1
|
Ahern DT, Bansal P, Faustino IV, Chambers OM, Banda EC, Glatt-Deeley HR, Massey RE, Kondaveeti Y, Pinter SF. Isogenic hiPSC models of Turner syndrome development reveal shared roles of inactive X and Y in the human cranial neural crest network. Am J Hum Genet 2025; 112:615-629. [PMID: 39922196 PMCID: PMC11947172 DOI: 10.1016/j.ajhg.2025.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 02/10/2025] Open
Abstract
Viable human aneuploidy can be challenging to model in rodents due to syntenic boundaries or primate-specific biology. Human monosomy-X (45,X) causes Turner syndrome (TS), altering craniofacial, skeletal, endocrine, and cardiovascular development, which in contrast remain unaffected in X-monosomic mice. To learn how monosomy-X may impact embryonic development, we turned to 45,X and isogenic euploid human induced pluripotent stem cells (hiPSCs) from male and female mosaic donors. Because the neural crest (NC) is hypothesized to give rise to craniofacial and cardiovascular changes in TS, we assessed differential expression of hiPSC-derived anterior NC cells (NCCs). Across three independent isogenic panels, 45,X NCCs show impaired acquisition of PAX7+SOX10+ markers and disrupted expression of other NCC-specific genes relative to isogenic euploid controls. Additionally, 45,X NCCs increase cholesterol biosynthesis genes while reducing transcripts with 5' terminal oligopyrimidine (TOP) motifs, including those of ribosomal and nuclear-encoded mitochondrial proteins. Such metabolic pathways are also over-represented in weighted co-expression modules that are preserved in monogenic neurocristopathy and reflect 28% of all TS-associated terms of the human phenotype ontology. We demonstrate that 45,X NCCs reduce protein synthesis despite activation of mammalian target of rapamycin (mTOR) but are partially rescued by mild mTOR suppression. Our analysis identifies specific sex-linked genes that are expressed from two copies in euploid males and females alike and qualify as candidate haploinsufficient drivers of TS phenotypes in NC-derived lineages. This study demonstrates that isogenic hiPSC-derived NCC panels representing monosomy-X can serve as powerful models of early NC development in TS and inform new hypotheses toward its etiology.
Collapse
Affiliation(s)
- Darcy T Ahern
- Graduate Program in Genetics and Developmental Biology, UCONN Health, University of Connecticut, Farmington, CT, USA; Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Prakhar Bansal
- Graduate Program in Genetics and Developmental Biology, UCONN Health, University of Connecticut, Farmington, CT, USA; Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Isaac V Faustino
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Owen M Chambers
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Erin C Banda
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Heather R Glatt-Deeley
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Rachael E Massey
- Graduate Program in Genetics and Developmental Biology, UCONN Health, University of Connecticut, Farmington, CT, USA; Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA; Institute for Systems Genomics, University of Connecticut, Farmington, CT, USA
| | - Yuvabharath Kondaveeti
- Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA
| | - Stefan F Pinter
- Graduate Program in Genetics and Developmental Biology, UCONN Health, University of Connecticut, Farmington, CT, USA; Department of Genetics and Genome Sciences, UCONN Health, University of Connecticut, Farmington, CT, USA; Institute for Systems Genomics, University of Connecticut, Farmington, CT, USA.
| |
Collapse
|
2
|
Agnihotri D, Lee CC, Lu PC, He RY, Huang YA, Kuo HC, Huang JJT. C9ORF72 poly-PR induces TDP-43 nuclear condensation via NEAT1 and is modulated by HSP70 activity. Cell Rep 2025; 44:115173. [PMID: 39804774 DOI: 10.1016/j.celrep.2024.115173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/30/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
The toxicity of C9ORF72-encoded polyproline-arginine (poly-PR) dipeptide is associated with its ability to disrupt the liquid-liquid phase separation of intrinsically disordered proteins participating in the formation of membraneless organelles, such as the nucleolus and paraspeckles. Amyotrophic lateral sclerosis (ALS)-related TAR DNA-binding protein 43 (TDP-43) also undergoes phase separation to form nuclear condensates (NCs) in response to stress. However, whether poly-PR alters the nuclear condensation of TDP-43 in ALS remains unclear. In this study, we find that the poly-PR dipeptide enhances the formation of TDP-43 NCs with decreased fluidity. While the non-coding RNA, nuclear-enriched abundant transcript 1 (NEAT1), is essential for the formation of TDP-43 NCs, heat shock protein 70 (HSP70) chaperone maintains their fluidity. Under prolonged poly-PR stress, HSP70 delocalizes from TDP-43 NCs, leading to the oligomerization of TDP-43 within these condensates. This phenomenon is accompanied with TDP-43 mislocalization and increasing cytotoxicity. Our study demonstrates the role of NEAT1 and HSP70 in the aberrant phase transition of TDP-43 NCs under poly-PR stress.
Collapse
Affiliation(s)
- Diksha Agnihotri
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan; Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Taiwan University and Academia Sinica, Taipei, Taiwan; National Taiwan University, Taipei 100, Taiwan
| | - Chi-Chang Lee
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Po-Chao Lu
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan; Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan; Department and Graduate Institute of Pharmacology, National Taiwan University, Taipei 100, Taiwan
| | - Ruei-Yu He
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Yung-An Huang
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Hung-Chih Kuo
- Neuroscience Program of Academia Sinica, Academia Sinica, Taipei 115, Taiwan; Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Sec. 2, Academia Road, Nankang, Taipei 11529, Taiwan; Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Joseph Jen-Tse Huang
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan; Sustainable Chemical Science and Technology, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan; Department of Applied Chemistry, National Chiayi University, Chiayi City 600, Taiwan; Neuroscience Program of Academia Sinica, Academia Sinica, Taipei 115, Taiwan.
| |
Collapse
|
3
|
Hong Y, Lin Q, Zhang Y, Liu J, Zheng Z. Research Progress of Ribosomal Proteins in Reproductive Development. Int J Mol Sci 2024; 25:13151. [PMID: 39684863 DOI: 10.3390/ijms252313151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Ribosomal proteins constitute the principal components of ribosomes, and their functions span a wide spectrum. Recent investigations have unveiled their involvement in oocyte and embryo development, playing a pivotal role in reproductive development. Numerous pieces of evidence indicate that ribosomal proteins participate in the regulation of various cellular activities, including nucleolar stress, oxidative stress, cell proliferation and autophagy. Despite these findings, the precise mechanisms through which ribosomal proteins influence reproductive development via these cellular activities remain elusive. Therefore, elucidating the mechanisms of action is essential for a comprehensive understanding of the role and function of ribosomal proteins in reproductive development. This paper systematically reviews the progress in research on nucleolar stress, oxidative stress, cell proliferation and autophagy concerning ribosomal proteins during reproductive development. Furthermore, we explore the potential of ribosomal proteins as diagnostic markers for various diseases. Additionally, we propose the development of drugs and therapies targeting ribosomal proteins, underscoring the potential for novel medical interventions in the context of reproductive health.
Collapse
Affiliation(s)
- Yuqi Hong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Qisheng Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yuan Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jilong Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhanhong Zheng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
4
|
Silva-Valencia S, Prol FV, Rodrigo I, Lisón P, Belda-Palazón B. TOR Inhibition Enhances Autophagic Flux and Immune Response in Tomato Plants Against PSTVd Infection. PHYSIOLOGIA PLANTARUM 2024; 176:e14606. [PMID: 39544013 DOI: 10.1111/ppl.14606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 11/17/2024]
Abstract
Viroids are small, non-coding RNA pathogens known for their ability to cause severe plant diseases. Despite their simple structure, viroids like Potato Spindle Tuber Viroid (PSTVd) can interfere with plant cellular processes, including transcriptional and post-transcriptional mechanisms, impacting plant growth and yield. In this study, we have investigated the role of the Target Of Rapamycin (TOR) signaling pathway in modulating viroid pathogenesis in tomato plants infected with PSTVd. Our findings reveal that PSTVd infection induces the accumulation of the selective autophagy receptor NBR1, potentially inhibiting autophagic flux. Pharmacological inhibition of TOR with AZD8055 mitigated PSTVd symptomatology by reducing viroid accumulation. Furthermore, TOR inhibition promoted the recovery of autophagic flux through NBR1. It primed the plant defense response, as evidenced by enhanced expression of the defense-related gene PR1b and S5H, a gene involved in the salicylic acid catabolism. These results suggest a novel role for TOR in regulating viroid-induced pathogenesis and highlight the potential of TOR inhibitors as tools for enhancing plant resistance against viroid infections.
Collapse
Affiliation(s)
- Samanta Silva-Valencia
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, Spain
- Present address: Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-Universitat de València, Valencia, Spain
| | - Francisco Vázquez Prol
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, Spain
| | - Ismael Rodrigo
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, Spain
| | - Purificación Lisón
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, Spain
| | - Borja Belda-Palazón
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
5
|
Takada S, Bolkan BJ, O’Connor M, Goldberg M, O’Connor MB. Drosophila Trus, the orthologue of mammalian PDCD2L, is required for proper cell proliferation, larval developmental timing, and oogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.24.620039. [PMID: 39484569 PMCID: PMC11527112 DOI: 10.1101/2024.10.24.620039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Toys are us (Trus) is the Drosophila melanogaster ortholog of mammalian Programmed Cell Death 2-Like (PDCD2L), a protein that has been implicated in ribosome biogenesis, cell cycle regulation, and oncogenesis. In this study, we examined the function of Trus during Drosophila development. CRISPR/Cas9 generated null mutations in trus lead to partial embryonic lethality, significant larval developmental delay, and complete pre-pupal lethality. In mutant larvae, we found decreased cell proliferation and growth defects in the brain and imaginal discs. Mapping relevant tissues for Trus function using trus RNAi and trus mutant rescue experiments revealed that imaginal disc defects are primarily responsible for the developmental delay, while the pre-pupal lethality is likely associated with faulty central nervous system (CNS) development. Examination of the molecular mechanism behind the developmental delay phenotype revealed that trus mutations induce the Xrp1-Dilp8 ribosomal stress-response in growth-impaired imaginal discs, and this signaling pathway attenuates production of the hormone ecdysone in the prothoracic gland. Additional Tap-tagging and mass spectrometry of components in Trus complexes isolated from Drosophila Kc cells identified Ribosomal protein subunit 2 (RpS2), which is coded by string of pearls (sop) in Drosophila, and Eukaryotic translation elongation factor 1 alpha 1 (eEF1α1) as interacting factors. We discuss the implication of these findings with respect to the similarity and differences in trus genetic null mutant phenotypes compared to the haplo-insufficiency phenotypes produced by heterozygosity for mutants in Minute genes and other genes involved in ribosome biogenesis.
Collapse
Affiliation(s)
- Saeko Takada
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455
| | - Bonnie J. Bolkan
- Department of Biology, Pacific University Oregon, Forest Grove, OR 97116
| | - MaryJane O’Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455
| | - Michael Goldberg
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853
| | - Michael B. O’Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
6
|
Zhang W, Zhang M, Ma L, Jariyasakulroj S, Chang Q, Lin Z, Lu Z, Chen JF. Impaired phase separation and nucleolar functions in hiPSC models of SNORD118-related ribosomopathies. iScience 2024; 27:110430. [PMID: 39108718 PMCID: PMC11300908 DOI: 10.1016/j.isci.2024.110430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/16/2024] [Accepted: 06/28/2024] [Indexed: 01/21/2025] Open
Abstract
Ribosomopathies arise from the disruptions in ribosome biogenesis within the nucleolus, which is organized via liquid-liquid phase separation (LLPS). The roles of LLPS in ribosomopathies remain poorly understood. Here, we generated human induced pluripotent stem cell (hiPSC) models of ribosomopathy caused by mutations in small nucleolar RNA (snoRNA) gene SNORD118. Mutant hiPSC-derived neural progenitor cells (NPCs) or neural crest cells (NCCs) exhibited ribosomopathy hallmark cellular defects resulting in reduced organoid growth, recapitulating developmental delay in patients. SNORD118 mutations in NPCs disrupted nucleolar morphology and LLPS properties coupled with impaired ribosome biogenesis and a translational downregulation of fibrillarin (FBL), the key LLPS effector acting via the intrinsically disordered region (IDR) motif. IDR-depleted FBL failed to rescue NPC defects, whereas a chimeric FBL with swapped IDR motif from an unrelated protein mitigated ribosomopathy and organoid growth defects. Thus, SNORD118 human iPSC models revealed aberrant phase separation and nucleolar functions as potential pathogenic mechanisms in ribosomopathies.
Collapse
Affiliation(s)
- Wei Zhang
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Minjie Zhang
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Li Ma
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Supawadee Jariyasakulroj
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Qing Chang
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Ziying Lin
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Zhipeng Lu
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Jian-Fu Chen
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
7
|
Garadi Suresh H, Bonneil E, Albert B, Dominique C, Costanzo M, Pons C, Masinas MPD, Shuteriqi E, Shore D, Henras AK, Thibault P, Boone C, Andrews BJ. K29-linked free polyubiquitin chains affect ribosome biogenesis and direct ribosomal proteins to the intranuclear quality control compartment. Mol Cell 2024; 84:2337-2352.e9. [PMID: 38870935 PMCID: PMC11193623 DOI: 10.1016/j.molcel.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 01/25/2024] [Accepted: 05/17/2024] [Indexed: 06/15/2024]
Abstract
Ribosome assembly requires precise coordination between the production and assembly of ribosomal components. Mutations in ribosomal proteins that inhibit the assembly process or ribosome function are often associated with ribosomopathies, some of which are linked to defects in proteostasis. In this study, we examine the interplay between several yeast proteostasis enzymes, including deubiquitylases (DUBs) Ubp2 and Ubp14, and E3 ligases Ufd4 and Hul5, and we explore their roles in the regulation of the cellular levels of K29-linked unanchored polyubiquitin (polyUb) chains. Accumulating K29-linked unanchored polyUb chains associate with maturing ribosomes to disrupt their assembly, activate the ribosome assembly stress response (RASTR), and lead to the sequestration of ribosomal proteins at the intranuclear quality control compartment (INQ). These findings reveal the physiological relevance of INQ and provide insights into mechanisms of cellular toxicity associated with ribosomopathies.
Collapse
Affiliation(s)
- Harsha Garadi Suresh
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada.
| | - Eric Bonneil
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Benjamin Albert
- Department of Molecular Biology, Institute of Genetics and Genomics of Geneva (iGE3), Geneva, Switzerland; Molecular, Cellular and Developmental Biology Unit (MCD), Centre for Integrative Biology (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Carine Dominique
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre for Integrative Biology (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Michael Costanzo
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Carles Pons
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute for Science and Technology, Barcelona, Catalonia, Spain
| | - Myra Paz David Masinas
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Ermira Shuteriqi
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - David Shore
- Department of Molecular Biology, Institute of Genetics and Genomics of Geneva (iGE3), Geneva, Switzerland
| | - Anthony K Henras
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre for Integrative Biology (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC H3C 3J7, Canada; Department of Chemistry, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Charles Boone
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada.
| | - Brenda J Andrews
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada.
| |
Collapse
|
8
|
Khan S, Mishra RK. Multigenerational Effect of Heat Stress on the Drosophila melanogaster Sperm Proteome. J Proteome Res 2024; 23:2265-2278. [PMID: 38743012 DOI: 10.1021/acs.jproteome.4c00205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The effect of the parental environment on offspring through non-DNA sequence-based mechanisms, such as DNA methylation, chromatin modifications, noncoding RNAs, and proteins, could only be established after the conception of "epigenetics". These effects are now broadly referred to as multigenerational epigenetic effects. Despite accumulating evidence of male gamete-mediated multigenerational epigenetic inheritance, little is known about the factors that underlie heat stress-induced multigenerational epigenetic inheritance via the male germline in Drosophila. In this study, we address this gap by utilizing an established heat stress paradigm in Drosophila and investigating its multigenerational effect on the sperm proteome. Our findings indicate that multigenerational heat stress during the early embryonic stage significantly influences proteins in the sperm associated with translation, chromatin organization, microtubule-based processes, and the generation of metabolites and energy. Assessment of life-history traits revealed that reproductive fitness and stress tolerance remained unaffected by multigenerational heat stress. Our study offers initial insights into the chromatin-based epigenetic mechanisms as a plausible means of transmitting heat stress memory through the male germline in Drosophila. Furthermore, it sheds light on the repercussions of early embryonic heat stress on male reproductive potential. The data sets from this study are available at the ProteomeXchange Consortium under the identifier PXD037488.
Collapse
Affiliation(s)
- Shagufta Khan
- CSIR - Centre for Cellular and Molecular Biology, Hyderabad-500 007, Telangana, India
| | - Rakesh K Mishra
- CSIR - Centre for Cellular and Molecular Biology, Hyderabad-500 007, Telangana, India
- Tata Institute for Genetics and Society, Bengaluru-560 065, Karnataka, India
| |
Collapse
|
9
|
Yu X, Li B, Yan J, Li W, Tian H, Wang G, Zhou S, Dai Y. Cuproptotic nanoinducer-driven proteotoxic stress potentiates cancer immunotherapy by activating the mtDNA-cGAS-STING signaling. Biomaterials 2024; 307:122512. [PMID: 38430646 DOI: 10.1016/j.biomaterials.2024.122512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/31/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024]
Abstract
Proteotoxic stress, caused by the accumulation of abnormal unfolded or misfolded cellular proteins, can efficiently activate inflammatory innate immune response. Initiating the mitochondrial proteotoxic stress might go forward to enable the cytosolic release of intramitochondrial DNA (mtDNA) for the immune-related mtDNA-cGAS-STING activation, which however is easily eliminated by a cell self-protection, i.e., mitophagy. In light of this, a nanoinducer (PCM) is reported to trigger mitophagy-inhibited cuproptotic proteotoxicity. Through a simple metal-phenolic coordination, PCMs reduce the original Cu2+ with the phenolic group of PEG-polyphenol-chlorin e6 (Ce6) into Cu+. Cu+ thereby performs its high binding affinity to dihydrolipoamide S-acetyltransferase (DLAT) and aggregates DLAT for cuproptotic proteotoxic stress and mitochondrial respiratory inhibition. Meanwhile, intracellular oxygen saved from the respiratory failure can be utilized by PCM-conjugated Ce6 to boost the proteotoxic stress. Next, PCM-loaded mitophagy inhibitor (Mdivi-1) protects proteotoxic products from being mitophagy-eliminated, which allows more mtDNA to be released in the cytosol and successfully stimulate the cGAS-STING signaling. In vitro and in vivo studies reveal that PCMs can upregulate the tumor-infiltrated NK cells by 24% and enhance the cytotoxic killing of effector T cells. This study proposes an anti-tumor immunotherapy through mitochondrial proteotoxicity.
Collapse
Affiliation(s)
- Xinying Yu
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China; MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR 999078, China
| | - Bei Li
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China; MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR 999078, China.
| | - Jie Yan
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China; MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR 999078, China
| | - Wenxi Li
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China; MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR 999078, China
| | - Hao Tian
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China; MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR 999078, China
| | - Guohao Wang
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China; MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR 999078, China
| | - Songtao Zhou
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China; MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR 999078, China
| | - Yunlu Dai
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China; MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR 999078, China.
| |
Collapse
|
10
|
Sirozh O, Saez-Mas A, Jung B, Sanchez-Burgos L, Zarzuela E, Rodrigo-Perez S, Ventoso I, Lafarga V, Fernandez-Capetillo O. Nucleolar stress caused by arginine-rich peptides triggers a ribosomopathy and accelerates aging in mice. Mol Cell 2024; 84:1527-1540.e7. [PMID: 38521064 DOI: 10.1016/j.molcel.2024.02.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/11/2024] [Accepted: 02/26/2024] [Indexed: 03/25/2024]
Abstract
Nucleolar stress (NS) has been associated with age-related diseases such as cancer or neurodegeneration. To investigate how NS triggers toxicity, we used (PR)n arginine-rich peptides present in some neurodegenerative diseases as inducers of this perturbation. We here reveal that whereas (PR)n expression leads to a decrease in translation, this occurs concomitant with an accumulation of free ribosomal (r) proteins. Conversely, (PR)n-resistant cells have lower rates of r-protein synthesis, and targeting ribosome biogenesis by mTOR inhibition or MYC depletion alleviates (PR)n toxicity in vitro. In mice, systemic expression of (PR)97 drives widespread NS and accelerated aging, which is alleviated by rapamycin. Notably, the generalized accumulation of orphan r-proteins is a common outcome of chemical or genetic perturbations that induce NS. Together, our study presents a general model to explain how NS induces cellular toxicity and provides in vivo evidence supporting a role for NS as a driver of aging in mammals.
Collapse
Affiliation(s)
- Oleksandra Sirozh
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Anabel Saez-Mas
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Bomi Jung
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 21 Stockholm, Sweden
| | - Laura Sanchez-Burgos
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Eduardo Zarzuela
- Proteomics Unit, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Sara Rodrigo-Perez
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Ivan Ventoso
- Centro de Biologia Molecular Severo Ochoa (CSIC-UAM), Departamento de Biologia Molecular, Universidad Autonoma de Madrid (UAM), Madrid, Spain
| | - Vanesa Lafarga
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain.
| | - Oscar Fernandez-Capetillo
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain; Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 21 Stockholm, Sweden.
| |
Collapse
|
11
|
Krishnan S, Paul PK, Rodriguez TA. Cell competition and the regulation of protein homeostasis. Curr Opin Cell Biol 2024; 87:102323. [PMID: 38301378 DOI: 10.1016/j.ceb.2024.102323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/20/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024]
Abstract
The process of embryonic development involves remarkable cellular plasticity, which governs the coordination between cells necessary to build an organism. One role of this plasticity is to ensure that when aberrant cells are eliminated, growth adjustment occurs so that the size of the tissue is maintained. An important regulator of cellular plasticity that ensures cellular cooperation is a fitness-sensing mechanism termed cell competition. During cell competition, cells with defects that lower fitness but do not affect viability, such as those that cause impaired signal transduction, slower cellular growth, mitochondrial dysregulation or impaired protein homeostasis, are killed when surrounded by fitter cells. This is accompanied by the compensatory proliferation of the surviving cells. The underlying factors and mechanisms that demarcate certain cells as less fit than their neighbouring cells and losers of cell competition are still relatively unknown. Recent evidence has pointed to mitochondrial defects and proteotoxic stress as important hallmarks of these loser cells. Here, we review recent advances in this area, focussing on the role of mitochondrial activity and protein homeostasis as major mechanisms determining competitive cell fitness during development and the importance of cell proteostasis in determining cell fitness.
Collapse
Affiliation(s)
| | - Pranab K Paul
- National Heart and Lung Institute, Imperial College London, UK
| | | |
Collapse
|
12
|
Stanković D, Tain LS, Uhlirova M. Xrp1 governs the stress response program to spliceosome dysfunction. Nucleic Acids Res 2024; 52:2093-2111. [PMID: 38303573 PMCID: PMC10954486 DOI: 10.1093/nar/gkae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 01/03/2024] [Accepted: 01/16/2024] [Indexed: 02/03/2024] Open
Abstract
Co-transcriptional processing of nascent pre-mRNAs by the spliceosome is vital to regulating gene expression and maintaining genome integrity. Here, we show that the deficiency of functional U5 small nuclear ribonucleoprotein particles (snRNPs) in Drosophila imaginal cells causes extensive transcriptome remodeling and accumulation of highly mutagenic R-loops, triggering a robust stress response and cell cycle arrest. Despite compromised proliferative capacity, the U5 snRNP-deficient cells increased protein translation and cell size, causing intra-organ growth disbalance before being gradually eliminated via apoptosis. We identify the Xrp1-Irbp18 heterodimer as the primary driver of transcriptional and cellular stress program downstream of U5 snRNP malfunction. Knockdown of Xrp1 or Irbp18 in U5 snRNP-deficient cells attenuated JNK and p53 activity, restored normal cell cycle progression and growth, and inhibited cell death. Reducing Xrp1-Irbp18, however, did not rescue the splicing defects, highlighting the requirement of accurate splicing for cellular and tissue homeostasis. Our work provides novel insights into the crosstalk between splicing and the DNA damage response and defines the Xrp1-Irbp18 heterodimer as a critical sensor of spliceosome malfunction and mediator of the stress-induced cellular senescence program.
Collapse
Affiliation(s)
- Dimitrije Stanković
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Luke S Tain
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| | - Mirka Uhlirova
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| |
Collapse
|
13
|
Wang M, Vulcano S, Xu C, Xie R, Peng W, Wang J, Liu Q, Jia L, Li Z, Li Y. Potentials of ribosomopathy gene as pharmaceutical targets for cancer treatment. J Pharm Anal 2024; 14:308-320. [PMID: 38618250 PMCID: PMC11010632 DOI: 10.1016/j.jpha.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/29/2023] [Accepted: 10/07/2023] [Indexed: 04/16/2024] Open
Abstract
Ribosomopathies encompass a spectrum of disorders arising from impaired ribosome biogenesis and reduced functionality. Mutation or dysexpression of the genes that disturb any finely regulated steps of ribosome biogenesis can result in different types of ribosomopathies in clinic, collectively known as ribosomopathy genes. Emerging data suggest that ribosomopathy patients exhibit a significantly heightened susceptibility to cancer. Abnormal ribosome biogenesis and dysregulation of some ribosomopathy genes have also been found to be intimately associated with cancer development. The correlation between ribosome biogenesis or ribosomopathy and the development of malignancies has been well established. This work aims to review the recent advances in the research of ribosomopathy genes among human cancers and meanwhile, to excavate the potential role of these genes, which have not or rarely been reported in cancer, in the disease development across cancers. We plan to establish a theoretical framework between the ribosomopathy gene and cancer development, to further facilitate the potential of these genes as diagnostic biomarker as well as pharmaceutical targets for cancer treatment.
Collapse
Affiliation(s)
- Mengxin Wang
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Stephen Vulcano
- Autoimmunity and Inflammation Program, HSS Research Institute, Hospital for Special Surgery New York, New York, NY, 10021, USA
| | - Changlu Xu
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, CA, 90095, USA
| | - Renjian Xie
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
- School of Medical Information Engineering, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Weijie Peng
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Jie Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Qiaojun Liu
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Lee Jia
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Zhi Li
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, CA, 90095, USA
| | - Yumei Li
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| |
Collapse
|
14
|
Zhang W, Zhang M, Ma L, Jariyasakulroj S, Chang Q, Lin Z, Lu Z, Chen JF. Recapitulating and reversing human brain ribosomopathy defects via the maladaptive integrated stress response. SCIENCE ADVANCES 2024; 10:eadk1034. [PMID: 38306425 PMCID: PMC10836730 DOI: 10.1126/sciadv.adk1034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/03/2024] [Indexed: 02/04/2024]
Abstract
Animal or human models recapitulating brain ribosomopathies are incomplete, hampering development of urgently needed therapies. Here, we generated genetic mouse and human cerebral organoid models of brain ribosomopathies, caused by mutations in small nucleolar RNA (snoRNA) SNORD118. Both models exhibited protein synthesis loss, proteotoxic stress, and p53 activation and led to decreased proliferation and increased death of neural progenitor cells (NPCs), resulting in brain growth retardation, recapitulating features in human patients. Loss of SNORD118 function resulted in an aberrant upregulation of p-eIF2α, the mediator of integrated stress response (ISR). Using human iPSC cell-based screen, we identified small-molecule 2BAct, an ISR inhibitor, which potently reverses mutant NPC defects. Targeting ISR by 2BAct mitigated ribosomopathy defects in both cerebral organoid and mouse models. Thus, our SNORD118 mutant organoid and mice recapitulate human brain ribosomopathies and cross-validate maladaptive ISR as a key disease-driving mechanism, pointing to a therapeutic intervention strategy.
Collapse
Affiliation(s)
- Wei Zhang
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Minjie Zhang
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Li Ma
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Supawadee Jariyasakulroj
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Qing Chang
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Ziying Lin
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Zhipeng Lu
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Jian-Fu Chen
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
15
|
Paul PK, Umarvaish S, Bajaj S, S. RF, Mohan H, Annaert W, Chaudhary V. Maintenance of proteostasis by Drosophila Rer1 is essential for competitive cell survival and Myc-driven overgrowth. PLoS Genet 2024; 20:e1011171. [PMID: 38408084 PMCID: PMC10919865 DOI: 10.1371/journal.pgen.1011171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 03/07/2024] [Accepted: 02/05/2024] [Indexed: 02/28/2024] Open
Abstract
Defects in protein homeostasis can induce proteotoxic stress, affecting cellular fitness and, consequently, overall tissue health. In various growing tissues, cell competition based mechanisms facilitate detection and elimination of these compromised, often referred to as 'loser', cells by the healthier neighbors. The precise connection between proteotoxic stress and competitive cell survival remains largely elusive. Here, we reveal the function of an endoplasmic reticulum (ER) and Golgi localized protein Rer1 in the regulation of protein homeostasis in the developing Drosophila wing epithelium. Our results show that loss of Rer1 leads to proteotoxic stress and PERK-mediated phosphorylation of eukaryotic initiation factor 2α. Clonal analysis showed that rer1 mutant cells are identified as losers and eliminated through cell competition. Interestingly, we find that Rer1 levels are upregulated upon Myc-overexpression that causes overgrowth, albeit under high proteotoxic stress. Our results suggest that increased levels of Rer1 provide cytoprotection to Myc-overexpressing cells by alleviating the proteotoxic stress and thereby supporting Myc-driven overgrowth. In summary, these observations demonstrate that Rer1 acts as a novel regulator of proteostasis in Drosophila and reveal its role in competitive cell survival.
Collapse
Affiliation(s)
- Pranab Kumar Paul
- Cell and developmental signaling laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India
| | - Shruti Umarvaish
- Cell and developmental signaling laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India
| | - Shivani Bajaj
- Cell and developmental signaling laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India
| | - Rishana Farin S.
- Cell and developmental signaling laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India
| | - Hrudya Mohan
- Cell and developmental signaling laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India
| | - Wim Annaert
- Laboratory for Membrane Trafficking, VIB-Center for Brain and Disease Research, KU Leuven, Leuven, Belgium, and Department of Neurosciences, KU Leuven, Gasthuisberg, Leuven, Belgium
| | - Varun Chaudhary
- Cell and developmental signaling laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India
| |
Collapse
|
16
|
Kiparaki M, Baker NE. Protocol for assessing translation in living Drosophila imaginal discs by O-propargyl-puromycin incorporation. STAR Protoc 2023; 4:102653. [PMID: 37862174 PMCID: PMC10616417 DOI: 10.1016/j.xpro.2023.102653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/22/2023] [Accepted: 09/28/2023] [Indexed: 10/22/2023] Open
Abstract
Translation is a fundamental process of cellular behavior. Here, we present a protocol for measuring translation in Drosophila epithelial tissues using O-propargyl-puromycin (OPP), a puromycin derivative. We detail steps for larval dissection, OPP incorporation, fixation, OPP labeling, immunostaining, and imaging. We also provide details of quantification analysis. Significantly, OPP addition to methionine-containing media enables polypeptide labeling in living cells. Here, we study wing imaginal discs, an excellent model system for investigating growth, proliferation, pattern formation, differentiation, and cell death. For complete details on the use and execution of this protocol, please refer to Lee et al. (2018), Ji et al. (2019), and Kiparaki et al. (2022).1,2,3.
Collapse
Affiliation(s)
- Marianthi Kiparaki
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming", 16672 Vari, Attiki, Greece.
| | - Nicholas E Baker
- Department of Genetics, Albert Einstein College of Medicine, The Bronx, NY 10461, USA; Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, The Bronx, NY 10461, USA; Department of Opthalmology and Visual Sciences, Albert Einstein College of Medicine, The Bronx, NY 10461, USA.
| |
Collapse
|
17
|
Yamada T, Yoshinari Y, Tobo M, Habara O, Nishimura T. Nacα protects the larval fat body from cell death by maintaining cellular proteostasis in Drosophila. Nat Commun 2023; 14:5328. [PMID: 37658058 PMCID: PMC10474126 DOI: 10.1038/s41467-023-41103-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/17/2023] [Indexed: 09/03/2023] Open
Abstract
Protein homeostasis (proteostasis) is crucial for the maintenance of cellular homeostasis. Impairment of proteostasis activates proteotoxic and unfolded protein response pathways to resolve cellular stress or induce apoptosis in damaged cells. However, the responses of individual tissues to proteotoxic stress and evoking cell death program have not been extensively explored in vivo. Here, we show that a reduction in Nascent polypeptide-associated complex protein alpha subunit (Nacα) specifically and progressively induces cell death in Drosophila fat body cells. Nacα mutants disrupt both ER integrity and the proteasomal degradation system, resulting in caspase activation through JNK and p53. Although forced activation of the JNK and p53 pathways was insufficient to induce cell death in the fat body, the reduction of Nacα sensitized fat body cells to intrinsic and environmental stresses. Reducing overall protein synthesis by mTor inhibition or Minute mutants alleviated the cell death phenotype in Nacα mutant fat body cells. Our work revealed that Nacα is crucial for protecting the fat body from cell death by maintaining cellular proteostasis, thus demonstrating the coexistence of a unique vulnerability and cell death resistance in the fat body.
Collapse
Affiliation(s)
- Takayuki Yamada
- Laboratory for Growth Control Signaling, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Hyogo, 650-0047, Japan
| | - Yuto Yoshinari
- Laboratory of Metabolic Regulation and Genetics, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, 371-8512, Japan
| | - Masayuki Tobo
- Laboratory of Metabolic Regulation and Genetics, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, 371-8512, Japan
| | - Okiko Habara
- Laboratory for Growth Control Signaling, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Hyogo, 650-0047, Japan
| | - Takashi Nishimura
- Laboratory for Growth Control Signaling, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Hyogo, 650-0047, Japan.
- Laboratory of Metabolic Regulation and Genetics, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, 371-8512, Japan.
| |
Collapse
|
18
|
Xue M, Cong F, Zheng W, Xu R, Liu X, Bao H, Sung YY, Xi Y, He F, Ma J, Yang X, Ge W. Loss of Paip1 causes translation reduction and induces apoptotic cell death through ISR activation and Xrp1. Cell Death Discov 2023; 9:288. [PMID: 37543696 PMCID: PMC10404277 DOI: 10.1038/s41420-023-01587-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/07/2023] Open
Abstract
Regulation of protein translation initiation is tightly associated with cell growth and survival. Here, we identify Paip1, the Drosophila homolog of the translation initiation factor PAIP1, and analyze its role during development. Through genetic analysis, we find that loss of Paip1 causes reduced protein translation and pupal lethality. Furthermore, tissue specific knockdown of Paip1 results in apoptotic cell death in the wing imaginal disc. Paip1 depletion leads to increased proteotoxic stress and activation of the integrated stress response (ISR) pathway. Mechanistically, we show that loss of Paip1 promotes phosphorylation of eIF2α via the kinase PERK, leading to apoptotic cell death. Moreover, Paip1 depletion upregulates the transcription factor gene Xrp1, which contributes to apoptotic cell death and eIF2α phosphorylation. We further show that loss of Paip1 leads to an increase in Xrp1 translation mediated by its 5'UTR. These findings uncover a novel mechanism that links translation impairment to tissue homeostasis and establish a role of ISR activation and Xrp1 in promoting cell death.
Collapse
Affiliation(s)
- Maoguang Xue
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Fei Cong
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Wanling Zheng
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Ruoqing Xu
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Xiaoyu Liu
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Hongcun Bao
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Ying Ying Sung
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Yongmei Xi
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Feng He
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Jun Ma
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.
| | - Xiaohang Yang
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.
| | - Wanzhong Ge
- Division of Human Reproduction and Developmental Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
19
|
Kiparaki M, Baker NE. Ribosomal protein mutations and cell competition: autonomous and nonautonomous effects on a stress response. Genetics 2023; 224:iyad080. [PMID: 37267156 PMCID: PMC10691752 DOI: 10.1093/genetics/iyad080] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/16/2023] [Indexed: 06/04/2023] Open
Abstract
Ribosomal proteins (Rps) are essential for viability. Genetic mutations affecting Rp genes were first discovered in Drosophila, where they represent a major class of haploinsufficient mutations. One mutant copy gives rise to the dominant "Minute" phenotype, characterized by slow growth and small, thin bristles. Wild-type (WT) and Minute cells compete in mosaics, that is, Rp+/- are preferentially lost when their neighbors are of the wild-type genotype. Many features of Rp gene haploinsufficiency (i.e. Rp+/- phenotypes) are mediated by a transcriptional program. In Drosophila, reduced translation and slow growth are under the control of Xrp1, a bZip-domain transcription factor induced in Rp mutant cells that leads ultimately to the phosphorylation of eIF2α and consequently inhibition of most translation. Rp mutant phenotypes are also mediated transcriptionally in yeast and in mammals. In mammals, the Impaired Ribosome Biogenesis Checkpoint activates p53. Recent findings link Rp mutant phenotypes to other cellular stresses, including the DNA damage response and endoplasmic reticulum stress. We suggest that cell competition results from nonautonomous inputs to stress responses, bringing decisions between adaptive and apoptotic outcomes under the influence of nearby cells. In Drosophila, cell competition eliminates aneuploid cells in which loss of chromosome leads to Rp gene haploinsufficiency. The effects of Rp gene mutations on the whole organism, in Minute flies or in humans with Diamond-Blackfan Anemia, may be inevitable consequences of pathways that are useful in eliminating individual cells from mosaics. Alternatively, apparently deleterious whole organism phenotypes might be adaptive, preventing even more detrimental outcomes. In mammals, for example, p53 activation appears to suppress oncogenic effects of Rp gene haploinsufficiency.
Collapse
Affiliation(s)
- Marianthi Kiparaki
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, Vari 16672, Greece
| | - Nicholas E Baker
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Visual Sciences and Ophthalmology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
20
|
Baumgartner ME, Langton PF, Logeay R, Mastrogiannopoulos A, Nilsson-Takeuchi A, Kucinski I, Lavalou J, Piddini E. The PECAn image and statistical analysis pipeline identifies Minute cell competition genes and features. Nat Commun 2023; 14:2686. [PMID: 37164982 PMCID: PMC10172353 DOI: 10.1038/s41467-023-38287-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 04/24/2023] [Indexed: 05/12/2023] Open
Abstract
Investigating organ biology often requires methodologies to induce genetically distinct clones within a living tissue. However, the 3D nature of clones makes sample image analysis challenging and slow, limiting the amount of information that can be extracted manually. Here we develop PECAn, a pipeline for image processing and statistical data analysis of complex multi-genotype 3D images. PECAn includes data handling, machine-learning-enabled segmentation, multivariant statistical analysis, and graph generation. This enables researchers to perform rigorous analyses rapidly and at scale, without requiring programming skills. We demonstrate the power of this pipeline by applying it to the study of Minute cell competition. We find an unappreciated sexual dimorphism in Minute cell growth in competing wing discs and identify, by statistical regression analysis, tissue parameters that model and correlate with competitive death. Furthermore, using PECAn, we identify several genes with a role in cell competition by conducting an RNAi-based screen.
Collapse
Affiliation(s)
- Michael E Baumgartner
- School of Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK.
- Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA, 19104, USA.
| | - Paul F Langton
- School of Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Remi Logeay
- School of Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Alex Mastrogiannopoulos
- School of Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Anna Nilsson-Takeuchi
- School of Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
- Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Iwo Kucinski
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Zoology Department, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
- Wellcome & MRC Cambridge Stem Cell Institute and Department of Haematology, University of Cambridge, Cambridge, UK
| | - Jules Lavalou
- School of Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK
| | - Eugenia Piddini
- School of Cellular and Molecular Medicine, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, BS8 1TD, UK.
| |
Collapse
|
21
|
Suresh HG, Bonneil E, Albert B, Dominique C, Costanzo M, Pons C, David Masinas MP, Shuteriqi E, Shore D, Henras AK, Thibault P, Boone C, Andrews BJ. K29-linked unanchored polyubiquitin chains disrupt ribosome biogenesis and direct ribosomal proteins to the Intranuclear Quality control compartment (INQ). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.03.539259. [PMID: 37205480 PMCID: PMC10187189 DOI: 10.1101/2023.05.03.539259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Ribosome assembly requires precise coordination between the production and assembly of ribosomal components. Mutations in ribosomal proteins that inhibit the assembly process or ribosome function are often associated with Ribosomopathies, some of which are linked to defects in proteostasis. In this study, we examine the interplay between several yeast proteostasis enzymes, including deubiquitylases (DUBs), Ubp2 and Ubp14, and E3 ligases, Ufd4 and Hul5, and we explore their roles in the regulation of the cellular levels of K29-linked unanchored polyubiquitin (polyUb) chains. Accumulating K29-linked unanchored polyUb chains associate with maturing ribosomes to disrupt their assembly, activate the Ribosome assembly stress response (RASTR), and lead to the sequestration of ribosomal proteins at the Intranuclear Quality control compartment (INQ). These findings reveal the physiological relevance of INQ and provide insights into mechanisms of cellular toxicity associated with Ribosomopathies.
Collapse
|
22
|
Ma L, Liang C, Wang J, Chang Q, Wang Y, Zhang W, Du Y, Sadan J, Chen JF. Reversing lysosome-ribosome circuit dysregulation mitigates C9FTD/ALS neurodegeneration and behaviors. Hum Mol Genet 2023; 32:1252-1265. [PMID: 36322143 PMCID: PMC10077508 DOI: 10.1093/hmg/ddac271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/22/2022] [Accepted: 10/27/2022] [Indexed: 12/14/2022] Open
Abstract
G4C2 repeat expansion in C9orf72 causes the most common familial frontotemporal dementia and amyotrophic lateral sclerosis (C9FTD/ALS). The pathogenesis includes haploinsufficiency of C9orf72, which forms a protein complex with Smcr8, as well as G4C2 repeat-induced gain of function including toxic dipeptide repeats (DPRs). The key in vivo disease-driving mechanisms and how loss- and gain-of-function interplay remain poorly understood. Here, we identified dysregulation of a lysosome-ribosome biogenesis circuit as an early and key disease mechanism using a physiologically relevant mouse model with combined loss- and gain-of-function across the aging process. C9orf72 deficiency exacerbates FTD/ALS-like pathologies and behaviors in C9ORF72 bacterial artificial chromosome (C9-BAC) mice with G4C2 repeats under endogenous regulatory elements from patients. Single nucleus RNA sequencing (snRNA-seq) and bulk RNA-seq revealed that C9orf72 depletion disrupts lysosomes in neurons and leads to transcriptional dysregulation of ribosomal protein genes, which are likely due to the proteotoxic stress response and resemble ribosomopathy defects. Importantly, ectopic expression of C9orf72 or its partner Smcr8 in C9FTD/ALS mutant mice promotes lysosomal functions and restores ribosome biogenesis gene transcription, resulting in the mitigation of DPR accumulation, neurodegeneration as well as FTD/ALS-like motor and cognitive behaviors. Therefore, we conclude that loss- and gain-of-function crosstalk in C9FTD/ALS converges on neuronal dysregulation of a lysosome-ribosome biogenesis circuit leading to proteotoxicity, neurodegeneration and behavioral defects.
Collapse
Affiliation(s)
- Li Ma
- Center for Craniofacial Molecular Biology, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Chen Liang
- Center for Craniofacial Molecular Biology, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Jing Wang
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Qing Chang
- Center for Craniofacial Molecular Biology, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Yuan Wang
- Center for Craniofacial Molecular Biology, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Wei Zhang
- Center for Craniofacial Molecular Biology, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Yuanning Du
- Center for Craniofacial Molecular Biology, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Jotham Sadan
- Center for Craniofacial Molecular Biology, University of Southern California (USC), Los Angeles, CA 90033, USA
| | - Jian-Fu Chen
- Center for Craniofacial Molecular Biology, University of Southern California (USC), Los Angeles, CA 90033, USA
| |
Collapse
|
23
|
Yusupova M, Fuchs Y. To not love thy neighbor: mechanisms of cell competition in stem cells and beyond. Cell Death Differ 2023; 30:979-991. [PMID: 36813919 PMCID: PMC10070350 DOI: 10.1038/s41418-023-01114-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 12/28/2022] [Accepted: 01/09/2023] [Indexed: 02/24/2023] Open
Abstract
Cell competition describes the process in which cells of greater fitness are capable of sensing and instructing elimination of lesser fit mutant cells. Since its discovery in Drosophila, cell competition has been established as a critical regulator of organismal development, homeostasis, and disease progression. It is therefore unsurprising that stem cells (SCs), which are central to these processes, harness cell competition to remove aberrant cells and preserve tissue integrity. Here, we describe pioneering studies of cell competition across a variety of cellular contexts and organisms, with the ultimate goal of better understanding competition in mammalian SCs. Furthermore, we explore the modes through which SC competition takes place and how this facilitates normal cellular function or contributes to pathological states. Finally, we discuss how understanding of this critical phenomenon will enable targeting of SC-driven processes, including regeneration and tumor progression.
Collapse
Affiliation(s)
- Marianna Yusupova
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion Israel Institute of Technology, Haifa, Israel
- Lorry Lokey Interdisciplinary Center for Life Sciences & Engineering, Technion Israel Institute of Technology, Haifa, Israel
| | - Yaron Fuchs
- Laboratory of Stem Cell Biology and Regenerative Medicine, Department of Biology, Technion Israel Institute of Technology, Haifa, Israel.
- Lorry Lokey Interdisciplinary Center for Life Sciences & Engineering, Technion Israel Institute of Technology, Haifa, Israel.
- Augmanity, Rehovot, Israel.
| |
Collapse
|
24
|
Abstract
Organ development and homeostasis involve dynamic interactions between individual cells that collectively regulate tissue architecture and function. To ensure the highest tissue fidelity, equally fit cell populations are continuously renewed by stochastic replacement events, while cells perceived as less fit are actively removed by their fitter counterparts. This renewal is mediated by surveillance mechanisms that are collectively known as cell competition. Recent studies have revealed that cell competition has roles in most, if not all, developing and adult tissues. They have also established that cell competition functions both as a tumour-suppressive mechanism and as a tumour-promoting mechanism, thereby critically influencing cancer initiation and development. This Review discusses the latest insights into the mechanisms of cell competition and its different roles during embryonic development, homeostasis and cancer.
Collapse
|
25
|
Corman A, Sirozh O, Lafarga V, Fernandez-Capetillo O. Targeting the nucleolus as a therapeutic strategy in human disease. Trends Biochem Sci 2023; 48:274-287. [PMID: 36229381 DOI: 10.1016/j.tibs.2022.09.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/07/2022]
Abstract
The nucleolus is the site of ribosome biogenesis, one of the most resource-intensive processes in eukaryotic cells. Accordingly, nucleolar morphology and activity are highly responsive to growth signaling and nucleolar insults which are collectively included in the actively evolving concept of nucleolar stress. Importantly, nucleolar alterations are a prominent feature of multiple human pathologies, including cancer and neurodegeneration, as well as being associated with aging. The past decades have seen numerous attempts to isolate compounds targeting different facets of nucleolar activity. We provide an overview of therapeutic opportunities for targeting nucleoli in different pathologies and currently available therapies.
Collapse
Affiliation(s)
- Alba Corman
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Oleksandra Sirozh
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Vanesa Lafarga
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain.
| | - Oscar Fernandez-Capetillo
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden; Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain.
| |
Collapse
|
26
|
Ni C, Buszczak M. The homeostatic regulation of ribosome biogenesis. Semin Cell Dev Biol 2023; 136:13-26. [PMID: 35440410 PMCID: PMC9569395 DOI: 10.1016/j.semcdb.2022.03.043] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 12/22/2022]
Abstract
The continued integrity of biological systems depends on a balance between interdependent elements at the molecular, cellular, and organismal levels. This is particularly true for the generation of ribosomes, which influence almost every aspect of cell and organismal biology. Ribosome biogenesis (RiBi) is an energetically demanding process that involves all three RNA polymerases, numerous RNA processing factors, chaperones, and the coordinated expression of 79-80 ribosomal proteins (r-proteins). Work over the last several decades has revealed that the dynamic regulation of ribosome production represents a major mechanism by which cells maintain homeostasis in response to changing environmental conditions and acute stress. More recent studies suggest that cells and tissues within multicellular organisms exhibit dramatically different levels of ribosome production and protein synthesis, marked by the differential expression of RiBi factors. Thus, distinct bottlenecks in the RiBi process, downstream of rRNA transcription, may exist within different cell populations of multicellular organisms during development and in adulthood. This review will focus on our current understanding of the mechanisms that link the complex molecular process of ribosome biogenesis with cellular and organismal physiology. We will discuss diverse topics including how different steps in the RiBi process are coordinated with one another, how MYC and mTOR impact RiBi, and how RiBi levels change between stem cells and their differentiated progeny. In turn, we will also review how regulated changes in ribosome production itself can feedback to influence cell fate and function.
Collapse
Affiliation(s)
- Chunyang Ni
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Michael Buszczak
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA.
| |
Collapse
|
27
|
Comerford SA, Hinnant EA, Chen Y, Hammer RE. Hepatic ribosomal protein S6 (Rps6) insufficiency results in failed bile duct development and loss of hepatocyte viability; a ribosomopathy-like phenotype that is partially p53-dependent. PLoS Genet 2023; 19:e1010595. [PMID: 36656901 PMCID: PMC9888725 DOI: 10.1371/journal.pgen.1010595] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/31/2023] [Accepted: 12/26/2022] [Indexed: 01/20/2023] Open
Abstract
Defective ribosome biogenesis (RiBi) underlies a group of clinically diverse human diseases collectively known as the ribosomopathies, core manifestations of which include cytopenias and developmental abnormalities that are believed to stem primarily from an inability to synthesize adequate numbers of ribosomes and concomitant activation of p53. The importance of a correctly functioning RiBi machinery for maintaining tissue homeostasis is illustrated by the observation that, despite having a paucity of certain cell types in early life, ribosomopathy patients have an increased risk for developing cancer later in life. This suggests that hypoproliferative states trigger adaptive responses that can, over time, become maladaptive and inadvertently drive unchecked hyperproliferation and predispose to cancer. Here we describe an experimentally induced ribosomopathy in the mouse and show that a normal level of hepatic ribosomal protein S6 (Rps6) is required for proper bile duct development and preservation of hepatocyte viability and that its insufficiency later promotes overgrowth and predisposes to liver cancer which is accelerated in the absence of the tumor-suppressor PTEN. We also show that the overexpression of c-Myc in the liver ameliorates, while expression of a mutant hyperstable form of p53 partially recapitulates specific aspects of the hepatopathies induced by Rps6 deletion. Surprisingly, co-deletion of p53 in the Rps6-deficient background fails to restore biliary development or significantly improve hepatic function. This study not only reveals a previously unappreciated dependence of the developing liver on adequate levels of Rps6 and exquisitely controlled p53 signaling, but suggests that the increased cancer risk in ribosomopathy patients may, in part, stem from an inability to preserve normal tissue homeostasis in the face of chronic injury and regeneration.
Collapse
Affiliation(s)
- Sarah A. Comerford
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Elizabeth A. Hinnant
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Yidong Chen
- Department of Population Health Sciences, University of Texas Health San Antonio, San Antonio, Texas, United States of America
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, Texas. United States of America
| | - Robert E. Hammer
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
28
|
Kumar A, Baker NE. The CRL4 E3 ligase Mahjong/DCAF1 controls cell competition through the transcription factor Xrp1, independently of polarity genes. Development 2022; 149:dev200795. [PMID: 36278853 PMCID: PMC9845748 DOI: 10.1242/dev.200795] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022]
Abstract
Cell competition, the elimination of cells surrounded by more fit neighbors, is proposed to suppress tumorigenesis. Mahjong (Mahj), a ubiquitin E3 ligase substrate receptor, has been thought to mediate competition of cells mutated for lethal giant larvae (lgl), a neoplastic tumor suppressor that defines apical-basal polarity of epithelial cells. Here, we show that Drosophila cells mutated for mahjong, but not for lgl [l(2)gl], are competed because they express the bZip-domain transcription factor Xrp1, already known to eliminate cells heterozygous for ribosomal protein gene mutations (Rp/+ cells). Xrp1 expression in mahj mutant cells results in activation of JNK signaling, autophagosome accumulation, eIF2α phosphorylation and lower translation, just as in Rp/+ cells. Cells mutated for damage DNA binding-protein 1 (ddb1; pic) or cullin 4 (cul4), which encode E3 ligase partners of Mahj, also display Xrp1-dependent phenotypes, as does knockdown of proteasome subunits. Our data suggest a new model of mahj-mediated cell competition that is independent of apical-basal polarity and couples Xrp1 to protein turnover.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Nicholas E. Baker
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| |
Collapse
|
29
|
Baker NE, Montagna C. Reducing the aneuploid cell burden - cell competition and the ribosome connection. Dis Model Mech 2022; 15:dmm049673. [PMID: 36444717 PMCID: PMC10621665 DOI: 10.1242/dmm.049673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Aneuploidy, the gain or loss of chromosomes, is the cause of birth defects and miscarriage and is almost ubiquitous in cancer cells. Mosaic aneuploidy causes cancer predisposition, as well as age-related disorders. Despite the cell-intrinsic mechanisms that prevent aneuploidy, sporadic aneuploid cells do arise in otherwise normal tissues. These aneuploid cells can differ from normal cells in the copy number of specific dose-sensitive genes, and may also experience proteotoxic stress associated with mismatched expression levels of many proteins. These differences may mark aneuploid cells for recognition and elimination. The ribosomal protein gene dose in aneuploid cells could be important because, in Drosophila, haploinsufficiency for these genes leads to elimination by the process of cell competition. Constitutive haploinsufficiency for human ribosomal protein genes causes Diamond Blackfan anemia, but it is not yet known whether ribosomal protein gene dose contributes to aneuploid cell elimination in mammals. In this Review, we discuss whether cell competition on the basis of ribosomal protein gene dose is a tumor suppressor mechanism, reducing the accumulation of aneuploid cells. We also discuss how this might relate to the tumor suppressor function of p53 and the p53-mediated elimination of aneuploid cells from murine embryos, and how cell competition defects could contribute to the cancer predisposition of Diamond Blackfan anemia.
Collapse
Affiliation(s)
- Nicholas E. Baker
- Departments of Genetics, Developmental and Molecular Biology, and Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Cristina Montagna
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08901, USA
| |
Collapse
|
30
|
Deliu LP, Turingan M, Jadir D, Lee B, Ghosh A, Grewal SS. Serotonergic neuron ribosomal proteins regulate the neuroendocrine control of Drosophila development. PLoS Genet 2022; 18:e1010371. [PMID: 36048889 PMCID: PMC9473637 DOI: 10.1371/journal.pgen.1010371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 09/14/2022] [Accepted: 07/29/2022] [Indexed: 11/21/2022] Open
Abstract
The regulation of ribosome function is a conserved mechanism of growth control. While studies in single cell systems have defined how ribosomes contribute to cell growth, the mechanisms that link ribosome function to organismal growth are less clear. Here we explore this issue using Drosophila Minutes, a class of heterozygous mutants for ribosomal proteins. These animals exhibit a delay in larval development caused by decreased production of the steroid hormone ecdysone, the main regulator of larval maturation. We found that this developmental delay is not caused by decreases in either global ribosome numbers or translation rates. Instead, we show that they are due in part to loss of Rp function specifically in a subset of serotonin (5-HT) neurons that innervate the prothoracic gland to control ecdysone production. We find that these effects do not occur due to altered protein synthesis or proteostasis, but that Minute animals have reduced expression of synaptotagmin, a synaptic vesicle protein, and that the Minute developmental delay can be partially reversed by overexpression of synaptic vesicle proteins in 5-HTergic cells. These results identify a 5-HT cell-specific role for ribosomal function in the neuroendocrine control of animal growth and development.
Collapse
Affiliation(s)
- Lisa Patricia Deliu
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta, Canada
| | - Michael Turingan
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta, Canada
| | - Deeshpaul Jadir
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta, Canada
| | - Byoungchun Lee
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta, Canada
| | - Abhishek Ghosh
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta, Canada
| | - Savraj Singh Grewal
- Clark H Smith Brain Tumour Centre, Arnie Charbonneau Cancer Institute, Alberta Children’s Hospital Research Institute, and Department of Biochemistry and Molecular Biology Calgary, University of Calgary, Alberta, Canada
| |
Collapse
|
31
|
He Z, Fang Y, Li DC, Chen DS, Wu F. Toxicity of procymidone to Bombyx mori based on physiological and transcriptomic analysis. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 110:e21906. [PMID: 35398926 DOI: 10.1002/arch.21906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 06/14/2023]
Abstract
Procymidone is widely used in vegetables and fruits because of its broad-spectrum and high efficiency. However, it is unclear whether procymidone can affect silkworm (Bombyx mori) growth and cocoon production. This study investigated the effects of procymidone on the growth and cocoon production of silkworms. We analyzed the growth, and cocoon quality of fifth instar larvae fed on mulberry leaves saturated with different concentrations (2.5, 5, and 10 mg/ml) of procymidone and the control. Results showed that procymidone supplementation decreased the larval growth and cocoon quality compared to the control group, suggesting that procymidone had toxicity to silkworms. Additionally, after transcriptomic analysis, we identified 396 significantly differentially expressed genes (DEGs) in the presence of procymidone. Gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) illustrated that these DEGs were closely related to metabolism. Taken together, these results confirmed that procymidone could cause toxicity by affecting metabolism in silkworm larvae. We believed that these results could provide important materials for the effect of procymidone on silkworms and gave us some clues for pesticides used in the mulberry garden.
Collapse
Affiliation(s)
- Zhen He
- Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Yang Fang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, Shandong, China
| | - De-Chen Li
- Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Deng-Song Chen
- Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Fan Wu
- Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
| |
Collapse
|
32
|
Baumgartner ME, Mastrogiannopoulos A, Kucinski I, Langton PF, Piddini E. The Gr64 cluster of gustatory receptors promotes survival and proteostasis of epithelial cells in Drosophila. PLoS Biol 2022; 20:e3001710. [PMID: 35862315 PMCID: PMC9302837 DOI: 10.1371/journal.pbio.3001710] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 06/14/2022] [Indexed: 12/26/2022] Open
Abstract
Gustatory Receptor 64 (Gr64) genes are a cluster of 6 neuronally expressed receptors involved in sweet taste sensation in Drosophila melanogaster. Gr64s modulate calcium signalling and excitatory responses to several different sugars. Here, we discover an unexpected nonneuronal function of Gr64 receptors and show that they promote proteostasis in epithelial cells affected by proteotoxic stress. Using heterozygous mutations in ribosome proteins (Rp), which have recently been shown to induce proteotoxic stress and protein aggregates in cells, we show that Rp/+ cells in Drosophila imaginal discs up-regulate expression of the entire Gr64 cluster and depend on these receptors for survival. We further show that loss of Gr64 in Rp/+ cells exacerbates stress pathway activation and proteotoxic stress by negatively affecting autophagy and proteasome function. This work identifies a noncanonical role in proteostasis maintenance for a family of gustatory receptors known for their function in neuronal sensation.
Collapse
Affiliation(s)
- Michael E. Baumgartner
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | | | - Iwo Kucinski
- The Wellcome Trust/Cancer Research UK Gurdon Institute and Zoology Department, University of Cambridge, Cambridge, United Kingdom
| | - Paul F. Langton
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Eugenia Piddini
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
33
|
Abstract
Cell growth relies upon the ability to produce new proteins, which requires energy and chemical precursors, and an adequate supply of the molecular machines for protein synthesis - ribosomes. Although not widely appreciated, ribosomes are remarkably abundant in all cells. For example, in a rapidly growing yeast cell there are ∼2-4 x 105 ribosomes, produced and exported to the cytoplasm at a rate of ∼2,000-4,000 per minute, with ribosomal proteins making up ∼50% of total cellular protein number and ∼30% of cellular protein mass. Even in a typical human cell ribosomal proteins constitute ∼4-6% of total protein mass, and ribosomes are present at ∼107 per cell. We begin this primer by exploring the tight relationship between ribosome production and cell growth, which has important implications not just for the cell's global protein expression profile and maximum growth rate, but also for the molecular composition of the ribosome itself. We then discuss how and to what extent the expression of the RNA and protein components of ribosomes is fine-tuned to match the cell's needs and minimise waste. Finally, we highlight the importance of coordinated ribosomal RNA (rRNA) and ribosomal protein expression in eukaryotes and explore how defects in this process are associated with proteotoxicity and disease. A central underlying question addressed throughout is whether regulation of ribosome biogenesis has evolved to optimise energy efficiency or is instead (or in addition) driven by other goals, such as maximising cell growth rate, promoting adaptation to changing environmental conditions, or maintaining the stability of the cellular proteome.
Collapse
|
34
|
Del Borrello G, Miano M, Micalizzi C, Lupia M, Ceccherini I, Grossi A, Cavalli A, Gustincich S, Rusmini M, Faraci M, Dell'Orso G, Ramenghi U, Mesini A, Ricci E, Schiavone M, Di Iorgi N, Dufour C. Sirolimus Restores Erythropoiesis and Controls Immune Dysregulation in a Child With Cartilage-Hair Hypoplasia: A Case Report. Front Immunol 2022; 13:893000. [PMID: 35663969 PMCID: PMC9160192 DOI: 10.3389/fimmu.2022.893000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/19/2022] [Indexed: 12/22/2022] Open
Abstract
Cartilage-hair hypoplasia (CHH) is a syndromic immunodeficiency characterized by metaphyseal dysplasia, cancer predisposition, and varying degrees of anemia. It may present as severe combined immunodeficiency in infancy, or slowly progress until fully manifesting in late adolescence/adulthood. No targeted treatment is currently available, and patients are usually managed with supportive measures, or are offered a bone marrow transplant if the clinical phenotype is severe and a suitable donor is available. We report the case of a young girl presenting with transfusion-dependent erythropoietic failure and immunological features resembling autoimmune lymphoproliferative syndrome who responded well to empirical sirolimus. She later developed a marked growth delay, which was ultimately attributed to metaphyseal dysplasia. A diagnosis of CHH was reached through whole-genome sequencing (WGS), after a less sensitive genetic diagnostic strategy failed. The patient eventually underwent a haploidentical bone marrow transplant due to progressive combined immunodeficiency manifested as cryptococcal meningoencephalitis. This case illustrates the potential role of sirolimus in correcting anemia and partially controlling the immune aberrations associated with CHH, and serves as a reminder of the invaluable role of WGS in diagnosing patients with complex and atypical presentations.
Collapse
Affiliation(s)
- Giovanni Del Borrello
- Hematology Unit, Istituto di Ricerca e Cura a Carattere Scintifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Maurizio Miano
- Hematology Unit, Istituto di Ricerca e Cura a Carattere Scintifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Concetta Micalizzi
- Hematology Unit, Istituto di Ricerca e Cura a Carattere Scintifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Michela Lupia
- Hematology Unit, Istituto di Ricerca e Cura a Carattere Scintifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Isabella Ceccherini
- Unitá Operativa Semplice Dipartimentale (UOSD) Genetics and Genomics of Rare Diseases, Istituto di Ricerca e Cura a Carattere Scintifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Alice Grossi
- Unitá Operativa Semplice Dipartimentale (UOSD) Genetics and Genomics of Rare Diseases, Istituto di Ricerca e Cura a Carattere Scintifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | | | | | - Marta Rusmini
- Unitá Operativa Semplice Dipartimentale (UOSD) Genetics and Genomics of Rare Diseases, Istituto di Ricerca e Cura a Carattere Scintifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Maura Faraci
- Hematopoietic Stem Cell Transplantation Unit, Istituto di Ricerca e Cura a Carattere Scintifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Gianluca Dell'Orso
- Hematopoietic Stem Cell Transplantation Unit, Istituto di Ricerca e Cura a Carattere Scintifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Ugo Ramenghi
- Haematology Unit, Regina Margherita Hospital, Turin, Italy.,Department of Public Health and Pediatrics, School of Medicine, University of Turin, Turin, Italy
| | - Alessio Mesini
- Covid Hospital, Unità Operativa di Malattie Infettive, Dipartimento di Scienze Pediatriche, Istituto di Ricerca e Cura a Carattere Scintifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Erica Ricci
- Covid Hospital, Unità Operativa di Malattie Infettive, Dipartimento di Scienze Pediatriche, Istituto di Ricerca e Cura a Carattere Scintifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | | | - Natascia Di Iorgi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Genoa, Italy.,Department of Pediatrics, Istituto di Ricerca e Cura a Carattere Scintifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| | - Carlo Dufour
- Hematology Unit, Istituto di Ricerca e Cura a Carattere Scintifico (IRCCS) Istituto Giannina Gaslini, Genoa, Italy
| |
Collapse
|
35
|
Surya A, Sarinay-Cenik E. Cell autonomous and non-autonomous consequences of deviations in translation machinery on organism growth and the connecting signalling pathways. Open Biol 2022; 12:210308. [PMID: 35472285 PMCID: PMC9042575 DOI: 10.1098/rsob.210308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/31/2022] [Indexed: 01/09/2023] Open
Abstract
Translation machinery is responsible for the production of cellular proteins; thus, cells devote the majority of their resources to ribosome biogenesis and protein synthesis. Single-copy loss of function in the translation machinery components results in rare ribosomopathy disorders, such as Diamond-Blackfan anaemia in humans and similar developmental defects in various model organisms. Somatic copy number alterations of translation machinery components are also observed in specific tumours. The organism-wide response to haploinsufficient loss-of-function mutations in ribosomal proteins or translation machinery components is complex: variations in translation machinery lead to reduced ribosome biogenesis, protein translation and altered protein homeostasis and cellular signalling pathways. Cells are affected both autonomously and non-autonomously by changes in translation machinery or ribosome biogenesis through cell-cell interactions and secreted hormones. We first briefly introduce the model organisms where mutants or knockdowns of protein synthesis and ribosome biogenesis are characterized. Next, we specifically describe observations in Caenorhabditis elegans and Drosophila melanogaster, where insufficient protein synthesis in a subset of cells triggers cell non-autonomous growth or apoptosis responses that affect nearby cells and tissues. We then cover the characterized signalling pathways that interact with ribosome biogenesis/protein synthesis machinery with an emphasis on their respective functions during organism development.
Collapse
Affiliation(s)
- Agustian Surya
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Elif Sarinay-Cenik
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
36
|
Pillet B, Méndez-Godoy A, Murat G, Favre S, Stumpe M, Falquet L, Kressler D. Dedicated chaperones coordinate co-translational regulation of ribosomal protein production with ribosome assembly to preserve proteostasis. eLife 2022; 11:74255. [PMID: 35357307 PMCID: PMC8970588 DOI: 10.7554/elife.74255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 02/22/2022] [Indexed: 12/17/2022] Open
Abstract
The biogenesis of eukaryotic ribosomes involves the ordered assembly of around 80 ribosomal proteins. Supplying equimolar amounts of assembly-competent ribosomal proteins is complicated by their aggregation propensity and the spatial separation of their location of synthesis and pre-ribosome incorporation. Recent evidence has highlighted that dedicated chaperones protect individual, unassembled ribosomal proteins on their path to the pre-ribosomal assembly site. Here, we show that the co-translational recognition of Rpl3 and Rpl4 by their respective dedicated chaperone, Rrb1 or Acl4, reduces the degradation of the encoding RPL3 and RPL4 mRNAs in the yeast Saccharomyces cerevisiae. In both cases, negative regulation of mRNA levels occurs when the availability of the dedicated chaperone is limited and the nascent ribosomal protein is instead accessible to a regulatory machinery consisting of the nascent-polypeptide-associated complex and the Caf130-associated Ccr4-Not complex. Notably, deregulated expression of Rpl3 and Rpl4 leads to their massive aggregation and a perturbation of overall proteostasis in cells lacking the E3 ubiquitin ligase Tom1. Taken together, we have uncovered an unprecedented regulatory mechanism that adjusts the de novo synthesis of Rpl3 and Rpl4 to their actual consumption during ribosome assembly and, thereby, protects cells from the potentially detrimental effects of their surplus production. Living cells are packed full of molecules known as proteins, which perform many vital tasks the cells need to survive and grow. Machines called ribosomes inside the cells use template molecules called messenger RNAs (or mRNAs for short) to produce proteins. The newly-made proteins then have to travel to a specific location in the cell to perform their tasks. Some newly-made proteins are prone to forming clumps, so cells have other proteins known as chaperones that ensure these clumps do not form. The ribosomes themselves are made up of several proteins, some of which are also prone to clumping as they are being produced. To prevent this from happening, cells control how many ribosomal proteins they make, so there are just enough to form the ribosomes the cell needs at any given time. Previous studies found that, in yeast, two ribosomal proteins called Rpl3 and Rpl4 each have their own dedicated chaperone to prevent them from clumping. However, it remained unclear whether these chaperones are also involved in regulating the levels of Rpl3 and Rpl4. To address this question, Pillet et al. studied both of these dedicated chaperones in yeast cells. The experiments showed that the chaperones bound to their target proteins (either units of Rpl3 or Rpl4) as they were being produced on the ribosomes. This protected the template mRNAs the ribosomes were using to produce these proteins from being destroyed, thus allowing further units of Rpl3 and Rpl4 to be produced. When enough Rpl3 and Rpl4 units were made, there were not enough of the chaperones to bind them all, leaving the mRNA templates unprotected. This led to the destruction of the mRNA templates, which decreased the numbers of Rpl3 and Rpl4 units being produced. The work of Pillet et al. reveals a feedback mechanism that allows yeast to tightly control the levels of Rpl3 and Rpl4. In the future, these findings may help us understand diseases caused by defects in ribosomal proteins, such as Diamond-Blackfan anemia, and possibly also neurodegenerative diseases caused by clumps of proteins forming in cells. The next step will be to find out whether the mechanism uncovered by Pillet et al. also exists in human and other mammalian cells.
Collapse
Affiliation(s)
- Benjamin Pillet
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | | - Guillaume Murat
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Sébastien Favre
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Michael Stumpe
- Department of Biology, University of Fribourg, Fribourg, Switzerland.,Metabolomics and Proteomics Platform, Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Laurent Falquet
- Department of Biology, University of Fribourg, Fribourg, Switzerland.,Swiss Institute of Bioinformatics, University of Fribourg, Fribourg, Switzerland
| | - Dieter Kressler
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
37
|
Kiparaki M, Khan C, Folgado-Marco V, Chuen J, Moulos P, Baker NE. The transcription factor Xrp1 orchestrates both reduced translation and cell competition upon defective ribosome assembly or function. eLife 2022; 11:e71705. [PMID: 35179490 PMCID: PMC8933008 DOI: 10.7554/elife.71705] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 02/09/2022] [Indexed: 11/26/2022] Open
Abstract
Ribosomal Protein (Rp) gene haploinsufficiency affects translation rate, can lead to protein aggregation, and causes cell elimination by competition with wild type cells in mosaic tissues. We find that the modest changes in ribosomal subunit levels observed were insufficient for these effects, which all depended on the AT-hook, bZip domain protein Xrp1. Xrp1 reduced global translation through PERK-dependent phosphorylation of eIF2α. eIF2α phosphorylation was itself sufficient to enable cell competition of otherwise wild type cells, but through Xrp1 expression, not as the downstream effector of Xrp1. Unexpectedly, many other defects reducing ribosome biogenesis or function (depletion of TAF1B, eIF2, eIF4G, eIF6, eEF2, eEF1α1, or eIF5A), also increased eIF2α phosphorylation and enabled cell competition. This was also through the Xrp1 expression that was induced in these depletions. In the absence of Xrp1, translation differences between cells were not themselves sufficient to trigger cell competition. Xrp1 is shown here to be a sequence-specific transcription factor that regulates transposable elements as well as single-copy genes. Thus, Xrp1 is the master regulator that triggers multiple consequences of ribosomal stresses and is the key instigator of cell competition.
Collapse
Affiliation(s)
- Marianthi Kiparaki
- Department of Genetics, Albert Einstein College of MedicineThe BronxUnited States
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming”VariGreece
| | - Chaitali Khan
- Department of Genetics, Albert Einstein College of MedicineThe BronxUnited States
| | | | - Jacky Chuen
- Department of Genetics, Albert Einstein College of MedicineThe BronxUnited States
| | - Panagiotis Moulos
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center "Alexander Fleming”VariGreece
| | - Nicholas E Baker
- Department of Genetics, Albert Einstein College of MedicineThe BronxUnited States
- Department of Developmental and Molecular Biology, Albert Einstein College of MedicineThe BronxUnited States
- Department of Opthalmology and Visual Sciences, Albert Einstein College of MedicineThe BronxUnited States
| |
Collapse
|
38
|
Kumar S, Mashkoor M, Grove A. Yeast Crf1p: An activator in need is an activator indeed. Comput Struct Biotechnol J 2022; 20:107-116. [PMID: 34976315 PMCID: PMC8688861 DOI: 10.1016/j.csbj.2021.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/15/2021] [Accepted: 12/03/2021] [Indexed: 11/10/2022] Open
Abstract
Ribosome biogenesis is an energetically costly process, and tight regulation is required for stoichiometric balance between components. This requires coordination of RNA polymerases I, II, and III. Lack of nutrients or the presence of stress leads to downregulation of ribosome biogenesis, a process for which mechanistic target of rapamycin complex I (mTORC1) is key. mTORC1 activity is communicated by means of specific transcription factors, and in yeast, which is a primary model system in which transcriptional coordination has been delineated, transcription factors involved in regulation of ribosomal protein genes include Fhl1p and its cofactors, Ifh1p and Crf1p. Ifh1p is an activator, whereas Crf1p has been implicated in maintaining the repressed state upon mTORC1 inhibition. Computational analyses of evolutionary relationships have indicated that Ifh1p and Crf1p descend from a common ancestor. Here, we discuss recent evidence, which suggests that Crf1p also functions as an activator. We propose a model that consolidates available experimental evidence, which posits that Crf1p functions as an alternate activator to prevent the stronger activator Ifh1p from re-binding gene promoters upon mTORC1 inhibition. The correlation between retention of Crf1p in related yeast strains and duplication of ribosomal protein genes suggests that this backup activation may be important to ensure gene expression when Ifh1p is limiting. With ribosome biogenesis as a hallmark of cell growth, failure to control assembly of ribosomal components leads to several human pathologies. A comprehensive understanding of mechanisms underlying this process is therefore of the essence.
Collapse
Key Words
- CK2, casein kinase 2
- Crf1, corepressor with forkhead like
- Crf1p
- FHA, forkhead-associated
- FHB, forkhead-binding
- FKBP, FK506 binding protein
- Fhl1, forkhead like
- Fpr1, FK506-sensitive proline rotamase
- Gene regulation
- Hmo1, high mobility group
- Ifh1, interacts with forkhead like
- Ifh1p
- RASTR, ribosome assembly stress response
- RP, ribosomal protein
- Rap1, repressor/activator protein
- RiBi, ribosome biogenesis
- Ribosomal protein
- Ribosome biogenesis
- Sfp1, split finger protein
- WGD, whole genome duplication
- mTORC1
- mTORC1, mechanistic target of rapamycin complex 1
Collapse
Affiliation(s)
- Sanjay Kumar
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Muneera Mashkoor
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Anne Grove
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
39
|
Langton PF, Baumgartner ME, Logeay R, Piddini E. Xrp1 and Irbp18 trigger a feed-forward loop of proteotoxic stress to induce the loser status. PLoS Genet 2021; 17:e1009946. [PMID: 34914692 PMCID: PMC8675655 DOI: 10.1371/journal.pgen.1009946] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 11/15/2021] [Indexed: 12/19/2022] Open
Abstract
Cell competition induces the elimination of less-fit "loser" cells by fitter "winner" cells. In Drosophila, cells heterozygous mutant in ribosome genes, Rp/+, known as Minutes, are outcompeted by wild-type cells. Rp/+ cells display proteotoxic stress and the oxidative stress response, which drive the loser status. Minute cell competition also requires the transcription factors Irbp18 and Xrp1, but how these contribute to the loser status is partially understood. Here we provide evidence that initial proteotoxic stress in RpS3/+ cells is Xrp1-independent. However, Xrp1 is sufficient to induce proteotoxic stress in otherwise wild-type cells and is necessary for the high levels of proteotoxic stress found in RpS3/+ cells. Surprisingly, Xrp1 is also induced downstream of proteotoxic stress, and is required for the competitive elimination of cells suffering from proteotoxic stress or overexpressing Nrf2. Our data suggests that a feed-forward loop between Xrp1, proteotoxic stress, and Nrf2 drives Minute cells to become losers.
Collapse
Affiliation(s)
- Paul F. Langton
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Michael E. Baumgartner
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Remi Logeay
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Eugenia Piddini
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
40
|
Ochi N, Nakamura M, Nagata R, Wakasa N, Nakano R, Igaki T. Cell competition is driven by Xrp1-mediated phosphorylation of eukaryotic initiation factor 2α. PLoS Genet 2021; 17:e1009958. [PMID: 34871307 PMCID: PMC8675920 DOI: 10.1371/journal.pgen.1009958] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 12/16/2021] [Accepted: 11/19/2021] [Indexed: 12/19/2022] Open
Abstract
Cell competition is a context-dependent cell elimination via cell-cell interaction whereby unfit cells ('losers') are eliminated from the tissue when confronted with fitter cells ('winners'). Despite extensive studies, the mechanism that drives loser's death and its physiological triggers remained elusive. Here, through a genetic screen in Drosophila, we find that endoplasmic reticulum (ER) stress causes cell competition. Mechanistically, ER stress upregulates the bZIP transcription factor Xrp1, which promotes phosphorylation of the eukaryotic translation initiation factor eIF2α via the kinase PERK, leading to cell elimination. Surprisingly, our genetic data show that different cell competition triggers such as ribosomal protein mutations or RNA helicase Hel25E mutations converge on upregulation of Xrp1, which leads to phosphorylation of eIF2α and thus causes reduction in global protein synthesis and apoptosis when confronted with wild-type cells. These findings not only uncover a core pathway of cell competition but also open the way to understanding the physiological triggers of cell competition.
Collapse
Affiliation(s)
- Naotaka Ochi
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho, Sakyo-ku, Kyoto, Japan
| | - Mai Nakamura
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho, Sakyo-ku, Kyoto, Japan
| | - Rina Nagata
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho, Sakyo-ku, Kyoto, Japan
| | - Naoki Wakasa
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho, Sakyo-ku, Kyoto, Japan
| | - Ryosuke Nakano
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho, Sakyo-ku, Kyoto, Japan
| | - Tatsushi Igaki
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
41
|
Tumorigenesis and cell competition in Drosophila in the absence of polyhomeotic function. Proc Natl Acad Sci U S A 2021; 118:2110062118. [PMID: 34702735 DOI: 10.1073/pnas.2110062118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2021] [Indexed: 12/12/2022] Open
Abstract
Cell competition is a homeostatic process that eliminates by apoptosis unfit or undesirable cells from animal tissues, including tumor cells that appear during the life of the organism. In Drosophila there is evidence that many types of oncogenic cells are eliminated by cell competition. One exception is cells mutant for polyhomeotic (ph), a member of the Polycomb family of genes; most of the isolated mutant ph clones survive and develop tumorous overgrowths in imaginal discs. To characterize the tumorigenic effect of the lack of ph, we first studied the growth of different regions of the wing disc deficient in ph activity and found that the effect is restricted to the proximal appendage. Moreover, we found that ph-deficient tissue is partially refractory to apoptosis. Second, we analyzed the behavior of clones lacking ph function and found that many suffer cell competition but are not completely eliminated. Unexpectedly, we found that nonmutant cells also undergo cell competition when surrounded by ph-deficient cells, indicating that within the same tissue cell competition may operate in opposite directions. We suggest two reasons for the incompleteness of cell competition in ph mutant cells: 1) These cells are partially refractory to apoptosis, and 2) the loss of ph function alters the identity of imaginal cells and subsequently their cell affinities. It compromises the winner/loser interaction, a prerequisite for cell competition.
Collapse
|
42
|
Brown B, Mitra S, Roach FD, Vasudevan D, Ryoo HD. The transcription factor Xrp1 is required for PERK-mediated antioxidant gene induction in Drosophila. eLife 2021; 10:74047. [PMID: 34605405 PMCID: PMC8514241 DOI: 10.7554/elife.74047] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 12/13/2022] Open
Abstract
PERK is an endoplasmic reticulum (ER) transmembrane sensor that phosphorylates eIF2α to initiate the Unfolded Protein Response (UPR). eIF2α phosphorylation promotes stress-responsive gene expression most notably through the transcription factor ATF4 that contains a regulatory 5’ leader. Possible PERK effectors other than ATF4 remain poorly understood. Here, we report that the bZIP transcription factor Xrp1 is required for ATF4-independent PERK signaling. Cell-type-specific gene expression profiling in Drosophila indicated that delta-family glutathione-S-transferases (gstD) are prominently induced by the UPR-activating transgene Rh1G69D. Perk was necessary and sufficient for such gstD induction, but ATF4 was not required. Instead, Perk and other regulators of eIF2α phosphorylation regulated Xrp1 protein levels to induce gstDs. The Xrp1 5’ leader has a conserved upstream Open Reading Frame (uORF) analogous to those that regulate ATF4 translation. The gstD-GFP reporter induction required putative Xrp1 binding sites. These results indicate that antioxidant genes are highly induced by a previously unrecognized UPR signaling axis consisting of PERK and Xrp1.
Collapse
Affiliation(s)
- Brian Brown
- NYU Grossman School of Medicine, New York, United States
| | - Sahana Mitra
- NYU Grossman School of Medicine, New York, United States
| | | | | | - Hyung Don Ryoo
- NYU Grossman School of Medicine, New York, United States
| |
Collapse
|
43
|
Hounsell C, Fan Y. The Duality of Caspases in Cancer, as Told through the Fly. Int J Mol Sci 2021; 22:8927. [PMID: 34445633 PMCID: PMC8396359 DOI: 10.3390/ijms22168927] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022] Open
Abstract
Caspases, a family of cysteine-aspartic proteases, have an established role as critical components in the activation and initiation of apoptosis. Alongside this a variety of non-apoptotic caspase functions in proliferation, differentiation, cellular plasticity and cell migration have been reported. The activity level and context are important factors in determining caspase function. As a consequence of their critical role in apoptosis and beyond, caspases are uniquely situated to have pathological roles, including in cancer. Altered caspase function is a common trait in a variety of cancers, with apoptotic evasion defined as a "hallmark of cancer". However, the role that caspases play in cancer is much more complex, acting both to prevent and to promote tumourigenesis. This review focuses on the major findings in Drosophila on the dual role of caspases in tumourigenesis. This has major implications for cancer treatments, including chemotherapy and radiotherapy, with the activation of apoptosis being the end goal. However, such treatments may inadvertently have adverse effects on promoting tumour progression and acerbating the cancer. A comprehensive understanding of the dual role of caspases will aid in the development of successful cancer therapeutic approaches.
Collapse
Affiliation(s)
| | - Yun Fan
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK;
| |
Collapse
|
44
|
Transcriptional control of ribosome biogenesis in yeast: links to growth and stress signals. Biochem Soc Trans 2021; 49:1589-1599. [PMID: 34240738 PMCID: PMC8421047 DOI: 10.1042/bst20201136] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 12/15/2022]
Abstract
Ribosome biogenesis requires prodigious transcriptional output in rapidly growing yeast cells and is highly regulated in response to both growth and stress signals. This minireview focuses on recent developments in our understanding of this regulatory process, with an emphasis on the 138 ribosomal protein genes (RPGs) themselves and a group of >200 ribosome biogenesis (RiBi) genes whose products contribute to assembly but are not part of the ribosome. Expression of most RPGs depends upon Rap1, a pioneer transcription factor (TF) required for the binding of a pair of RPG-specific TFs called Fhl1 and Ifh1. RPG expression is correlated with Ifh1 promoter binding, whereas Rap1 and Fhl1 remain promoter-associated upon stress-induced down regulation. A TF called Sfp1 has also been implicated in RPG regulation, though recent work reveals that its primary function is in activation of RiBi and other growth-related genes. Sfp1 plays an important regulatory role at a small number of RPGs where Rap1–Fhl1–Ifh1 action is subsidiary or non-existent. In addition, nearly half of all RPGs are bound by Hmo1, which either stabilizes or re-configures Fhl1–Ifh1 binding. Recent studies identified the proline rotamase Fpr1, known primarily for its role in rapamycin-mediated inhibition of the TORC1 kinase, as an additional TF at RPG promoters. Fpr1 also affects Fhl1–Ifh1 binding, either independently or in cooperation with Hmo1. Finally, a major recent development was the discovery of a protein homeostasis mechanism driven by unassembled ribosomal proteins, referred to as the Ribosome Assembly Stress Response (RASTR), that controls RPG transcription through the reversible condensation of Ifh1.
Collapse
|
45
|
Baumgartner ME, Dinan MP, Langton PF, Kucinski I, Piddini E. Proteotoxic stress is a driver of the loser status and cell competition. Nat Cell Biol 2021; 23:136-146. [PMID: 33495633 PMCID: PMC7116823 DOI: 10.1038/s41556-020-00627-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 12/17/2020] [Indexed: 01/29/2023]
Abstract
Cell competition allows winner cells to eliminate less fit loser cells in tissues. In Minute cell competition, cells with a heterozygous mutation in ribosome genes, such as RpS3+/- cells, are eliminated by wild-type cells. How cells are primed as losers is partially understood and it has been proposed that reduced translation underpins the loser status of ribosome mutant, or Minute, cells. Here, using Drosophila, we show that reduced translation does not cause cell competition. Instead, we identify proteotoxic stress as the underlying cause of the loser status for Minute competition and competition induced by mahjong, an unrelated loser gene. RpS3+/- cells exhibit reduced autophagic and proteasomal flux, accumulate protein aggregates and can be rescued from competition by improving their proteostasis. Conversely, inducing proteotoxic stress is sufficient to turn otherwise wild-type cells into losers. Thus, we propose that tissues may preserve their health through a proteostasis-based mechanism of cell competition and cell selection.
Collapse
Affiliation(s)
| | - Michael P Dinan
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
- Zoology Department, University of Cambridge, Cambridge, UK
- University of Cambridge, Cambridge, UK
| | - Paul F Langton
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Iwo Kucinski
- The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
- Zoology Department, University of Cambridge, Cambridge, UK
- Wellcome and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Eugenia Piddini
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK.
| |
Collapse
|
46
|
Recasens-Alvarez C, Alexandre C, Kirkpatrick J, Nojima H, Huels DJ, Snijders AP, Vincent JP. Ribosomopathy-associated mutations cause proteotoxic stress that is alleviated by TOR inhibition. Nat Cell Biol 2021; 23:127-135. [PMID: 33495632 PMCID: PMC7116740 DOI: 10.1038/s41556-020-00626-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 12/16/2020] [Indexed: 02/07/2023]
Abstract
Ribosomes are multicomponent molecular machines that synthesize all of the proteins of living cells. Most of the genes that encode the protein components of ribosomes are therefore essential. A reduction in gene dosage is often viable albeit deleterious and is associated with human syndromes, which are collectively known as ribosomopathies1-3. The cell biological basis of these pathologies has remained unclear. Here, we model human ribosomopathies in Drosophila and find widespread apoptosis and cellular stress in the resulting animals. This is not caused by insufficient protein synthesis, as reasonably expected. Instead, ribosomal protein deficiency elicits proteotoxic stress, which we suggest is caused by the accumulation of misfolded proteins that overwhelm the protein degradation machinery. We find that dampening the integrated stress response4 or autophagy increases the harm inflicted by ribosomal protein deficiency, suggesting that these activities could be cytoprotective. Inhibition of TOR activity-which decreases ribosomal protein production, slows down protein synthesis and stimulates autophagy5-reduces proteotoxic stress in our ribosomopathy model. Interventions that stimulate autophagy, combined with means of boosting protein quality control, could form the basis of a therapeutic strategy for this class of diseases.
Collapse
Affiliation(s)
| | | | | | - Hisashi Nojima
- The Francis Crick Institute, London, UK
- FUJIREBIO Inc, Tokyo, Japan
| | - David J Huels
- The Francis Crick Institute, London, UK
- Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Academic Medical Center, Amsterdam, the Netherlands
- Academic Medical Center, Oncode Institute, Amsterdam, the Netherlands
| | | | | |
Collapse
|