely Targeted Nanoparticles for CRISPR-Cas9 Delivery in Clinical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:540. [PMID: 40214585 PMCID: PMC11990453 DOI: 10.3390/nano15070540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/31/2025] [Accepted: 03/31/2025] [Indexed: 04/14/2025]
Abstract
Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR-Cas9), an emerging gene-editing technology, has recently gained rapidly increasing attention. However, the lack of efficient delivery vectors to deliver CRISPR-Cas9 to specific cells or tissues has hindered the translation of this biotechnology into clinical applications. Chemically synthesized nanoparticles (NPs), as attractive non-viral delivery platforms for CRISPR-Cas9, have been extensively investigated because of their unique characteristics, such as controllable size, high stability, multi-functionality, bio-responsive behavior, biocompatibility, and versatility in chemistry. In this review, the key considerations for the precise design of chemically synthesized-based nanoparticles include efficient encapsulation, cellular uptake, the targeting of specific tissues and cells, endosomal escape, and controlled release. We discuss cutting-edge strategies to integrate chemical modifications into non-viral nanoparticles that guide the CRISPR-Cas9 genome-editing machinery to specific edits. We also highlighted the rationale of intelligent nanoparticle design. In particular, we have summarized promising functional groups and molecules that can effectively optimize carrier function. In addition, this review focuses on advances in the widespread application of NPs delivery in the biomedical fields to promote the development of safe, specific, and efficient NPs for delivering CRISPR-Cas9 systems, providing references for accelerating their clinical translational applications.
Collapse
Affiliation(s)
| | | | - Ji Bao
- Department of Pathology, Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, National Health Commission of China, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
3
|
Pan Y, Zeng F, Luan X, He G, Qin S, Lu Q, He B, Han X, Song Y. Polyamine-Depleting Hydrogen-Bond Organic Frameworks Unleash Dendritic Cell and T Cell Vigor for Targeted CRISPR/Cas-Assisted Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2411886. [PMID: 39972681 DOI: 10.1002/adma.202411886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 01/26/2025] [Indexed: 02/21/2025]
Abstract
Polyamines have tantalized cancer researchers as a potential means to rein in the rampant growth of cancer cells. However, clinical trials in recent decades have disappointed in delivering notable progress. Herein, a microfluidic-assisted synthetic hydrogen-bond organic framework (HOF) as a polyamine-depleting nanoplatforms designed to unleash the vigor of both dendritic cells (DCs) and T cells for precision cancer immunotherapy is reported. Upon internalization by tumor cells, the loaded plasma amine oxidase (PAO) in HOF efficiently depletes polyamines, remolding the tumor microenvironment and alleviating T-cell immunosuppression. This process also generates acrolein and H2O2, triggering CRISPR-assisted neoantigen generation. Specifically, Acrolein induces carbonyl stress, increasing mutational burdens. Simultaneously, HOF leverages the energy from the bis[2,4,5-trichloro-6-(pentyloxycarbonyl)phenyl] oxalate (CPPO)-H2O2 reaction for CRET-triggered singlet oxygen production, leading to thioether bond cleavage and release CRISPR-Cas9. Once released, CRISPR-Cas9 knocks out the DNA mismatch repair (MMR)-related MLH1 gene, further elevating mutational burdens and generating neoantigens, ideal targets for DCs. This dual-action strategy not only corrects T-cell immunosuppression but also enhances DC efficacy, presenting a powerful approach for tumor immunotherapy.
Collapse
Affiliation(s)
- Yongchun Pan
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210023, China
| | - Fei Zeng
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210023, China
| | - Xiaowei Luan
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210023, China
| | - Guanzhong He
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210023, China
| | - Shurong Qin
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210023, China
| | - Qianglan Lu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210023, China
| | - Bangshun He
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Xin Han
- School of Medicine & Holistic Integrative Medicine, JiangsuCollaborative Innovation Canter of Chinese Medicinal ResourcesIndustrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yujun Song
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
4
|
Mao K, Yue M, Ma H, Li Z, Liu Y. Electro- and Magneto-Active Biomaterials for Diabetic Tissue Repair: Advantages and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2501817. [PMID: 40159915 DOI: 10.1002/adma.202501817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Indexed: 04/02/2025]
Abstract
The diabetic tissue repair process is frequently hindered by persistent inflammation, infection risks, and a compromised tissue microenvironment, which lead to delayed wound healing and significantly impact the quality of life for diabetic patients. Electromagnetic biomaterials offer a promising solution by enabling the intelligent detection of diabetic wounds through electric and magnetic effects, while simultaneously improving the pathological microenvironment by reducing oxidative stress, modulating immune responses, and exhibiting antibacterial action. Additionally, these materials inherently promote tissue regeneration by regulating cellular behavior and facilitating vascular and neural repair. Compared to traditional biomaterials, electromagnetic biomaterials provide advantages such as noninvasiveness, deep tissue penetration, intelligent responsiveness, and multi-stimuli synergy, demonstrating significant potential to overcome the challenges of diabetic tissue repair. This review comprehensively examines the superiority of electromagnetic biomaterials in diabetic tissue repair, elucidates the underlying biological mechanisms, and discusses specific design strategies and applications tailored to the pathological characteristics of diabetic wounds, with a focus on skin wound healing and bone defect repair. By addressing current limitations and pursuing multi-faceted strategies, electromagnetic biomaterials hold significant potential to improve clinical outcomes and enhance the quality of life for diabetic patients.
Collapse
Affiliation(s)
- Kai Mao
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
| | - Muxin Yue
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
- Institute of Medical Technology, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing, 100191, P. R. China
| | - Huiping Ma
- Department of Stomatology, Zhengzhou Shuqing Medical College, 6 Gongming Road, Erqi District, Zhengzhou, 450064, P. R. China
| | - Zheng Li
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
| | - Yunsong Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, P. R. China
| |
Collapse
|
5
|
Liu Y, Li F, Lyu Y, Wang F, Lee LTO, He S, Guo Z, Li J. A Semiconducting Polymer NanoCRISPR for Near-Infrared Photoactivatable Gene Editing and Cancer Gene Therapy. NANO LETTERS 2025; 25:4518-4525. [PMID: 40053823 DOI: 10.1021/acs.nanolett.5c00285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2025]
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR) gene editing has poor efficacy and off-target side effect concerns. We herein report a semiconducting polymer (SP)-based nanoCRISPR system to improve CRISPR delivery efficacy and allow for near-infrared (NIR) photoactivatable gene editing for cancer therapy. An amphiphilic SP acts as a photothermal converter, and its backbone is grafted with single-stranded deoxyribonucleic acid (DNA), which enables hybridization with single guide ribonucleic acid (sgRNA) via complementary base pairing to form sgRNA/SP-DNA. This sgRNA/SP-DNA nanosystem (nanoCRISPR) can effectively deliver sgRNA into cells and generate heat under NIR laser irradiation via the photothermal effect. The localized heat triggers the dissociation of single-stranded DNA and sgRNA to control the release of sgRNA, thereby achieving precise regulation of CRISPR activity. This NIR photoactivatable gene editing technology is able to precisely regulate the expression of green fluorescent protein (GFP) and polo-like kinase 1 (PLK1) gene for precision gene therapy.
Collapse
Affiliation(s)
- Yue Liu
- State Key Laboratory of Advanced Fiber Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Fei Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yan Lyu
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Fengshuo Wang
- State Key Laboratory of Advanced Fiber Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Leo Tsz On Lee
- Cancer Centre, Faculty of Health Sciences, University of Macau, Taipa, Macau 999078, China
- Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macau 999078, China
| | - Shasha He
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhong Guo
- Center for Biological Science and Technology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China
| | - Jingchao Li
- State Key Laboratory of Advanced Fiber Materials, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
6
|
Yang X, Kubican SE, Yi Z, Tong S. Advances in magnetic nanoparticles for molecular medicine. Chem Commun (Camb) 2025; 61:3093-3108. [PMID: 39846549 PMCID: PMC11756346 DOI: 10.1039/d4cc05167j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/20/2025] [Indexed: 01/24/2025]
Abstract
Magnetic nanoparticles (MNPs) are highly versatile nanomaterials in nanomedicine, owing to their diverse magnetic properties, which can be tailored through variations in size, shape, composition, and exposure to inductive magnetic fields. Over four decades of research have led to the clinical approval or ongoing trials of several MNP formulations, fueling continued innovation. Beyond traditional applications in drug delivery, imaging, and cancer hyperthermia, MNPs have increasingly advanced into molecular medicine. Under external magnetic fields, MNPs can generate mechano- or thermal stimuli to modulate individual molecules or cells deep within tissue, offering precise, remote control of biological processes at cellular and molecular levels. These unique capabilities have opened new avenues in emerging fields such as genome editing, cell therapies, and neuroscience, underpinned by a growing understanding of nanomagnetism and the molecular mechanisms responding to mechanical and thermal cues. Research on MNPs as a versatile synthetic material capable of engineering control at the cellular and molecular levels holds great promise for advancing the frontiers of molecular medicine, including areas such as genome editing and synthetic biology. This review summarizes recent clinical studies showcasing the classical applications of MNPs and explores their integration into molecular medicine, with the goal of inspiring the development of next-generation MNP-based platforms for disease treatment.
Collapse
Affiliation(s)
- Xiaoyue Yang
- F. Joseph Halcomb III, M. D. Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky 40536, USA.
| | - Sarah E Kubican
- F. Joseph Halcomb III, M. D. Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky 40536, USA.
| | - Zhongchao Yi
- F. Joseph Halcomb III, M. D. Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky 40536, USA.
| | - Sheng Tong
- F. Joseph Halcomb III, M. D. Department of Biomedical Engineering, University of Kentucky, Lexington, Kentucky 40536, USA.
| |
Collapse
|
7
|
Kallepalli B, Garg U, Jain N, Nagpal R, Malhotra S, Tiwari T, Kaul S, Nagaich U. Intelligent Drug Delivery: Pioneering Stimuli-Responsive Systems to Revolutionize Disease Management- An In-depth Exploration. Curr Drug Deliv 2025; 22:195-214. [PMID: 38310439 DOI: 10.2174/0115672018278641231221051359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/12/2023] [Accepted: 11/20/2023] [Indexed: 02/05/2024]
Abstract
In recent years, there has been an escalating interest in stimuli-responsive drug delivery systems (SRDDS) due to their ability to revolutionize the delivery of therapeutics. SRDDSs offer a multitude of benefits in comparison to conventional drug delivery systems (DDS), including spatiotemporal control of drug release, targeted delivery, and improved therapeutic efficacy. The development of various classes of stimuli-responsive DDS, such as pH-responsive, temperature-responsive, photo-responsive, redox responsive systems, has been propelled by advances in materials science, nanotechnology, and biotechnology. These systems exploit specific environmental or physiological cues to trigger drug release in a precisely controlled manner, making them highly promising for the treatment of various diseases. In this review article, an in-depth exploration of the principles, mechanisms, and applications of SRDDS in the context of diverse pathologies such as cancer, arthritis, Alzheimer's disease, atherosclerosis and tissue engineering has been provided. Furthermore, this article delves into the discussion of recent patents, market overview and the progress of research in clinical trials. Overall, this article underscores the transformative potential of SRDDS in enabling personalized, precise, and effective drug delivery for the treatment of the above-mentioned diseases.
Collapse
Affiliation(s)
- Badarinadh Kallepalli
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Sector 125, Noida, Uttar Pradesh, India
| | - Unnati Garg
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Sector 125, Noida, Uttar Pradesh, India
| | - Neha Jain
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Sector 125, Noida, Uttar Pradesh, India
| | - Rohan Nagpal
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Sector 125, Noida, Uttar Pradesh, India
| | - Sakshi Malhotra
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Sector 125, Noida, Uttar Pradesh, India
| | - Triveni Tiwari
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Sector 125, Noida, Uttar Pradesh, India
| | - Shreya Kaul
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Sector 125, Noida, Uttar Pradesh, India
| | - Upendra Nagaich
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University, Sector 125, Noida, Uttar Pradesh, India
| |
Collapse
|
8
|
Wang S, Wang J, Li B, Zhang J. Photoactivable CRISPR for Biosensing and Cancer Therapy. Chembiochem 2024; 25:e202400685. [PMID: 39317648 DOI: 10.1002/cbic.202400685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 09/26/2024]
Abstract
Photoactivable CRISPR technology represents a transformative approach in the field of genome editing, offering unprecedented control over gene editing with high spatial and temporal precision. By harnessing the power of light to modulate the activity of CRISPR components, this innovative strategy enables precise regulation of Cas proteins, guide RNAs, and ribonucleoprotein complexes. Recent advancements in optical control methodologies, including the development of photoactivable nanocarriers, have significantly expanded the potential applications of CRISPR in biomedical fields. This Concept highlights the latest developments in designing photoactivable CRISPR systems and their promising applications in biosensing and cancer therapy. Additionally, the remaining challenges and future trends are also discussed. It is expected that the photoactivable CRISPR would facilitate translating more precise gene therapies into clinical use.
Collapse
Affiliation(s)
- Siyuan Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jiaqi Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Baijiang Li
- Institution Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing, 210023, China
| | - Jingjing Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- Institution Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing, 210023, China
| |
Collapse
|
9
|
Feng X, Li Z, Liu Y, Chen D, Zhou Z. CRISPR/Cas9 technology for advancements in cancer immunotherapy: from uncovering regulatory mechanisms to therapeutic applications. Exp Hematol Oncol 2024; 13:102. [PMID: 39427211 PMCID: PMC11490091 DOI: 10.1186/s40164-024-00570-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024] Open
Abstract
In recent years, immunotherapy has developed rapidly as a new field of tumour therapy. However, the efficacy of tumour immunotherapy is not satisfactory due to the immune evasion mechanism of tumour cells, induction of immunosuppressive tumour microenvironment (TME), and reduction of antigen delivery, etc. CRISPR/Cas9 gene editing technology can accurately modify immune and tumour cells in tumours, and improve the efficacy of immunotherapy by targeting immune checkpoint molecules and immune regulatory genes, which has led to the great development and application. In current clinical trials, there are still many obstacles to the application of CRISPR/Cas9 in tumour immunotherapy, such as ensuring the accuracy and safety of gene editing, overcoming overreactive immune responses, and solving the challenges of in vivo drug delivery. Here we provide a systematic review on the application of CRISPR/Cas9 in tumour therapy to address the above existing problems. We focus on CRISPR/Cas9 screening and identification of immunomodulatory genes, targeting of immune checkpoint molecules, manipulation of immunomodulators, enhancement of tumour-specific antigen presentation and modulation of immune cell function. Second, we also highlight preclinical studies of CRISPR/Cas9 in animal models and various delivery systems, and evaluate the efficacy and safety of CRISPR/Cas9 technology in tumour immunotherapy. Finally, potential synergistic approaches for combining CRISPR/Cas9 knockdown with other immunotherapies are presented. This study underscores the transformative potential of CRISPR/Cas9 to reshape the landscape of tumour immunotherapy and provide insights into novel therapeutic strategies for cancer patients.
Collapse
Affiliation(s)
- Xiaohang Feng
- Department of Colorectal Surgery, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhengxing Li
- Department of Colorectal Surgery, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuping Liu
- Department of Colorectal Surgery, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China
| | - Di Chen
- Biomedical Sciences, College of Medicine and Veterinary Medicine, Edinburgh Medical School, The University of Edinburgh, Edinburgh, UK
- Center for Reproductive Medicine of The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhuolong Zhou
- Department of Colorectal Surgery, the Second Affiliated Hospital, and Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
- Biomedical Sciences, College of Medicine and Veterinary Medicine, Edinburgh Medical School, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
10
|
Lau CH, Liang QL, Zhu H. Next-generation CRISPR technology for genome, epigenome and mitochondrial editing. Transgenic Res 2024; 33:323-357. [PMID: 39158822 DOI: 10.1007/s11248-024-00404-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/08/2024] [Indexed: 08/20/2024]
Abstract
The application of rapidly growing CRISPR toolboxes and methods has great potential to transform biomedical research. Here, we provide a snapshot of up-to-date CRISPR toolboxes, then critically discuss the promises and hurdles associated with CRISPR-based nuclear genome editing, epigenome editing, and mitochondrial editing. The technical challenges and key solutions to realize epigenome editing in vivo, in vivo base editing and prime editing, mitochondrial editing in complex tissues and animals, and CRISPR-associated transposases and integrases in targeted genomic integration of very large DNA payloads are discussed. Lastly, we discuss the latest situation of the CRISPR/Cas9 clinical trials and provide perspectives on CRISPR-based gene therapy. Apart from technical shortcomings, ethical and societal considerations for CRISPR applications in human therapeutics and research are extensively highlighted.
Collapse
Affiliation(s)
- Cia-Hin Lau
- Department of Biology, College of Science, Shantou University, Shantou, 515063, Guangdong, China
| | - Qing-Le Liang
- Department of Clinical Laboratory Medicine, Chongqing University Jiangjin Hospital, Chongqing, China
| | - Haibao Zhu
- Department of Biology, College of Science, Shantou University, Shantou, 515063, Guangdong, China.
| |
Collapse
|
11
|
Kim M, Hwang Y, Lim S, Jang HK, Kim HO. Advances in Nanoparticles as Non-Viral Vectors for Efficient Delivery of CRISPR/Cas9. Pharmaceutics 2024; 16:1197. [PMID: 39339233 PMCID: PMC11434874 DOI: 10.3390/pharmaceutics16091197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
The clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system is a gene-editing technology. Nanoparticle delivery systems have attracted attention because of the limitations of conventional viral vectors. In this review, we assess the efficiency of various nanoparticles, including lipid-based, polymer-based, inorganic, and extracellular vesicle-based systems, as non-viral vectors for CRISPR/Cas9 delivery. We discuss their advantages, limitations, and current challenges. By summarizing recent advancements and highlighting key strategies, this review aims to provide a comprehensive overview of the role of non-viral delivery systems in advancing CRISPR/Cas9 technology for clinical applications and gene therapy.
Collapse
Affiliation(s)
- Minse Kim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Youngwoo Hwang
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
- Department of Systems Immunology, Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Seongyu Lim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyeon-Ki Jang
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
- Multidimensional Genomics Research Center, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyun-Ouk Kim
- Division of Chemical Engineering and Bioengineering, College of Art, Culture and Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
- Department of Smart Health Science and Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
12
|
Yang J, Qin G, Liu Z, Zhang H, Du X, Ren J, Qu X. A Nanozyme-Boosted MOF-CRISPR Platform for Treatment of Alzheimer's Disease. NANO LETTERS 2024; 24:9906-9915. [PMID: 39087644 DOI: 10.1021/acs.nanolett.4c02272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Rectifying the aberrant microenvironment of a disease through maintenance of redox homeostasis has emerged as a promising perspective with significant therapeutic potential for Alzheimer's disease (AD). Herein, we design and construct a novel nanozyme-boosted MOF-CRISPR platform (CMOPKP), which can maintain redox homeostasis and rescue the impaired microenvironment of AD. By modifying the targeted peptides KLVFFAED, CMOPKP can traverse the blood-brain barrier and deliver the CRISPR activation system for precise activation of the Nrf2 signaling pathway and downstream redox proteins in regions characterized by oxidative stress, thereby reinstating neuronal antioxidant capacity and preserving redox homeostasis. Furthermore, cerium dioxide possessing catalase enzyme-like activity can synergistically alleviate oxidative stress. Further in vivo studies demonstrate that CMOPKP can effectively alleviate cognitive impairment in 3xTg-AD mouse models. Therefore, our design presents an effective way for regulating redox homeostasis in AD, which shows promise as a therapeutic strategy for mitigating oxidative stress in AD.
Collapse
Affiliation(s)
- Jie Yang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Geng Qin
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Zhenqi Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Haochen Zhang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Xiubo Du
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, People's Republic of China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| |
Collapse
|
13
|
Luo R, Le H, Wu Q, Gong C. Nanoplatform-Based In Vivo Gene Delivery Systems for Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312153. [PMID: 38441386 DOI: 10.1002/smll.202312153] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/05/2024] [Indexed: 07/26/2024]
Abstract
Gene therapy uses modern molecular biology methods to repair disease-causing genes. As a burgeoning therapeutic, it has been widely applied for cancer therapy. Since 1989, there have been numerous clinical gene therapy cases worldwide. However, a few are successful. The main challenge of clinical gene therapy is the lack of efficient and safe vectors. Although viral vectors show high transfection efficiency, their application is still limited by immune rejection and packaging capacity. Therefore, the development of non-viral vectors is overwhelming. Nanoplatform-based non-viral vectors become a hotspot in gene therapy. The reasons are mainly as follows. 1) Non-viral vectors can be engineered to be uptaken by specific types of cells or tissues, providing effective targeting capability. 2) Non-viral vectors can protect goods that need to be delivered from degradation. 3) Nanoparticles can transport large-sized cargo such as CRISPR/Cas9 plasmids and nucleoprotein complexes. 4) Nanoparticles are highly biosafe, and they are not mutagenic in themselves compared to viral vectors. 5) Nanoparticles are easy to scale preparation, which is conducive to clinical conversion and application. Here, an overview of the categories of nanoplatform-based non-viral gene vectors, the limitations on their development, and their applications in cancer therapy.
Collapse
Affiliation(s)
- Rui Luo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hao Le
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qinjie Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Changyang Gong
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
14
|
Allemailem KS, Almatroudi A, Rahmani AH, Alrumaihi F, Alradhi AE, Alsubaiyel AM, Algahtani M, Almousa RM, Mahzari A, Sindi AAA, Dobie G, Khan AA. Recent Updates of the CRISPR/Cas9 Genome Editing System: Novel Approaches to Regulate Its Spatiotemporal Control by Genetic and Physicochemical Strategies. Int J Nanomedicine 2024; 19:5335-5363. [PMID: 38859956 PMCID: PMC11164216 DOI: 10.2147/ijn.s455574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 05/30/2024] [Indexed: 06/12/2024] Open
Abstract
The genome editing approach by clustered regularly interspaced short palindromic repeats (CRISPR)/associated protein 9 (CRISPR/Cas9) is a revolutionary advancement in genetic engineering. Owing to its simple design and powerful genome-editing capability, it offers a promising strategy for the treatment of different infectious, metabolic, and genetic diseases. The crystal structure of Streptococcus pyogenes Cas9 (SpCas9) in complex with sgRNA and its target DNA at 2.5 Å resolution reveals a groove accommodating sgRNA:DNA heteroduplex within a bilobate architecture with target recognition (REC) and nuclease (NUC) domains. The presence of a PAM is significantly required for target recognition, R-loop formation, and strand scission. Recently, the spatiotemporal control of CRISPR/Cas9 genome editing has been considerably improved by genetic, chemical, and physical regulatory strategies. The use of genetic modifiers anti-CRISPR proteins, cell-specific promoters, and histone acetyl transferases has uplifted the application of CRISPR/Cas9 as a future-generation genome editing tool. In addition, interventions by chemical control, small-molecule activators, oligonucleotide conjugates and bioresponsive delivery carriers have improved its application in other areas of biological fields. Furthermore, the intermediation of physical control by using heat-, light-, magnetism-, and ultrasound-responsive elements attached to this molecular tool has revolutionized genome editing further. These strategies significantly reduce CRISPR/Cas9's undesirable off-target effects. However, other undesirable effects still offer some challenges for comprehensive clinical translation using this genome-editing approach. In this review, we summarize recent advances in CRISPR/Cas9 structure, mechanistic action, and the role of small-molecule activators, inhibitors, promoters, and physical approaches. Finally, off-target measurement approaches, challenges, future prospects, and clinical applications are discussed.
Collapse
Affiliation(s)
- Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Arwa Essa Alradhi
- General Administration for Infectious Disease Control, Ministry of Health, Riyadh 12382, Saudi Arabia
| | - Amal M Alsubaiyel
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Mohammad Algahtani
- Department of Laboratory & Blood Bank, Security Forces Hospital, Mecca 21955, Saudi Arabia
| | - Rand Mohammad Almousa
- Department of Education, General Directorate of Education, Qassim 52361, Saudi Arabia
| | - Ali Mahzari
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha 65527, Saudi Arabia
| | - Abdulmajeed A A Sindi
- Department of Basic Medical Sciences, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha 65527, Saudi Arabia
| | - Gasim Dobie
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Gizan 82911, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
15
|
Gurrola TE, Effah SN, Sariyer IK, Dampier W, Nonnemacher MR, Wigdahl B. Delivering CRISPR to the HIV-1 reservoirs. Front Microbiol 2024; 15:1393974. [PMID: 38812680 PMCID: PMC11133543 DOI: 10.3389/fmicb.2024.1393974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/22/2024] [Indexed: 05/31/2024] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection is well known as one of the most complex and difficult viral infections to cure. The difficulty in developing curative strategies arises in large part from the development of latent viral reservoirs (LVRs) within anatomical and cellular compartments of a host. The clustered regularly interspaced short palindromic repeats/ CRISPR-associated protein 9 (CRISPR/Cas9) system shows remarkable potential for the inactivation and/or elimination of integrated proviral DNA within host cells, however, delivery of the CRISPR/Cas9 system to infected cells is still a challenge. In this review, the main factors impacting delivery, the challenges for delivery to each of the LVRs, and the current successes for delivery to each reservoir will be discussed.
Collapse
Affiliation(s)
- Theodore E. Gurrola
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Samuel N. Effah
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Ilker K. Sariyer
- Department of Microbiology, Immunology, and Inflammation and Center for Neurovirology and Gene Editing, Temple University Lewis Katz School of Medicine, Philadelphia, PA, United States
| | - Will Dampier
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Michael R. Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, United States
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, United States
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
16
|
Zhang Y, Yu Y, Yang Y, Wang Y, Yu C. Engineered Silica Nanoparticles for Nucleic Acid Delivery. SMALL METHODS 2024; 8:e2300812. [PMID: 37906035 DOI: 10.1002/smtd.202300812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/14/2023] [Indexed: 11/02/2023]
Abstract
The development of nucleic acid-based drugs holds great promise for therapeutic applications, but their effective delivery into cells is hindered by poor cellular membrane permeability and inherent instability. To overcome these challenges, delivery vehicles are required to protect and deliver nucleic acids efficiently. Silica nanoparticles (SiNPs) have emerged as promising nanovectors and recently bioregulators for gene delivery due to their unique advantages. In this review, a summary of recent advancements in the design of SiNPs for nucleic acid delivery and their applications is provided, mainly according to the specific type of nucleic acids. First, the structural characteristics and working mechanisms of various types of nucleic acids are introduced and classified according to their functions. Subsequently, for each nucleic acid type, the use of SiNPs for enhancing delivery performance and their biomedical applications are summarized. The tailored design of SiNPs for selected type of nucleic acid delivery will be highlighted considering the characteristics of nucleic acids. Lastly, the limitations in current research and personal perspectives on future directions in this field are presented. It is expected this opportune review will provide insights into a burgeoning research area for the development of next-generation SiNP-based nucleic acid delivery systems.
Collapse
Affiliation(s)
- Yue Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Yingjie Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Yannan Yang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, P. R. China
| | - Yue Wang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| |
Collapse
|
17
|
Shaykhutdinov I, Iliasov P, Limareva L, Sustretov A, Kokorev D, Sokolov A. Biomineralization of Human Genomic DNA into ZIF-8, a Zeolite-Like Metal-Organic Framework. Sovrem Tekhnologii Med 2024; 16:5-13. [PMID: 39421628 PMCID: PMC11482095 DOI: 10.17691/stm2024.16.1.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Indexed: 10/19/2024] Open
Abstract
The aim of the study was to assess the capabilities of human genomic DNA biomineralization into ZIF-8 metal-organic framework (MOF) preserving DNA sequence integrity after the encapsulation cycle and composite dissolving. The study is an initial stage of the project aimed at developing an abiotic vector to be used when working with native nucleic acids of an arbitrary size based on DNA@ZIF-8 composite. Materials and Methods We studied human genomic DNA isolated from lymphocytes of peripheral blood of healthy volunteers using Proba-NK kit (DNA-Technology LLC, Russia). Genomic DNA purity and concentration was estimated spectrophotometrically at 260/280 nm using Tecan Infinity 200 Pro plate reader (Tecan Instruments, Austria). ZIF-8 was synthesized in the physiological conditions (37°C) by mixing zinc salt and 2-methylimidazole aqueous solutions at different molar ratios. Human genomic DNA was encapsulated into ZIF-8 in similar conditions. The obtained MOF and DNA@ZIF-8 composite were studied using X-ray powder diffraction at the Phaser D2 XRPD device (Bruker, USA), and the specific surface area was estimated using Autosorb iQ porosimetry analyzer (Quantachrome, USA). The encapsulated DNA was quantified by dissolving DNA@ZIF-8 composite in the citrate buffer. DNA integrity was assessed by real-time allele-specific PCR (AS-PCR) using the kits for single nucleotide polymorphisms (Lytech, Russia) at the Quantstudio 6 Pro PCR machine (Thermo Scientific, USA). In case of using the kits with electrophoretic detection, the amplification was performed on the thermal cycler T100 (Thermo Scientific, USA). Results The polymer ZIF-8 and DNA@ZIF-8 composite were obtained at different molar ratios of zinc ions and 2-methylimidazole. We characterized their structure and specific surface area. Genomic DNA biomineralization efficacy was found to be about 7-8%. PCR indicated the integrity of non-selectively chosen loci within the biomineralized DNA. Conclusion The study confirmed the possibility of human genomic DNA encapsulation into ZIF-8 metal-organic framework. After the biomineralization, DNA was found to preserve feasibility to be used in studies to investigate genetic constructs.
Collapse
Affiliation(s)
- I.H. Shaykhutdinov
- Researcher, Laboratory of New Medical Materials and Technologies, Professional Center for Education and Research in Genetic and Laboratory Technologies; Assistant, Chemistry Department, Pharmacy Institute; Samara State Medical University, 89 Chapaevskaya St., Samara, 443099, Russia
| | - P.V. Iliasov
- Leading Researcher, Laboratory of Non-Infectious Immunology, Professional Center for Education and Research in Genetic and Laboratory Technologies; Samara State Medical University, 89 Chapaevskaya St., Samara, 443099, Russia
| | - L.V. Limareva
- Associate Professor, Head of the Laboratory of Non-Infectious Immunology, Professional Center for Education and Research in Genetic and Laboratory Technologies; Samara State Medical University, 89 Chapaevskaya St., Samara, 443099, Russia
| | - A.S. Sustretov
- Head of the Laboratory of Human Metagenomics, Professional Center for Education and Research in Genetic and Laboratory Technologies; Samara State Medical University, 89 Chapaevskaya St., Samara, 443099, Russia
| | - D.A. Kokorev
- Researcher, Laboratory of New Medical Materials and Technologies, Professional Center for Education and Research in Genetic and Laboratory Technologies; Assistant, Chemistry Department, Pharmacy Institute; Samara State Medical University, 89 Chapaevskaya St., Samara, 443099, Russia
| | - A.V. Sokolov
- Head of the Laboratory of New Medical Materials and Technologies, Professional Center for Education and Research in Genetic and Laboratory Technologies; Samara State Medical University, 89 Chapaevskaya St., Samara, 443099, Russia
| |
Collapse
|
18
|
Hii ARK, Qi X, Wu Z. Advanced strategies for CRISPR/Cas9 delivery and applications in gene editing, therapy, and cancer detection using nanoparticles and nanocarriers. J Mater Chem B 2024; 12:1467-1489. [PMID: 38288550 DOI: 10.1039/d3tb01850d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Cancer remains one of the deadliest diseases, and is characterised by the uncontrolled growth of modified human cells. Unlike infectious diseases, cancer does not originate from foreign agents. Though a variety of diagnostic procedures are available; their cost-effectiveness and accessibility create significant hurdles. Non-specific cancer symptoms further complicate early detection, leading to belated recognition of certain cancer. The lack of reliable biomarkers hampers effective treatment, as chemotherapy, radiation therapy, and surgery often result in poor outcomes and high recurrence rates. Genetic and epigenetic mutations play a crucial role in cancer pathogenesis, necessitating the development of alternate treatment methods. The advent of CRISPR/Cas9 technology has transformed molecular biology and exhibits potential for gene modification and therapy in various cancer types. Nonetheless, obstacles such as safe transport, off-target consequences, and potency must be overcome before widespread clinical use. Notably, this review delves into the multifaceted landscape of cancer research, highlighting the pivotal role of nanoparticles in advancing CRISPR/Cas9-based cancer interventions. By addressing the challenges associated with cancer diagnosis and treatment, this integrated approach paves the way for innovative solutions and improved patient outcomes.
Collapse
Affiliation(s)
| | - Xiaole Qi
- Industrial Technology Innovation Platform, Zhejiang Center for Safety Study of Drug Substances, China Pharmaceutical University, 210009, 310018, Nanjing, Hangzhou, P. R. China.
| | - Zhenghong Wu
- Pharmaceutical University, 210009, Nanjing, P. R. China.
| |
Collapse
|
19
|
Devarajan A. Optically Controlled CRISPR-Cas9 and Cre Recombinase for Spatiotemporal Gene Editing: A Review. ACS Synth Biol 2024; 13:25-44. [PMID: 38134336 DOI: 10.1021/acssynbio.3c00596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
CRISPR-Cas9 and Cre recombinase, two tools extensively used for genome interrogation, have catalyzed key breakthroughs in our understanding of complex biological processes and diseases. However, the immense complexity of biological systems and off-target effects hinder clinical applications, necessitating the development of platforms to control gene editing over spatial and temporal dimensions. Among the strategies developed for inducible control, light is particularly attractive as it is noninvasive and affords high spatiotemporal resolution. The principles for optical control of Cas9 and Cre recombinase are broadly similar and involve photocaged enzymes and small molecules, engineered split- and single-chain constructs, light-induced expression, and delivery by light-responsive nanocarriers. Few systems enable spatiotemporal control with a high dynamic range without loss of wild-type editing efficiencies. Such systems posit the promise of light-activatable systems in the clinic. While the prospect of clinical applications is palpably exciting, optimization and extensive preclinical validation are warranted. Judicious integration of optically activated CRISPR and Cre, tailored for the desired application, may help to bridge the "bench-to-bedside" gap in therapeutic gene editing.
Collapse
Affiliation(s)
- Archit Devarajan
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhauri, Bhopal, Madhya Pradesh, India - 462066
| |
Collapse
|
20
|
Lopes R, Prasad MK. Beyond the promise: evaluating and mitigating off-target effects in CRISPR gene editing for safer therapeutics. Front Bioeng Biotechnol 2024; 11:1339189. [PMID: 38390600 PMCID: PMC10883050 DOI: 10.3389/fbioe.2023.1339189] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/29/2023] [Indexed: 02/24/2024] Open
Abstract
Over the last decade, CRISPR has revolutionized drug development due to its potential to cure genetic diseases that currently do not have any treatment. CRISPR was adapted from bacteria for gene editing in human cells in 2012 and, remarkably, only 11 years later has seen it's very first approval as a medicine for the treatment of sickle cell disease and transfusion-dependent beta-thalassemia. However, the application of CRISPR systems is associated with unintended off-target and on-target alterations (including small indels, and structural variations such as translocations, inversions and large deletions), which are a source of risk for patients and a vital concern for the development of safe therapies. In recent years, a wide range of methods has been developed to detect unwanted effects of CRISPR-Cas nuclease activity. In this review, we summarize the different methods for off-target assessment, discuss their strengths and limitations, and highlight strategies to improve the safety of CRISPR systems. Finally, we discuss their relevance and application for the pre-clinical risk assessment of CRISPR therapeutics within the current regulatory context.
Collapse
Affiliation(s)
- Rui Lopes
- *Correspondence: Rui Lopes, ; Megana K. Prasad,
| | | |
Collapse
|
21
|
Chowdhry R, Lu SZ, Lee S, Godhulayyagari S, Ebrahimi SB, Samanta D. Enhancing CRISPR/Cas systems with nanotechnology. Trends Biotechnol 2023; 41:1549-1564. [PMID: 37451945 DOI: 10.1016/j.tibtech.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023]
Abstract
CRISPR/Cas systems have revolutionized biology and medicine, and have led to new paradigms in disease diagnostics and therapeutics. However, these complexes suffer from key limitations regarding barriers to cellular entry, stability in biological environments, and off-target effects. Integrating nanotechnology with CRISPR/Cas systems has emerged as a promising strategy to overcome these challenges and has further unlocked structures that accumulate preferentially in tissues of interest, have tunable pharmacological properties, and are activated in response to desired stimuli. Nanomaterials can also enhance CRISPR/Cas-mediated detection platforms by enabling faster, more sensitive, and convenient readouts. We highlight recent advances in this rapidly growing field. We also outline areas that need further development to fully realize the potential of CRISPR technologies.
Collapse
Affiliation(s)
- Rupali Chowdhry
- Department of Public Health, The University of Texas at Austin, Austin, TX 78712, USA
| | - Steven Z Lu
- Department of Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Seungheon Lee
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA
| | | | - Sasha B Ebrahimi
- Drug Product Development - Steriles, GlaxoSmithKline, Collegeville, PA 19426, USA
| | - Devleena Samanta
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
22
|
Li Y, Wei Y, Huang Y, Qin G, Zhao C, Ren J, Qu X. Lactate-Responsive Gene Editing to Synergistically Enhance Macrophage-Mediated Cancer Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301519. [PMID: 37156740 DOI: 10.1002/smll.202301519] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/19/2023] [Indexed: 05/10/2023]
Abstract
Combination therapies involving metabolic regulation and immune checkpoint blockade are considered an encouraging new strategy for cancer therapy. However, the effective utilization of combination therapies for activating tumor-associated macrophages (TAMs) remains challenging. Herein, a lactate-catalyzed chemodynamic approach to activate the therapeutic genome editing of signal-regulatory protein α (SIRPα) to reprogram TAMs and improve cancer immunotherapy is proposed. This system is constructed by encapsulating lactate oxidase (LOx) and clustered regularly interspaced short palindromic repeat-mediated SIRPα genome-editing plasmids in a metal-organic framework (MOF). The genome-editing system is released and activated by acidic pyruvate, which is produced by the LOx-catalyzed oxidation of lactate. The synergy between lactate exhaustion and SIRPα signal blockade can enhance the phagocytic ability of TAMs and promote the repolarization of TAMs to the antitumorigenic M1 phenotype. Lactate exhaustion-induced CD47-SIRPα blockade efficiently improves macrophage antitumor immune responses and effectively reverses the immunosuppressive tumor microenvironment to inhibit tumor growth, as demonstrated by in vitro and in vivo studies. This study provides a facile strategy for engineering TAMs in situ by combining CRISPR-mediated SIRPα knockout with lactate exhaustion for effective immunotherapy.
Collapse
Affiliation(s)
- Yuwei Li
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yue Wei
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Ying Huang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Geng Qin
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Chuanqi Zhao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
23
|
Hasan MZ, Yan J, Yi Z, Korfhage MO, Tong S, Zhu C. Low-cost compact optical spectroscopy and novel spectroscopic algorithm for point-of-care real-time monitoring of nanoparticle delivery in biological tissue models. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS : A PUBLICATION OF THE IEEE LASERS AND ELECTRO-OPTICS SOCIETY 2023; 29:7100208. [PMID: 36341280 PMCID: PMC9635618 DOI: 10.1109/jstqe.2022.3205862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Objective Real-time monitoring of nanoparticle delivery in biological models is essential to optimize nanoparticle-mediated therapies. However, few techniques are available for convenient real-time monitoring of nanoparticle concentrations in tissue samples. This work reported novel optical spectroscopic approaches for low-cost point-of-care real-time quantification of nanoparticle concentrations in biological tissue samples. Methods Fiber probe measured diffuse reflectance can be described with a simple analytical model by introducing an explicit dependence on the reduced scattering coefficient. Relying on this, the changes on the inverse of diffuse reflectance are proportional to absorption change when the scattering perturbation is negligible. We developed this model with proper wavelength pairs and implemented it with both a standard optical spectroscopy platform and a low-cost compact spectroscopy device for near real-time quantification of nanoparticle concentrations in biological tissue models. Results Both tissue-mimicking phantom and ex vivo tissue sample studies showed that our optical spectroscopic techniques could quantify nanoparticle concentrations in near real-time with high accuracies (less than 5% error) using only a pair of narrow wavelengths (530 nm and 630 nm). Conclusion Novel low-cost point-of-care optical spectroscopic techniques were demonstrated for rapid accurate quantification of nanoparticle concentrations in tissue-mimicking medium and ex vivo tissue samples using optical signals measured at a pair of narrow wavelengths. Significance Our methods will potentially facilitate real-time monitoring of nanoparticle delivery in biological models using low-cost point-of-care optical spectroscopy platforms, which will significantly advance nanomedicine in cancer research.
Collapse
Affiliation(s)
- Md Zahid Hasan
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Jing Yan
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Zhongchao Yi
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Madison O Korfhage
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Sheng Tong
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Caigang Zhu
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
24
|
Liu Y, Cottle WT, Ha T. Mapping cellular responses to DNA double-strand breaks using CRISPR technologies. Trends Genet 2023; 39:560-574. [PMID: 36967246 PMCID: PMC11062594 DOI: 10.1016/j.tig.2023.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 06/15/2023]
Abstract
DNA double-strand breaks (DSBs) are one of the most genotoxic DNA lesions, driving a range of pathological defects from cancers to immunodeficiencies. To combat genomic instability caused by DSBs, evolution has outfitted cells with an intricate protein network dedicated to the rapid and accurate repair of these lesions. Pioneering studies have identified and characterized many crucial repair factors in this network, while the advent of genome manipulation tools like clustered regularly interspersed short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) has reinvigorated interest in DSB repair mechanisms. This review surveys the latest methodological advances and biological insights gained by utilizing Cas9 as a precise 'damage inducer' for the study of DSB repair. We highlight rapidly inducible Cas9 systems that enable synchronized and efficient break induction. When combined with sequencing and genome-specific imaging approaches, inducible Cas9 systems greatly expand our capability to spatiotemporally characterize cellular responses to DSB at specific genomic coordinates, providing mechanistic insights that were previously unobtainable.
Collapse
Affiliation(s)
- Yang Liu
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | - W Taylor Cottle
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA; Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA; Howard Hughes Medical Institute, Baltimore, MD, USA.
| |
Collapse
|
25
|
Choudhary N, Tandi D, Verma RK, Yadav VK, Dhingra N, Ghosh T, Choudhary M, Gaur RK, Abdellatif MH, Gacem A, Eltayeb LB, Alqahtani MS, Yadav KK, Jeon BH. A comprehensive appraisal of mechanism of anti-CRISPR proteins: an advanced genome editor to amend the CRISPR gene editing. FRONTIERS IN PLANT SCIENCE 2023; 14:1164461. [PMID: 37426982 PMCID: PMC10328345 DOI: 10.3389/fpls.2023.1164461] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/23/2023] [Indexed: 07/11/2023]
Abstract
The development of precise and controlled CRISPR-Cas tools has been made possible by the discovery of protein inhibitors of CRISPR-Cas systems, called anti-CRISPRs (Acrs). The Acr protein has the ability to control off-targeted mutations and impede Cas protein-editing operations. Acr can help with selective breeding, which could help plants and animals improve their valuable features. In this review, the Acr protein-based inhibitory mechanisms that have been adopted by several Acrs, such as (a) the interruption of CRISPR-Cas complex assembly, (b) interference with target DNA binding, (c) blocking of target DNA/RNA cleavage, and (d) enzymatic modification or degradation of signalling molecules, were discussed. In addition, this review emphasizes the applications of Acr proteins in the plant research.
Collapse
Affiliation(s)
- Nisha Choudhary
- Department of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh, Rajasthan, India
| | - Dipty Tandi
- Department of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh, Rajasthan, India
| | - Rakesh Kumar Verma
- Department of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh, Rajasthan, India
| | - Virendra Kumar Yadav
- Department of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh, Rajasthan, India
| | - Naveen Dhingra
- Department of Agriculture, Medi-Caps University, Indore, Madhya Pradesh, India
| | - Tathagata Ghosh
- Department of Arts, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh, Rajasthan, India
| | - Mahima Choudhary
- Department of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh, Rajasthan, India
| | - Rajarshi K. Gaur
- Department of Biotechnology, Deen Dayal Upadhyaya (D.D.U.) Gorakhpur University, Gorakhpur, Uttar Pradesh, India
| | - Magda H. Abdellatif
- Department of Chemistry, College of Sciences, Taif University, Taif, Saudi Arabia
| | - Amel Gacem
- Department of Physics, Faculty of Sciences, University 20 Août 1955, Skikda, Algeria
| | - Lienda Bashier Eltayeb
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin AbdulAziz University-Al-Kharj, Riyadh, Saudi Arabia
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- Research Center for Advanced Materials Sciences (RCAMS), King Khalid University, Abha, Saudi Arabia
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, India
- Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah, Iraq
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
26
|
Aalhate M, Mahajan S, Singh H, Guru SK, Singh PK. Nanomedicine in therapeutic warfront against estrogen receptor-positive breast cancer. Drug Deliv Transl Res 2023; 13:1621-1653. [PMID: 36795198 DOI: 10.1007/s13346-023-01299-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2023] [Indexed: 02/17/2023]
Abstract
Breast cancer (BC) is the most frequently diagnosed malignancy in women worldwide. Almost 70-80% of cases of BC are curable at the early non-metastatic stage. BC is a heterogeneous disease with different molecular subtypes. Around 70% of breast tumors exhibit estrogen-receptor (ER) expression and endocrine therapy is used for the treatment of these patients. However, there are high chances of recurrence in the endocrine therapy regimen. Though chemotherapy and radiation therapy have substantially improved survival rates and treatment outcomes in BC patients, there is an increased possibility of the development of resistance and dose-limiting toxicities. Conventional treatment approaches often suffer from low bioavailability, adverse effects due to the non-specific action of chemotherapeutics, and low antitumor efficacy. Nanomedicine has emerged as a conspicuous strategy for delivering anticancer therapeutics in BC management. It has revolutionized the area of cancer therapy by increasing the bioavailability of the therapeutics and improving their anticancer efficacy with reduced toxicities on healthy tissues. In this article, we have highlighted various mechanisms and pathways involved in the progression of ER-positive BC. Further, different nanocarriers delivering drugs, genes, and natural therapeutic agents for surmounting BC are the spotlights of this article.
Collapse
Affiliation(s)
- Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Hoshiyar Singh
- Department of Biological Science, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Santosh Kumar Guru
- Department of Biological Science, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
| |
Collapse
|
27
|
Bruder MR, Aucoin MG. A sensitive assay for scrutiny of Autographa californica multiple nucleopolyhedrovirus genes using CRISPR-Cas9. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12462-y. [PMID: 37233755 DOI: 10.1007/s00253-023-12462-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/09/2023] [Accepted: 02/27/2023] [Indexed: 05/27/2023]
Abstract
Baculoviruses have very large genomes and previous studies have demonstrated improvements in recombinant protein production and genome stability through the removal of some nonessential sequences. However, recombinant baculovirus expression vectors (rBEVs) in widespread use remain virtually unmodified. Traditional approaches for generating knockout viruses (KOVs) require several experimental steps to remove the target gene prior to the generation of the virus. In order to optimize rBEV genomes by removing nonessential sequences, more efficient techniques for establishing and evaluating KOVs are required. Here, we have developed a sensitive assay utilizing CRISPR-Cas9-mediated gene targeting to examine the phenotypic impact of disruption of endogenous Autographa californica multiple nucleopolyhedrovirus (AcMNPV) genes. For validation, 13 AcMNPV genes were targeted for disruption and evaluated for the production of GFP and progeny virus - traits that are essential for their use as vectors for recombinant protein production. The assay involves transfection of sgRNA into a Cas9-expressing Sf9 cell line followed by infection with a baculovirus vector carrying the gfp gene under the p10 or p6.9 promoters. This assay represents an efficient strategy for scrutinizing AcMNPV gene function through targeted disruption, and represents a valuable tool for developing an optimized rBEV genome. KEY POINTS: [Formula: see text] A method to scrutinize the essentiality of baculovirus genes was developed. [Formula: see text] The method uses Sf9-Cas9 cells, a targeting plasmid carrying a sgRNA, and a rBEV-GFP. [Formula: see text] The method allows scrutiny by only needing to modify the targeting sgRNA plasmid.
Collapse
Affiliation(s)
- Mark R Bruder
- Department of Chemical Engineering, University of Waterloo, 200 University Ave. W., Waterloo, N2L 3G1, Ontario, Canada
| | - Marc G Aucoin
- Department of Chemical Engineering, University of Waterloo, 200 University Ave. W., Waterloo, N2L 3G1, Ontario, Canada.
| |
Collapse
|
28
|
Zhang L, Hajebrahimi S, Tong S, Gao X, Cheng H, Zhang Q, Hinojosa DT, Jiang K, Hong L, Huard J, Bao G. Force-Mediated Endocytosis of Iron Oxide Nanoparticles for Magnetic Targeting of Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37145890 DOI: 10.1021/acsami.2c20265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Stem cell therapy represents one of the most promising approaches for tissue repair and regeneration. However, the full potential of stem cell therapy remains to be realized. One major challenge is the insufficient homing and retention of stem cells at the desired sites after in vivo delivery. Here, we provide a proof-of-principle demonstration of magnetic targeting and retention of human muscle-derived stem cells (hMDSCs) in vitro through magnetic force-mediated internalization of magnetic iron oxide nanoparticles (MIONs) and the use of a micropatterned magnet. We found that the magnetic force-mediated cellular uptake of MIONs occurs through an endocytic pathway, and the MIONs were exclusively localized in the lysosomes. The intracellular MIONs had no detrimental effect on the proliferation of hMDSCs or their multilineage differentiation, and no MIONs were translocated to other cells in a coculture system. Using hMDSCs and three other cell types including human umbilical vein endothelial cells (HUVECs), human dermal fibroblasts (HDFs), and HeLa cells, we further discovered that the magnetic force-mediated MION uptake increased with MION size and decreased with cell membrane tension. We found that the cellular uptake rate was initially increased with MION concentration in solution and approached saturation. These findings provide important insight and guidance for magnetic targeting of stem cells in therapeutic applications.
Collapse
Affiliation(s)
- Linlin Zhang
- Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Samira Hajebrahimi
- Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Sheng Tong
- Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Xueqin Gao
- Department of Orthopedic Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, United States
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, Colorado 81657, United States
| | - Haizi Cheng
- Department of Orthopedic Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, United States
| | - Qingbo Zhang
- Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Daniel T Hinojosa
- Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Kaiyi Jiang
- Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Lin Hong
- Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Johnny Huard
- Department of Orthopedic Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, United States
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, Colorado 81657, United States
| | - Gang Bao
- Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| |
Collapse
|
29
|
Allemailem KS, Almatroodi SA, Almatroudi A, Alrumaihi F, Al Abdulmonem W, Al-Megrin WAI, Aljamaan AN, Rahmani AH, Khan AA. Recent Advances in Genome-Editing Technology with CRISPR/Cas9 Variants and Stimuli-Responsive Targeting Approaches within Tumor Cells: A Future Perspective of Cancer Management. Int J Mol Sci 2023; 24:7052. [PMID: 37108214 PMCID: PMC10139162 DOI: 10.3390/ijms24087052] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
The innovative advances in transforming clustered regularly interspaced short palindromic repeats-associated protein 9 (CRISPR/Cas9) into different variants have taken the art of genome-editing specificity to new heights. Allosteric modulation of Cas9-targeting specificity by sgRNA sequence alterations and protospacer adjacent motif (PAM) modifications have been a good lesson to learn about specificity and activity scores in different Cas9 variants. Some of the high-fidelity Cas9 variants have been ranked as Sniper-Cas9, eSpCas9 (1.1), SpCas9-HF1, HypaCas9, xCas9, and evoCas9. However, the selection of an ideal Cas9 variant for a given target sequence remains a challenging task. A safe and efficient delivery system for the CRISPR/Cas9 complex at tumor target sites faces considerable challenges, and nanotechnology-based stimuli-responsive delivery approaches have significantly contributed to cancer management. Recent innovations in nanoformulation design, such as pH, glutathione (GSH), photo, thermal, and magnetic responsive systems, have modernized the art of CRISPR/Cas9 delivery approaches. These nanoformulations possess enhanced cellular internalization, endosomal membrane disruption/bypass, and controlled release. In this review, we aim to elaborate on different CRISPR/Cas9 variants and advances in stimuli-responsive nanoformulations for the specific delivery of this endonuclease system. Furthermore, the critical constraints of this endonuclease system on clinical translations towards the management of cancer and prospects are described.
Collapse
Affiliation(s)
- Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Saleh A. Almatroodi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Wafa Abdullah I. Al-Megrin
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | | | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
30
|
Wu M, Li H, Zhang C, Wang Y, Zhang C, Zhang Y, Zhong A, Zhang D, Liu X. Silk-Gel Powered Adenoviral Vector Enables Robust Genome Editing of PD-L1 to Augment Immunotherapy across Multiple Tumor Models. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206399. [PMID: 36840638 PMCID: PMC10131848 DOI: 10.1002/advs.202206399] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Immune checkpoint blockade based on antibodies has shown great clinical success in patients, but the transitory working manner leads to restricted therapeutic benefits. Herein, a genetically engineered adenovirus is developed as the vector to deliver CRISPR/Cas9 (sgCas9-AdV) to achieve permanent PD-L1 gene editing with efficiency up to 78.7% exemplified in Hepa 1-6 liver cancer cells. Furthermore, the sgCas9-AdV is loaded into hydrogel made by silk fiber (SgCas9-AdV/Gel) for in vivo application. The silk-gel not only promotes local retention of sgCas9-AdV in tumor tissue, but also masks them from host immune system, thus ensuring effectively gene transduction over 9 days. Bearing these advantages, the sgCas9-AdV/Gel inhibits Hepa 1-6 tumor growth with 100% response rate by single-dose injection, through efficient PD-L1 disruption to elicit a T cell-mediated antitumor response. In addition, the sgCas9-AdV/Gel is also successfully extended into other refractory tumors. In CT26 colon tumor characterized by poor response to anti-PD-L1, sgCas9-AdV/Gel is demonstrated to competent and superior anti-PD-L1 antibody to suppress tumor progression. In highly aggressive orthotopic 4T1 mouse breast tumor, such a therapeutic paradigm significantly inhibits primary tumor growth and induces a durable immune response against tumor relapse/metastasis. Thus, this study provides an attractive and universal strategy for immunotherapy.
Collapse
Affiliation(s)
- Ming Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
- The Liver Center of Fujian ProvinceFujian Medical UniversityFuzhou350025P. R. China
- Mengchao Med‐X CenterFuzhou UniversityFuzhou350116P. R. China
- Fujian Provincial Clinical Research Center for Hepatobiliary and Pancreatic TumorsMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
| | - Hao Li
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
- Mengchao Med‐X CenterFuzhou UniversityFuzhou350116P. R. China
| | - Cao Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
- Mengchao Med‐X CenterFuzhou UniversityFuzhou350116P. R. China
| | - Yingchao Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
- The Liver Center of Fujian ProvinceFujian Medical UniversityFuzhou350025P. R. China
- Mengchao Med‐X CenterFuzhou UniversityFuzhou350116P. R. China
- Fujian Provincial Clinical Research Center for Hepatobiliary and Pancreatic TumorsMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
| | - Cuilin Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
- The Liver Center of Fujian ProvinceFujian Medical UniversityFuzhou350025P. R. China
- Mengchao Med‐X CenterFuzhou UniversityFuzhou350116P. R. China
- Fujian Provincial Clinical Research Center for Hepatobiliary and Pancreatic TumorsMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
| | - Yuting Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
| | - Aoxue Zhong
- Mengchao Med‐X CenterFuzhou UniversityFuzhou350116P. R. China
| | - Da Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
- The Liver Center of Fujian ProvinceFujian Medical UniversityFuzhou350025P. R. China
- Mengchao Med‐X CenterFuzhou UniversityFuzhou350116P. R. China
- Fujian Provincial Clinical Research Center for Hepatobiliary and Pancreatic TumorsMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
- The Liver Center of Fujian ProvinceFujian Medical UniversityFuzhou350025P. R. China
- Mengchao Med‐X CenterFuzhou UniversityFuzhou350116P. R. China
- Fujian Provincial Clinical Research Center for Hepatobiliary and Pancreatic TumorsMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
| |
Collapse
|
31
|
Zhao C, Cheng Y, Huang P, Wang C, Wang W, Wang M, Shan W, Deng H. X-ray-Guided In Situ Genetic Engineering of Macrophages for Sustained Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208059. [PMID: 36527738 DOI: 10.1002/adma.202208059] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Effective repolarization of macrophages has emerged as a promising approach for anticancer therapy. However, there are very few studies on the effect of reprogramming macrophages from M2 phenotype to M1 phenotype without reconversion while maintaining an activated M1 phenotype. Moreover, these immunomodulatory methods have serious drawbacks due to the activation of normal monocytic cells. Therefore, it remains a challenge to selectively reprogram tumor-associated macrophages (TAMs) without systemic toxicities. Here, X-ray-guided and triggered remote control of a CRISPR/Cas9 genome editing system (X-CC9) that exclusively activates therapeutic agents at tumor sites is established. Under X-ray irradiation, X-CC9 selectively enhances M2-to-M1 repolarization within the tumor microenvironment, and significantly improves antitumor efficacy with robust immune responses in two animal models. This strategy provides an ideal method for improving the safety of macrophage polarization and may constitute a promising immunotherapy strategy.
Collapse
Affiliation(s)
- Caiyan Zhao
- School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Yaya Cheng
- School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Pei Huang
- School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Changrong Wang
- School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Weipeng Wang
- School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Mengjiao Wang
- School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Wenbo Shan
- School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Hongzhang Deng
- School of Life Science and Technology, Xidian University and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xi'an, Shaanxi, 710126, China
- International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment and Xi'an Key Laboratory of Intelligent Sensing and Regulation of trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
32
|
Liu Z, Shi M, Ren Y, Xu H, Weng S, Ning W, Ge X, Liu L, Guo C, Duo M, Li L, Li J, Han X. Recent advances and applications of CRISPR-Cas9 in cancer immunotherapy. Mol Cancer 2023; 22:35. [PMID: 36797756 PMCID: PMC9933290 DOI: 10.1186/s12943-023-01738-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
The incidence and mortality of cancer are the major health issue worldwide. Apart from the treatments developed to date, the unsatisfactory therapeutic effects of cancers have not been addressed by broadening the toolbox. The advent of immunotherapy has ushered in a new era in the treatments of solid tumors, but remains limited and requires breaking adverse effects. Meanwhile, the development of advanced technologies can be further boosted by gene analysis and manipulation at the molecular level. The advent of cutting-edge genome editing technology, especially clustered regularly interspaced short palindromic repeats (CRISPR-Cas9), has demonstrated its potential to break the limits of immunotherapy in cancers. In this review, the mechanism of CRISPR-Cas9-mediated genome editing and a powerful CRISPR toolbox are introduced. Furthermore, we focus on reviewing the impact of CRISPR-induced double-strand breaks (DSBs) on cancer immunotherapy (knockout or knockin). Finally, we discuss the CRISPR-Cas9-based genome-wide screening for target identification, emphasis the potential of spatial CRISPR genomics, and present the comprehensive application and challenges in basic research, translational medicine and clinics of CRISPR-Cas9.
Collapse
Affiliation(s)
- Zaoqu Liu
- grid.412633.10000 0004 1799 0733Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China ,grid.207374.50000 0001 2189 3846Interventional Institute of Zhengzhou University, Zhengzhou, 450052 Henan China ,grid.412633.10000 0004 1799 0733Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052 Henan China
| | - Meixin Shi
- grid.412633.10000 0004 1799 0733Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Yuqing Ren
- grid.412633.10000 0004 1799 0733Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Hui Xu
- grid.412633.10000 0004 1799 0733Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Siyuan Weng
- grid.412633.10000 0004 1799 0733Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Wenjing Ning
- grid.207374.50000 0001 2189 3846Department of Emergency Center, Zhengzhou University People’s Hospital, Zhengzhou, 450003 Henan China
| | - Xiaoyong Ge
- grid.412633.10000 0004 1799 0733Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Long Liu
- grid.412633.10000 0004 1799 0733Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Chunguang Guo
- grid.412633.10000 0004 1799 0733Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Mengjie Duo
- grid.412633.10000 0004 1799 0733Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Lifeng Li
- grid.412633.10000 0004 1799 0733Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Jing Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China. .,Interventional Institute of Zhengzhou University, Zhengzhou, 450052, Henan, China. .,Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
33
|
Zhang Q, Kuang G, Li W, Wang J, Ren H, Zhao Y. Stimuli-Responsive Gene Delivery Nanocarriers for Cancer Therapy. NANO-MICRO LETTERS 2023; 15:44. [PMID: 36752939 PMCID: PMC9908819 DOI: 10.1007/s40820-023-01018-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/14/2023] [Indexed: 06/18/2023]
Abstract
Gene therapy provides a promising approach in treating cancers with high efficacy and selectivity and few adverse effects. Currently, the development of functional vectors with safety and effectiveness is the intense focus for improving the delivery of nucleic acid drugs for gene therapy. For this purpose, stimuli-responsive nanocarriers displayed strong potential in improving the overall efficiencies of gene therapy and reducing adverse effects via effective protection, prolonged blood circulation, specific tumor accumulation, and controlled release profile of nucleic acid drugs. Besides, synergistic therapy could be achieved when combined with other therapeutic regimens. This review summarizes recent advances in various stimuli-responsive nanocarriers for gene delivery. Particularly, the nanocarriers responding to endogenous stimuli including pH, reactive oxygen species, glutathione, and enzyme, etc., and exogenous stimuli including light, thermo, ultrasound, magnetic field, etc., are introduced. Finally, the future challenges and prospects of stimuli-responsive gene delivery nanocarriers toward potential clinical translation are well discussed. The major objective of this review is to present the biomedical potential of stimuli-responsive gene delivery nanocarriers for cancer therapy and provide guidance for developing novel nanoplatforms that are clinically applicable.
Collapse
Affiliation(s)
- Qingfei Zhang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Hepatobiliary Institute of Nanjing University, Nanjing, 210008, People's Republic of China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, People's Republic of China
| | - Gaizhen Kuang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Hepatobiliary Institute of Nanjing University, Nanjing, 210008, People's Republic of China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, People's Republic of China
| | - Wenzhao Li
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Hepatobiliary Institute of Nanjing University, Nanjing, 210008, People's Republic of China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, People's Republic of China
| | - Jinglin Wang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Hepatobiliary Institute of Nanjing University, Nanjing, 210008, People's Republic of China.
| | - Haozhen Ren
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Hepatobiliary Institute of Nanjing University, Nanjing, 210008, People's Republic of China.
| | - Yuanjin Zhao
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Hepatobiliary Institute of Nanjing University, Nanjing, 210008, People's Republic of China.
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China.
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
34
|
Leal AF, Fnu N, Benincore-Flórez E, Herreño-Pachón AM, Echeverri-Peña OY, Alméciga-Díaz CJ, Tomatsu S. The landscape of CRISPR/Cas9 for inborn errors of metabolism. Mol Genet Metab 2023; 138:106968. [PMID: 36525790 DOI: 10.1016/j.ymgme.2022.106968] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 12/03/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
Since its discovery as a genome editing tool, the clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR/Cas9) system has opened new horizons in the diagnosis, research, and treatment of genetic diseases. CRISPR/Cas9 can rewrite the genome at any region with outstanding precision to modify it and further instructions for gene expression. Inborn Errors of Metabolism (IEM) are a group of more than 1500 diseases produced by mutations in genes encoding for proteins that participate in metabolic pathways. IEM involves small molecules, energetic deficits, or complex molecules diseases, which may be susceptible to be treated with this novel tool. In recent years, potential therapeutic approaches have been attempted, and new models have been developed using CRISPR/Cas9. In this review, we summarize the most relevant findings in the scientific literature about the implementation of CRISPR/Cas9 in IEM and discuss the future use of CRISPR/Cas9 to modify epigenetic markers, which seem to play a critical role in the context of IEM. The current delivery strategies of CRISPR/Cas9 are also discussed.
Collapse
Affiliation(s)
- Andrés Felipe Leal
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, Colombia; Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA
| | - Nidhi Fnu
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA; University of Delaware, Newark, DE, USA
| | | | | | - Olga Yaneth Echeverri-Peña
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Carlos Javier Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism, Faculty of Science, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Shunji Tomatsu
- Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA; University of Delaware, Newark, DE, USA; Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan; Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
35
|
Maloshenok LG, Abushinova GA, Ryazanova AY, Bruskin SA, Zherdeva VV. Visualizing the Nucleome Using the CRISPR–Cas9 System: From in vitro to in vivo. BIOCHEMISTRY (MOSCOW) 2023; 88:S123-S149. [PMID: 37069118 PMCID: PMC9940691 DOI: 10.1134/s0006297923140080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
One of the latest methods in modern molecular biology is labeling genomic loci in living cells using fluorescently labeled Cas protein. The NIH Foundation has made the mapping of the 4D nucleome (the three-dimensional nucleome on a timescale) a priority in the studies aimed to improve our understanding of chromatin organization. Fluorescent methods based on CRISPR-Cas are a significant step forward in visualization of genomic loci in living cells. This approach can be used for studying epigenetics, cell cycle, cellular response to external stimuli, rearrangements during malignant cell transformation, such as chromosomal translocations or damage, as well as for genome editing. In this review, we focused on the application of CRISPR-Cas fluorescence technologies as components of multimodal imaging methods for in vivo mapping of chromosomal loci, in particular, attribution of fluorescence signal to morphological and anatomical structures in a living organism. The review discusses the approaches to the highly sensitive, high-precision labeling of CRISPR-Cas components, delivery of genetically engineered constructs into cells and tissues, and promising methods for molecular imaging.
Collapse
Affiliation(s)
- Liliya G Maloshenok
- Bach Institute of Biochemistry, Federal Research Center for Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Gerel A Abushinova
- Bach Institute of Biochemistry, Federal Research Center for Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Alexandra Yu Ryazanova
- Bach Institute of Biochemistry, Federal Research Center for Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia
| | - Sergey A Bruskin
- Bach Institute of Biochemistry, Federal Research Center for Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Victoria V Zherdeva
- Bach Institute of Biochemistry, Federal Research Center for Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia.
| |
Collapse
|
36
|
Maqsood Q, Sumrin A, Iqbal M, Hussain N, Mahnoor M, Zafar Saleem M, Perveen R. A Winning New Combination? Toward Clinical Application in Oncology. Cancer Control 2023; 30:10732748231175240. [PMID: 37166227 PMCID: PMC10184224 DOI: 10.1177/10732748231175240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/04/2023] [Accepted: 04/17/2023] [Indexed: 05/12/2023] Open
Abstract
Immunotherapy has substantial attention in oncology due to the success of CTLA-4 and PD-1 inhibitors in the treatment of melanoma, lung cancer, head and neck cancer, renal cell carcinoma, and Hodgkin's lymphoma. A deeper understanding of interaction of tumor with its environment and the immune system provides best guide for oncology research. Recent studies in oncology have explained how a tumor alters antigen presentation, avoids detection, and activation of the host immune system to live and develop. Understanding the connections between the tumor and the immune system has resulted in several innovative therapy options. The extensive field of gene therapy has provided a number of cutting-edge medicines that are expected to play an important role in lowering cancer-related mortality. This article explains the history, important breakthroughs, and future prospects for three separate gene therapy treatment modalities: immunotherapy, oncolytic virotherapy, and gene transfer. Immunotherapies have completely changed how cancer is treated, especially for individuals whose condition was previously thought to be incurable. Examples include ACT (adoptive cell therapy) and ICB (immune checkpoint blockade). This review article will discuss the relationship between the immune response to cancer and the mechanisms of immunotherapy resistance. It will cover combination drugs authorized by the US Food and Drug Administration and provide a thorough overview of how these drugs are doing clinically right now. Cytokines, vaccines, and other soluble immunoregulatory agents, innate immune modifiers, ACT, virotherapy, and other treatment modalities will all be covered in detail.
Collapse
Affiliation(s)
- Quratulain Maqsood
- Centre for Applied Molecular Biology, University of the Punjab Quaid-i-Azam Campus, Lahore, Pakistan
| | - Aleena Sumrin
- Centre for Applied Molecular Biology, University of the Punjab Quaid-i-Azam Campus, Lahore, Pakistan
| | - Maryam Iqbal
- Centre for Applied Molecular Biology, University of the Punjab Quaid-i-Azam Campus, Lahore, Pakistan
| | - Nazim Hussain
- Centre for Applied Molecular Biology, University of the Punjab Quaid-i-Azam Campus, Lahore, Pakistan
| | - Muhammada Mahnoor
- Department of Rehabilitation Sciences, Akhtar Saeed Medical & Dental College, Lahore, Pakistan
| | - Muhammad Zafar Saleem
- Centre for Applied Molecular Biology, University of the Punjab Quaid-i-Azam Campus, Lahore, Pakistan
| | - Rukhsana Perveen
- Centre for Applied Molecular Biology, University of the Punjab Quaid-i-Azam Campus, Lahore, Pakistan
| |
Collapse
|
37
|
Liu R, Xu Y, Qu S, Dai Z. Major Strategies for Spatial Control of Ultrasound-Driven Gene Expression to Enhance Therapeutic Specificity. Crit Rev Biomed Eng 2023; 51:29-40. [PMID: 37522539 DOI: 10.1615/critrevbiomedeng.2023047680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
A major challenge of gene therapy is to achieve highly specific transgene expression in tissues of interest with minimized off-target expression. Ultrasound in combination with microbubbles can transiently increase permeability of desired cells or tissues and thereby facilitate gene transfer. This kind of ultrasound-driven transgene expression has gained increasing attention due to its deep tissue penetration and high spatiotemporal resolution. However, successful genetic manipulation in vivo with ultrasound need to well optimize various aspects involved in this process. Ultrasound parameters, microbubble dose, and gene vectors need to be optimized for highly increased transgene expression in the cells of interest. Conversely, the potential off-target transgene expression and toxicities need to be reduced by modification of gene vectors and/or promoter sequence. This review will discuss some major strategies for enhanced specificity of the ultrasound-mediated gene transfer in vivo. Five major strategies will be discussed, including the integration of real-time imaging methods, local injection, targeted microbubbles loaded with nucleic acids, stealth nanocarriers, and cell-specific promoter. The advantages and limitations of each strategy were outlined, hoping to provide a guideline for researchers in achieving high specific ultrasound-driven gene expression.
Collapse
Affiliation(s)
- Renfa Liu
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, China
| | - Yunxue Xu
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, China
| | - Shuai Qu
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, China
| | - Zhifei Dai
- Department of Biomedical Engineering, College of Future Technology, National Biomedical Imaging Center, Peking University, China
| |
Collapse
|
38
|
Cai W, Liu J, Chen X, Mao L, Wang M. Orthogonal Chemical Activation of Enzyme-Inducible CRISPR/Cas9 for Cell-Selective Genome Editing. J Am Chem Soc 2022; 144:22272-22280. [PMID: 36367552 DOI: 10.1021/jacs.2c10545] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The precision and therapeutic potential of CRISPR/Cas9 genome editing are greatly challenged by the less control over Cas9-mediated DNA cleavage. Herein, we introduce a conditional and cell-selective genome editing system controlled by disease-associated enzymes, termed enzyme-inducible CRISPR (eiCRISPR). eiCRISPR comprises Cas9 protein, a self-blocked inactive single-guide RNA (bsgRNA), and a chemically caged deoxyribozyme (DNAzyme) that activates bsgRNA and eiCRISPR in a controllable manner. We design chemical modifications of DNAzyme to suppress its ability to cleave the blocking region of bsgRNA, while the decaging of DNAzyme triggered by the tumor cell-overexpressed enzyme, for instance, NAD(P)H:quinone oxidoreductase (NQO1), restores the activity of bsgRNA and switches on eiCRISPR selectively for genome editing in cancer cells. Moreover, using a biodegradable lipid nanoparticle to deliver eiCRISPR in a tumor-bearing xenograft, we show that the in vivo activation of eiCRISPR enables the editing of human papillomavirus 18 E6 for potential cancer therapy. The strategy of postsynthetic and site-specific modification of DNAzyme is compatible with endogenous chemistries for regulating eiCRISPR for cell-selective genome editing and targeted gene therapy.
Collapse
Affiliation(s)
- Weiqi Cai
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ji Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianghan Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ming Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
39
|
Intelligent nanotherapeutic strategies for the delivery of CRISPR system. Acta Pharm Sin B 2022. [DOI: 10.1016/j.apsb.2022.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
40
|
Imaging-guided gene delivery: seeing is delivering. JOURNAL OF BIO-X RESEARCH 2022. [DOI: 10.1097/jbr.0000000000000133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
41
|
Fang T, Cao X, Ibnat M, Chen G. Stimuli-responsive nanoformulations for CRISPR-Cas9 genome editing. J Nanobiotechnology 2022; 20:354. [PMID: 35918694 PMCID: PMC9344766 DOI: 10.1186/s12951-022-01570-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 07/22/2022] [Indexed: 12/07/2022] Open
Abstract
The CRISPR-Cas9 technology has changed the landscape of genome editing and has demonstrated extraordinary potential for treating otherwise incurable diseases. Engineering strategies to enable efficient intracellular delivery of CRISPR-Cas9 components has been a central theme for broadening the impact of the CRISPR-Cas9 technology. Various non-viral delivery systems for CRISPR-Cas9 have been investigated given their favorable safety profiles over viral systems. Many recent efforts have been focused on the development of stimuli-responsive non-viral CRISPR-Cas9 delivery systems, with the goal of achieving efficient and precise genome editing. Stimuli-responsive nanoplatforms are capable of sensing and responding to particular triggers, such as innate biological cues and external stimuli, for controlled CRISPR-Cas9 genome editing. In this Review, we overview the recent advances in stimuli-responsive nanoformulations for CRISPR-Cas9 delivery, highlight the rationale of stimuli and formulation designs, and summarize their biomedical applications.
Collapse
Affiliation(s)
- Tianxu Fang
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3G 0B1, Canada.,Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3G 0B1, Canada
| | - Xiaona Cao
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3G 0B1, Canada.,Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3G 0B1, Canada.,School of Nursing, Tianjin Medical University, Tianjin, China
| | - Mysha Ibnat
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3G 0B1, Canada.,Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3G 0B1, Canada
| | - Guojun Chen
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3G 0B1, Canada. .,Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3G 0B1, Canada.
| |
Collapse
|
42
|
Zhang L, Yang L, Huang J, Chen S, Huang C, Lin Y, Shen A, Zheng Z, Zheng W, Tang S. A zwitterionic polymer-inspired material mediated efficient CRISPR-Cas9 gene editing. Asian J Pharm Sci 2022; 17:666-678. [PMID: 36382298 PMCID: PMC9640674 DOI: 10.1016/j.ajps.2022.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/08/2022] [Accepted: 08/22/2022] [Indexed: 11/15/2022] Open
Abstract
The type II prokaryotic CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR/Cas9) adaptive immune system is a cutting-edge genome-editing toolbox. However, its applications are still limited by its inefficient transduction. Herein, we present a novel gene vector, the zwitterionic polymer-inspired material with branched structure (ZEBRA) for efficient CRISPR/Cas9 delivery. Polo-like kinase 1 (PLK1) acts as a master regulator of mitosis and overexpresses in multiple tumor cells. The Cas9 and single guide sgRNA (sgRNA)-encoded plasmid was transduced to knockout Plk1 gene, which was expected to inhibit the expression of PLK1. Our studies demonstrated that ZEBRA enabled to transduce the CRISPR/Cas9 system with large size into the cells efficiently. The transduction with ZEBRA was cell line dependent, which showed ∼10-fold higher in CD44-positive cancer cell lines compared with CD44-negative ones. Furthermore, ZEBRA induced high-level expression of Cas9 proteins by the delivery of CRISPR/Cas9 and efficient gene editing of Plk1 gene, and inhibited the tumor cell growth significantly. This zwitterionic polymer-inspired material is an effective and targeted gene delivery vector and further studies are required to explore its potential in gene delivery applications.
Collapse
Affiliation(s)
- Lingmin Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Third and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Langyu Yang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Third and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Jionghua Huang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Third and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Sheng Chen
- Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Chuangjia Huang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Third and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Yinshan Lin
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Third and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Ao Shen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Third and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - ZhouYikang Zheng
- Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Wenfu Zheng
- CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, National Center for NanoScience and Technology, Beijing 100190, China
| | - Shunqing Tang
- Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| |
Collapse
|
43
|
Aulicino F, Pelosse M, Toelzer C, Capin J, Ilegems E, Meysami P, Rollarson R, Berggren PO, Dillingham M, Schaffitzel C, Saleem M, Welsh G, Berger I. Highly efficient CRISPR-mediated large DNA docking and multiplexed prime editing using a single baculovirus. Nucleic Acids Res 2022; 50:7783-7799. [PMID: 35801912 PMCID: PMC9303279 DOI: 10.1093/nar/gkac587] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 06/15/2022] [Accepted: 06/27/2022] [Indexed: 12/13/2022] Open
Abstract
CRISPR-based precise gene-editing requires simultaneous delivery of multiple components into living cells, rapidly exceeding the cargo capacity of traditional viral vector systems. This challenge represents a major roadblock to genome engineering applications. Here we exploit the unmatched heterologous DNA cargo capacity of baculovirus to resolve this bottleneck in human cells. By encoding Cas9, sgRNA and Donor DNAs on a single, rapidly assembled baculoviral vector, we achieve with up to 30% efficacy whole-exon replacement in the intronic β-actin (ACTB) locus, including site-specific docking of very large DNA payloads. We use our approach to rescue wild-type podocin expression in steroid-resistant nephrotic syndrome (SRNS) patient derived podocytes. We demonstrate single baculovirus vectored delivery of single and multiplexed prime-editing toolkits, achieving up to 100% cleavage-free DNA search-and-replace interventions without detectable indels. Taken together, we provide a versatile delivery platform for single base to multi-gene level genome interventions, addressing the currently unmet need for a powerful delivery system accommodating current and future CRISPR technologies without the burden of limited cargo capacity.
Collapse
Affiliation(s)
- Francesco Aulicino
- BrisSynBio Bristol Synthetic Biology Centre, Biomedical Sciences, School of Biochemistry, 1 Tankard's Close, University of Bristol, Bristol BS8 1TD, UK
| | - Martin Pelosse
- BrisSynBio Bristol Synthetic Biology Centre, Biomedical Sciences, School of Biochemistry, 1 Tankard's Close, University of Bristol, Bristol BS8 1TD, UK
| | - Christine Toelzer
- BrisSynBio Bristol Synthetic Biology Centre, Biomedical Sciences, School of Biochemistry, 1 Tankard's Close, University of Bristol, Bristol BS8 1TD, UK
| | - Julien Capin
- BrisSynBio Bristol Synthetic Biology Centre, Biomedical Sciences, School of Biochemistry, 1 Tankard's Close, University of Bristol, Bristol BS8 1TD, UK
| | - Erwin Ilegems
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Parisa Meysami
- BrisSynBio Bristol Synthetic Biology Centre, Biomedical Sciences, School of Biochemistry, 1 Tankard's Close, University of Bristol, Bristol BS8 1TD, UK
| | - Ruth Rollarson
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, Whitson street, Bristol BS1 3NY, UK
| | - Per-Olof Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Mark Simon Dillingham
- BrisSynBio Bristol Synthetic Biology Centre, Biomedical Sciences, School of Biochemistry, 1 Tankard's Close, University of Bristol, Bristol BS8 1TD, UK
| | - Christiane Schaffitzel
- BrisSynBio Bristol Synthetic Biology Centre, Biomedical Sciences, School of Biochemistry, 1 Tankard's Close, University of Bristol, Bristol BS8 1TD, UK
| | - Moin A Saleem
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, Whitson street, Bristol BS1 3NY, UK
| | - Gavin I Welsh
- Bristol Renal, Bristol Medical School, Dorothy Hodgkin Building, Whitson street, Bristol BS1 3NY, UK
| | - Imre Berger
- BrisSynBio Bristol Synthetic Biology Centre, Biomedical Sciences, School of Biochemistry, 1 Tankard's Close, University of Bristol, Bristol BS8 1TD, UK
- Max Planck Bristol Centre for Minimal Biology, School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| |
Collapse
|
44
|
Kim C, Nevozhay D, Aburto RR, Pehere A, Pang L, Dillard R, Wang Z, Smith C, Mathieu KB, Zhang M, Hazle JD, Bast RC, Sokolov K. One-Pot, One-Step Synthesis of Drug-Loaded Magnetic Multimicelle Aggregates. Bioconjug Chem 2022; 33:969-981. [PMID: 35522527 PMCID: PMC9121875 DOI: 10.1021/acs.bioconjchem.2c00167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/15/2022] [Indexed: 11/30/2022]
Abstract
Lipid-based formulations provide a nanotechnology platform that is widely used in a variety of biomedical applications because it has several advantageous properties including biocompatibility, reduced toxicity, relative ease of surface modifications, and the possibility for efficient loading of drugs, biologics, and nanoparticles. A combination of lipid-based formulations with magnetic nanoparticles such as iron oxide was shown to be highly advantageous in a growing number of applications including magnet-mediated drug delivery and image-guided therapy. Currently, lipid-based formulations are prepared by multistep protocols. Simplification of the current multistep procedures can lead to a number of important technological advantages including significantly decreased processing time, higher reaction yield, better product reproducibility, and improved quality. Here, we introduce a one-pot, single-step synthesis of drug-loaded magnetic multimicelle aggregates (MaMAs), which is based on controlled flow infusion of an iron oxide nanoparticle/lipid mixture into an aqueous drug solution under ultrasonication. Furthermore, we prepared molecular-targeted MaMAs by directional antibody conjugation through an Fc moiety using Cu-free click chemistry. Fluorescence imaging and quantification confirmed that antibody-conjugated MaMAs showed high cell-specific targeting that was enhanced by magnetic delivery.
Collapse
Affiliation(s)
- Chang
Soo Kim
- Department
of Imaging Physics, The University of Texas
MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Dmitry Nevozhay
- Department
of Imaging Physics, The University of Texas
MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Rebeca Romero Aburto
- Department
of Imaging Physics, The University of Texas
MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Ashok Pehere
- Department
of Imaging Physics, The University of Texas
MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Lan Pang
- Department
of Experimental Therapeutics, The University
of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Rebecca Dillard
- Center
for Molecular Microscopy, Frederick National Laboratory for Cancer
Research, Center for Cancer Research, National
Cancer Institute, NIH, Frederick, Maryland 21701, United States
| | - Ziqiu Wang
- Center
for Molecular Microscopy, Frederick National Laboratory for Cancer
Research, Center for Cancer Research, National
Cancer Institute, NIH, Frederick, Maryland 21701, United States
| | - Clayton Smith
- Center
for Molecular Microscopy, Frederick National Laboratory for Cancer
Research, Center for Cancer Research, National
Cancer Institute, NIH, Frederick, Maryland 21701, United States
| | - Kelsey Boitnott Mathieu
- Department
of Imaging Physics, The University of Texas
MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Marie Zhang
- Imagion
Biosystems, Inc., San Diego, California 92121, United States
| | - John D. Hazle
- Department
of Imaging Physics, The University of Texas
MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Robert C. Bast
- Department
of Experimental Therapeutics, The University
of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Konstantin Sokolov
- Department
of Imaging Physics, The University of Texas
MD Anderson Cancer Center, Houston, Texas 77030, United States
- Department
of Bioengineering, Rice University, Houston, Texas 77005, United States
- Department
of Biomedical Engineering, The University
of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
45
|
Badertscher L, Porritt MJ. Utilizing CRISPR/Cas9 Technologies for
in vivo
Disease Modeling and Therapy. GENOME EDITING IN DRUG DISCOVERY 2022:93-110. [DOI: 10.1002/9781119671404.ch7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
46
|
Hasanzadeh A, Noori H, Jahandideh A, Haeri Moghaddam N, Kamrani Mousavi SM, Nourizadeh H, Saeedi S, Karimi M, Hamblin MR. Smart Strategies for Precise Delivery of CRISPR/Cas9 in Genome Editing. ACS APPLIED BIO MATERIALS 2022; 5:413-437. [PMID: 35040621 DOI: 10.1021/acsabm.1c01112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The emergence of CRISPR/Cas technology has enabled scientists to precisely edit genomic DNA sequences. This approach can be used to modulate gene expression for the treatment of genetic disorders and incurable diseases such as cancer. This potent genome-editing tool is based on a single guide RNA (sgRNA) strand that recognizes the targeted DNA, plus a Cas nuclease protein for binding and processing the target. CRISPR/Cas has great potential for editing many genes in different types of cells and organisms both in vitro and in vivo. Despite these remarkable advances, the risk of off-target effects has hindered the translation of CRISPR/Cas technology into clinical applications. To overcome this hurdle, researchers have devised gene regulatory systems that can be controlled in a spatiotemporal manner, by designing special sgRNA, Cas, and CRISPR/Cas delivery vehicles that are responsive to different stimuli, such as temperature, light, magnetic fields, ultrasound (US), pH, redox, and enzymatic activity. These systems can even respond to dual or multiple stimuli simultaneously, thereby providing superior spatial and temporal control over CRISPR/Cas gene editing. Herein, we summarize the latest advances on smart sgRNA, Cas, and CRISPR/Cas nanocarriers, categorized according to their stimulus type (physical, chemical, or biological).
Collapse
Affiliation(s)
- Akbar Hasanzadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Hamid Noori
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Atefeh Jahandideh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Niloofar Haeri Moghaddam
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Seyede Mahtab Kamrani Mousavi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Helena Nourizadeh
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Sara Saeedi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Advanced Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 1449614535, Iran
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
- Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran 141556559, Iran
- Applied Biotechnology Research Centre, Tehran Medical Science, Islamic Azad University, Tehran 1584743311, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran 1449614535, Iran
| |
Collapse
|
47
|
Wang BX, Xu W, Yang Z, Wu Y, Pi F. An Overview on Recent Progress of the Hydrogels: From Material Resources, Properties to Functional Applications. Macromol Rapid Commun 2022; 43:e2100785. [PMID: 35075726 DOI: 10.1002/marc.202100785] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/04/2022] [Indexed: 11/06/2022]
Abstract
Hydrogels, as the most typical elastomer materials with three-dimensional network structures, have attracted wide attention owing to their outstanding features in fields of sensitive stimulus response, low surface friction coefficient, good flexibility and bio-compatibility. Because of numerous fresh polymer materials (or polymerization monomers), hydrogels with various structure diversities and excellent properties are emerging, and the development of hydrogels is very vigorous over the past decade. This review focuses on state-of-the-art advances, systematically reviews the recent progress on construction of novel hydrogels utilized several kinds of typical polymerization monomers, and explores the main chemical and physical cross-linking methods to develop the diversity of hydrogels. Following the aspects mentioned above, the classification and emerging applications of hydrogels, such as pH response, ionic response, electrical response, thermal response, biomolecular response, and gas response, are extensively summarized. Finally, we have done this review with the promises and challenges for the future evolution of hydrogels and their biological applications. cross-linking methods; functional applications; hydrogels; material resources This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ben-Xin Wang
- School of Science, Jiangnan University, Wuxi, 214122, China
| | - Wei Xu
- School of Science, Jiangnan University, Wuxi, 214122, China
| | - Zhuchuang Yang
- School of Science, Jiangnan University, Wuxi, 214122, China
| | - Yangkuan Wu
- School of Science, Jiangnan University, Wuxi, 214122, China
| | - Fuwei Pi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
48
|
Khajanchi N, Saha K. Controlling CRISPR with small molecule regulation for somatic cell genome editing. Mol Ther 2022; 30:17-31. [PMID: 34174442 PMCID: PMC8753294 DOI: 10.1016/j.ymthe.2021.06.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/26/2021] [Accepted: 06/21/2021] [Indexed: 01/07/2023] Open
Abstract
Biomedical research has been revolutionized by the introduction of many CRISPR-Cas systems that induce programmable edits to nearly any gene in the human genome. Nuclease-based CRISPR-Cas editors can produce on-target genomic changes but can also generate unwanted genotoxicity and adverse events, in part by cleaving non-targeted sites in the genome. Additional translational challenges for in vivo somatic cell editing include limited packaging capacity of viral vectors and host immune responses. Altogether, these challenges motivate recent efforts to control the expression and activity of different Cas systems in vivo. Current strategies utilize small molecules, light, magnetism, and temperature to conditionally control Cas systems through various activation, inhibition, or degradation mechanisms. This review focuses on small molecules that can be incorporated as regulatory switches to control Cas genome editors. Additional development of CRISPR-Cas-based therapeutic approaches with small molecule regulation have high potential to increase editing efficiency with less adverse effects for somatic cell genome editing strategies in vivo.
Collapse
Affiliation(s)
- Namita Khajanchi
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Krishanu Saha
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA.
| |
Collapse
|
49
|
Kong H, Ju E, Yi K, Xu W, Lao Y, Cheng D, Zhang Q, Tao Y, Li M, Ding J. Advanced Nanotheranostics of CRISPR/Cas for Viral Hepatitis and Hepatocellular Carcinoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102051. [PMID: 34665528 PMCID: PMC8693080 DOI: 10.1002/advs.202102051] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/25/2021] [Indexed: 05/08/2023]
Abstract
Liver disease, particularly viral hepatitis and hepatocellular carcinoma (HCC), is a global healthcare burden and leads to more than 2 million deaths per year worldwide. Despite some success in diagnosis and vaccine development, there are still unmet needs to improve diagnostics and therapeutics for viral hepatitis and HCC. The emerging clustered regularly interspaced short palindromic repeat/associated proteins (CRISPR/Cas) technology may open up a unique avenue to tackle these two diseases at the genetic level in a precise manner. Especially, liver is a more accessible organ over others from the delivery point of view, and many advanced strategies applied for nanotheranostics can be adapted in CRISPR-mediated diagnostics or liver gene editing. In this review, the focus is on these two aspects of viral hepatitis and HCC applications. An overview on CRISPR editor development and current progress in clinical trials is first given, followed by highlighting the recent advances integrating the merits of gene editing and nanotheranostics. The promising systems that are used in other applications but may hold potentials in liver gene editing are also discussed. This review concludes with the perspectives on rationally designing the next-generation CRISPR approaches and improving the editing performance.
Collapse
Affiliation(s)
- Huimin Kong
- Laboratory of Biomaterials and Translational MedicineCenter for Nanomedicine and Biotherapy CenterThe Third Affiliated HospitalSun Yat‐sen University600 Tianhe RoadGuangzhou510630P. R. China
| | - Enguo Ju
- Laboratory of Biomaterials and Translational MedicineCenter for Nanomedicine and Biotherapy CenterThe Third Affiliated HospitalSun Yat‐sen University600 Tianhe RoadGuangzhou510630P. R. China
| | - Ke Yi
- Laboratory of Biomaterials and Translational MedicineCenter for Nanomedicine and Biotherapy CenterThe Third Affiliated HospitalSun Yat‐sen University600 Tianhe RoadGuangzhou510630P. R. China
| | - Weiguo Xu
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| | - Yeh‐Hsing Lao
- Department of Biomedical EngineeringColumbia University3960 Broadway Lasker Room 450New YorkNY10032USA
| | - Du Cheng
- PCFM Lab of Ministry of EducationSchool of Materials Science and EngineeringSun Yat‐sen University135 Xingangxi RoadGuangzhou510275P. R. China
| | - Qi Zhang
- Laboratory of Biomaterials and Translational MedicineCenter for Nanomedicine and Biotherapy CenterThe Third Affiliated HospitalSun Yat‐sen University600 Tianhe RoadGuangzhou510630P. R. China
- Guangdong Provincial Key Laboratory of Liver Disease Research600 Tianhe RoadGuangzhou510630P. R. China
| | - Yu Tao
- Laboratory of Biomaterials and Translational MedicineCenter for Nanomedicine and Biotherapy CenterThe Third Affiliated HospitalSun Yat‐sen University600 Tianhe RoadGuangzhou510630P. R. China
- Guangdong Provincial Key Laboratory of Liver Disease Research600 Tianhe RoadGuangzhou510630P. R. China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational MedicineCenter for Nanomedicine and Biotherapy CenterThe Third Affiliated HospitalSun Yat‐sen University600 Tianhe RoadGuangzhou510630P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of Sciences5625 Renmin StreetChangchun130022P. R. China
| |
Collapse
|
50
|
Yan T, Yang K, Chen C, Zhou Z, Shen P, Jia Y, Xue Y, Zhang Z, Shen X, Han X. Synergistic photothermal cancer immunotherapy by Cas9 ribonucleoprotein-based copper sulfide nanotherapeutic platform targeting PTPN2. Biomaterials 2021; 279:121233. [PMID: 34749073 DOI: 10.1016/j.biomaterials.2021.121233] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/08/2021] [Accepted: 10/27/2021] [Indexed: 02/08/2023]
Abstract
Photothermal therapy (PTT) is a promising strategy for the treatment of advanced malignant neoplasm. However, the anti-tumor efficacy by PTT alone is insufficient to control tumor growth and metastasis. Here, we report a multifunctional nanotherapeutic system exerting a combined PTT and immunotherapy to synergistically enhance the therapeutic effect on melanoma. In particular, we selected the semiconductor nanomaterial copper sulfide (CuS), which served not only as a near-infrared (NIR) light-triggered photothermal converter for tumor hyperthermia but as a basic carrier to modify Cas9 ribonucleoprotein targeting PTPN2 on its surface. Efficient PTPN2 depletion was observed after the treatment of CuS-RNP@PEI nanoparticles, which caused the accumulation of intratumoral infiltrating CD8 T lymphocytes in tumor-bearing mice and upregulated the expression levels of IFN-ᵧ and TNF-α in tumor tissue, thus sensitizing tumors to immunotherapy. In addition, the effect worked synergistically with tumor ablation and immunogenic cell death (ICD) induced by PTT to amplify anti-tumor efficacy. Taken together, this exogenously controlled method provides a simple and effective treatment option for advanced malignant neoplasm.
Collapse
Affiliation(s)
- Tao Yan
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Kaiyong Yang
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Chao Chen
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhiruo Zhou
- Department of Pharmacology, School of Medicine & Holistic Integrative Medicine, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Peiliang Shen
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuanyuan Jia
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yu Xue
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Zhenyu Zhang
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xu Shen
- Department of Pharmacology, School of Medicine & Holistic Integrative Medicine, Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Xin Han
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|