1
|
Katsuragawa M, Yagishita A, Takeda S, Minami T, Ohnuki K, Fujii H, Takahashi T. CdTe XG-Cam: A new high-resolution x-ray and gamma-ray camera for studies of the pharmacokinetics of radiopharmaceuticals in small animals. Med Phys 2024; 51:5308-5320. [PMID: 38762908 DOI: 10.1002/mp.17124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/29/2024] [Accepted: 04/22/2024] [Indexed: 05/21/2024] Open
Abstract
BACKGROUND The recent emergence of targeted radionuclide therapy has increased the demand for imagers capable of visualizing pharmacokinetics in developing radiopharmaceuticals in the preclinical phase. Some radionuclides emit hard x-rays and gamma-rays below 100 keV, in which energy range the performance of conventional NaI scintillators is poor. Multipinhole collimators are also used for small animal imaging with a good spatial resolution but have a limited field of view (FOV). PURPOSE In this study, a new imager with high sensitivity over a wide FOV in the low-energy band ( < $<$ 100 keV) was developed for the pharmacokinetic study. METHODS We developed an x-ray and gamma-ray camera for high-resolution spectroscopy, named "CdTe XG-Cam," equipped with a cadmium telluride semiconductor detector and a parallel-hole collimator using a metal 3D printer. To evaluate the camera-system performance, phantom measurements with single and dual nuclides (99 m Tc $^{\rm 99m}{\rm Tc}$ ,111 In $^{111}{\rm In}$ , and125 I ) $^{125}{\rm I)}$ were performed. The performance for in vivo imaging was evaluated using tumor-bearing mice to which a nuclide (99 m Tc $^{\rm 99m}{\rm Tc}$ or125 I ) $^{125}{\rm I)}$ administered. RESULTS We simultaneously obtained information on111 In $^{111}{\rm In}$ and125 I $^{125}{\rm I}$ , which emit emission lines in the low-energy band with peak energies close to each other (23-26 keV for111 In $^{111}{\rm In}$ and 27-31 keV for125 I ) $^{125}{\rm I)}$ , and applied an analytical method based on spectral model fitting to determine the individual radioactivities accurately. In the small animal imaging, the distributions of the nuclide in tumors were accurately quantified and time-activity curves in tumors are obtained. CONCLUSIONS The demonstrated capability of our system to perform in vivo imaging suggests that the camera can be used for applications of pharmacokinetics research.
Collapse
Affiliation(s)
- Miho Katsuragawa
- Kavli Institute for the Physics and Mathematics of the Universe (IPMU) (WPI), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Kashiwa, Chiba, Japan
| | - Atsushi Yagishita
- Kavli Institute for the Physics and Mathematics of the Universe (IPMU) (WPI), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Kashiwa, Chiba, Japan
- iMAGINE-X Inc., Shibuya-ku, Tokyo, Japan
| | - Shin'ichiro Takeda
- Kavli Institute for the Physics and Mathematics of the Universe (IPMU) (WPI), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Kashiwa, Chiba, Japan
- iMAGINE-X Inc., Shibuya-ku, Tokyo, Japan
| | - Takahiro Minami
- Kavli Institute for the Physics and Mathematics of the Universe (IPMU) (WPI), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Kashiwa, Chiba, Japan
- Department of Physics, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kazunobu Ohnuki
- Division of Functional Imaging, The National Cancer Center Japan, Kashiwa, Chiba, Japan
| | - Hirofumi Fujii
- Division of Functional Imaging, The National Cancer Center Japan, Kashiwa, Chiba, Japan
| | - Tadayuki Takahashi
- Kavli Institute for the Physics and Mathematics of the Universe (IPMU) (WPI), The University of Tokyo Institutes for Advanced Study (UTIAS), The University of Tokyo, Kashiwa, Chiba, Japan
- Department of Physics, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
2
|
Yagishita A, Katsuragawa M, Takeda S, Shirakami Y, Ooe K, Toyoshima A, Takahashi T, Watabe T. Development and Utility of an Imaging System for Internal Dosimetry of Astatine-211 in Mice. Bioengineering (Basel) 2023; 11:25. [PMID: 38247903 PMCID: PMC11154565 DOI: 10.3390/bioengineering11010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024] Open
Abstract
In targeted radionuclide therapy, determining the absorbed dose of the ligand distributed to the whole body is vital due to its direct influence on therapeutic and adverse effects. However, many targeted alpha therapy drugs present challenges for in vivo quantitative imaging. To address this issue, we developed a planar imaging system equipped with a cadmium telluride semiconductor detector that offers high energy resolution. This system also comprised a 3D-printed tungsten collimator optimized for high sensitivity to astatine-211, an alpha-emitting radionuclide, and adequate spatial resolution for mouse imaging. The imager revealed a spectrum with a distinct peak for X-rays from astatine-211 owing to the high energy resolution, clearly distinguishing these X-rays from the fluorescent X-rays of tungsten. High collimator efficiency (4.5 × 10-4) was achieved, with the maintenance of the spatial resolution required for discerning mouse tissues. Using this system, the activity of astatine-211 in thyroid cancer tumors with and without the expression of the sodium iodide symporter (K1-NIS/K1, respectively) was evaluated through in vivo imaging. The K1-NIS tumors had significantly higher astatine-211 activity (sign test, p = 0.031, n = 6) and significantly decreased post-treatment tumor volume (Student's t-test, p = 0.005, n = 6). The concurrent examination of intratumor drug distribution and treatment outcome could be performed with the same mice.
Collapse
Affiliation(s)
- Atsushi Yagishita
- Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa 277-8583, Japan; (M.K.); (S.T.); (T.T.)
| | - Miho Katsuragawa
- Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa 277-8583, Japan; (M.K.); (S.T.); (T.T.)
| | - Shin’ichiro Takeda
- Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa 277-8583, Japan; (M.K.); (S.T.); (T.T.)
| | - Yoshifumi Shirakami
- Institute for Radiation Sciences, Osaka University, 1-1, Yamadaoka, Suita, Osaka 565-0871, Japan; (Y.S.); (K.O.); (A.T.); (T.W.)
| | - Kazuhiro Ooe
- Institute for Radiation Sciences, Osaka University, 1-1, Yamadaoka, Suita, Osaka 565-0871, Japan; (Y.S.); (K.O.); (A.T.); (T.W.)
| | - Atsushi Toyoshima
- Institute for Radiation Sciences, Osaka University, 1-1, Yamadaoka, Suita, Osaka 565-0871, Japan; (Y.S.); (K.O.); (A.T.); (T.W.)
| | - Tadayuki Takahashi
- Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa 277-8583, Japan; (M.K.); (S.T.); (T.T.)
| | - Tadashi Watabe
- Institute for Radiation Sciences, Osaka University, 1-1, Yamadaoka, Suita, Osaka 565-0871, Japan; (Y.S.); (K.O.); (A.T.); (T.W.)
| |
Collapse
|
3
|
Yagishita A, Takeda S, Ohnuki K, Katsuragawa M, Sampetrean O, Fujii H, Takahashi T. Dual-radionuclide in vivo imaging of micro-metastasis and lymph tract with submillimetre resolution. Sci Rep 2023; 13:19464. [PMID: 37945679 PMCID: PMC10636167 DOI: 10.1038/s41598-023-46907-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023] Open
Abstract
Multi-radionuclide in vivo imaging with submillimetre resolution can be a potent tool for biomedical research. While high-resolution radionuclide imaging faces challenges in sensitivity, multi-radionuclide imaging encounters difficulty due to radiation contamination, stemming from crosstalk between radionuclides and Compton scattering. Addressing these challenges simultaneously is imperative for multi-radionuclide high-resolution imaging. To tackle this, we developed a high-spatial-resolution and high-energy-resolution small animal single-photon emission computed tomography (SPECT) scanner, named CdTe-DSD SPECT-I. We first assessed the feasibility of multi-tracer SPECT imaging of submillimetre targets. Using the CdTe-DSD SPECT-I, we performed SPECT imaging of submillimetre zeolite spheres absorbed with 125I- and subsequently imaged 125I-accumulated spheroids of 200-400 µm in size within an hour, achieving clear and quantitative images. Furthermore, dual-radionuclide phantom imaging revealed a distinct image of the submillimetre sphere absorbed with 125I- immersed in a 99mTc-pertechnetate solution, and provided a fair quantification of each radionuclide. Lastly, in vivo imaging was conducted on a cancer-bearing mouse with lymph node micro-metastasis using dual-tracers. The results displayed dual-tracer images of lymph tract by 99mTc-phytic acid and the submillimetre metastatic lesion by 125I-, shown to align with the immunofluorescence image.
Collapse
Affiliation(s)
- Atsushi Yagishita
- Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8583, Japan.
| | - Shin'ichiro Takeda
- Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8583, Japan
| | - Kazunobu Ohnuki
- Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, 277-8577, Japan
| | - Miho Katsuragawa
- Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8583, Japan
| | - Oltea Sampetrean
- Department of Molecular Biology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
- Human Biology-Microbiome-Quantum Research Center (WPI-Bio2Q), Keio University, 2-15-45 Mita, Minato, Tokyo, 108-8345, Japan
| | - Hirofumi Fujii
- Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa, 277-8577, Japan
| | - Tadayuki Takahashi
- Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8583, Japan
- Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-0033, Japan
| |
Collapse
|
4
|
Pratt EC, Lopez-Montes A, Volpe A, Crowley MJ, Carter LM, Mittal V, Pillarsetty N, Ponomarev V, Udías JM, Grimm J, Herraiz JL. Simultaneous quantitative imaging of two PET radiotracers via the detection of positron-electron annihilation and prompt gamma emissions. Nat Biomed Eng 2023; 7:1028-1039. [PMID: 37400715 PMCID: PMC10810307 DOI: 10.1038/s41551-023-01060-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 05/23/2023] [Indexed: 07/05/2023]
Abstract
In conventional positron emission tomography (PET), only one radiotracer can be imaged at a time, because all PET isotopes produce the same two 511 keV annihilation photons. Here we describe an image reconstruction method for the simultaneous in vivo imaging of two PET tracers and thereby the independent quantification of two molecular signals. This method of multiplexed PET imaging leverages the 350-700 keV range to maximize the capture of 511 keV annihilation photons and prompt γ-ray emission in the same energy window, hence eliminating the need for energy discrimination during reconstruction or for signal separation beforehand. We used multiplexed PET to track, in mice with subcutaneous tumours, the biodistributions of intravenously injected [124I]I-trametinib and 2-deoxy-2-[18F]fluoro-D-glucose, [124I]I-trametinib and its nanoparticle carrier [89Zr]Zr-ferumoxytol, and the prostate-specific membrane antigen (PSMA) and infused PSMA-targeted chimaeric antigen receptor T cells after the systemic administration of [68Ga]Ga-PSMA-11 and [124I]I. Multiplexed PET provides more information depth, gives new uses to prompt γ-ray-emitting isotopes, reduces radiation burden by omitting the need for an additional computed-tomography scan and can be implemented on preclinical and clinical systems without any modifications in hardware or image acquisition software.
Collapse
Affiliation(s)
- Edwin C Pratt
- Department of Pharmacology, Weill Cornell Graduate School, New York, NY, USA
- Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alejandro Lopez-Montes
- Nuclear Physics Group, EMFTEL and IPARCOS, Complutense University of Madrid, Madrid, Spain
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Alessia Volpe
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael J Crowley
- Department of Cell and Developmental Biology, Weill Cornell Graduate School, New York, NY, USA
| | - Lukas M Carter
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Vivek Mittal
- Department of Cell and Developmental Biology, Weill Cornell Graduate School, New York, NY, USA
- Department of Cardiothoracic Surgery, Weill Cornell Medicine, New York, USA
- Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, New York, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, USA
| | | | - Vladimir Ponomarev
- Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jose M Udías
- Nuclear Physics Group, EMFTEL and IPARCOS, Complutense University of Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital Clínico San Carlos, Madrid, Spain
| | - Jan Grimm
- Department of Pharmacology, Weill Cornell Graduate School, New York, NY, USA.
- Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Joaquin L Herraiz
- Nuclear Physics Group, EMFTEL and IPARCOS, Complutense University of Madrid, Madrid, Spain.
- Instituto de Investigación Sanitaria Hospital Clínico San Carlos, Madrid, Spain.
| |
Collapse
|
5
|
Farnworth AL, Bugby SL. Intraoperative Gamma Cameras: A Review of Development in the Last Decade and Future Outlook. J Imaging 2023; 9:jimaging9050102. [PMID: 37233321 DOI: 10.3390/jimaging9050102] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023] Open
Abstract
Portable gamma cameras suitable for intraoperative imaging are in active development and testing. These cameras utilise a range of collimation, detection, and readout architectures, each of which can have significant and interacting impacts on the performance of the system as a whole. In this review, we provide an analysis of intraoperative gamma camera development over the past decade. The designs and performance of 17 imaging systems are compared in depth. We discuss where recent technological developments have had the greatest impact, identify emerging technological and scientific requirements, and predict future research directions. This is a comprehensive review of the current and emerging state-of-the-art as more devices enter clinical practice.
Collapse
Affiliation(s)
- Andrew L Farnworth
- Department of Physics, Loughborough University, Loughborough LE11 3TU, UK
| | - Sarah L Bugby
- Department of Physics, Loughborough University, Loughborough LE11 3TU, UK
| |
Collapse
|