1
|
Jiang M, Ma S, Xuan Y, Chen K. Synthetic approaches and clinical application of KRAS inhibitors for cancer therapy. Eur J Med Chem 2025; 291:117626. [PMID: 40252381 DOI: 10.1016/j.ejmech.2025.117626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 04/21/2025]
Abstract
Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations are among the most common oncogenic alterations in various cancers, including pancreatic, colorectal, and non-small cell lung cancer (NSCLC). Targeting KRAS has long been considered a difficult challenge due to its high affinity for guanosine triphosphate (GTP) and the lack of a druggable binding site. However, recent advancements in small-molecule inhibitor design have led to the development of targeted therapies aimed at KRAS mutations, particularly the KRASG12C mutation. Inhibitors such as Sotorasib and Adagrasib have shown promise in preclinical and clinical studies by irreversibly binding to the mutant KRAS protein, locking it in an inactive state and disrupting downstream signaling pathways critical for tumor growth and survival. These inhibitors have demonstrated clinical efficacy in treating patients with KRASG12C-mutated cancers, leading to tumor regression, prolonged progression-free survival, and improved patient outcomes. This review discusses the synthetic strategies employed to develop these KRAS inhibitor and also examines the clinical application of these inhibitors, highlighting the challenges and successes encountered during clinical trials. Ultimately, KRAS inhibitors represent a breakthrough in cancer therapy, offering a promising new treatment option for patients with KRAS-driven tumors.
Collapse
Affiliation(s)
- Min Jiang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Shaowei Ma
- Department of Interventional Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ying Xuan
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Kuanbing Chen
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
2
|
Qiu X, Gao Q, Wang J, Zhang Z, Tao L. The microbiota-m 6A-metabolism axis: Implications for therapeutic strategies in gastrointestinal cancers. Biochim Biophys Acta Rev Cancer 2025; 1880:189317. [PMID: 40222422 DOI: 10.1016/j.bbcan.2025.189317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 04/06/2025] [Accepted: 04/06/2025] [Indexed: 04/15/2025]
Abstract
Gastrointestinal (GI) cancers remain a leading cause of cancer-related mortality worldwide, with metabolic reprogramming recognized as a central driver of tumor progression and therapeutic resistance. Among the key regulatory layers, N6-methyladenosine (m6A) RNA modification-mediated by methyltransferases (writers such as METTL3/14), RNA-binding proteins (readers like YTHDFs and IGF2BPs), and demethylases (erasers including FTO and ALKBH5), plays a pivotal role in controlling gene expression and metabolic flux in the tumor context. Concurrently, the gut microbiota profoundly influences GI tumorigenesis and immune evasion by modulating metabolite availability and remodeling the tumor microenvironment. Recent evidence has uncovered a bidirectional crosstalk between microbial metabolites and m6A methylation: microbiota-derived signals dynamically regulate m6A deposition on metabolic and immune transcripts, while m6A modifications, in turn, regulate the stability and translation of key mRNAs such as PD-L1 and FOXP3. This reciprocal interaction forms self-reinforcing epigenetic circuits that drive tumor plasticity, immune escape, and metabolic adaptation. In this review, we dissect the molecular underpinnings of the microbiota-m6A-metabolism axis in GI cancers and explore its potential to inform novel strategies in immunotherapy, metabolic intervention, and microbiome-guided precision oncology.
Collapse
Affiliation(s)
- Xiuxiu Qiu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Qi Gao
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jiahui Wang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Zhanxia Zhang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Li Tao
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
3
|
Yang JS, Morris AJ, Kamizaki K, Chen J, Stark J, Oldham WM, Nakamura T, Mishima E, Loscalzo J, Minami Y, Conrad M, Henry WS, Hsu VW. ALDH7A1 protects against ferroptosis by generating membrane NADH and regulating FSP1. Cell 2025:S0092-8674(25)00292-2. [PMID: 40233740 DOI: 10.1016/j.cell.2025.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/19/2024] [Accepted: 03/10/2025] [Indexed: 04/17/2025]
Abstract
Ferroptosis is a form of cell death due to iron-induced lipid peroxidation. Ferroptosis suppressor protein 1 (FSP1) protects against this death by generating antioxidants, which requires nicotinamide adenine dinucleotide, reduced form (NADH) as a cofactor. We initially uncover that NADH exists at significant levels on cellular membranes and then find that this form of NADH is generated by aldehyde dehydrogenase 7A1 (ALDH7A1) to support FSP1 activity. ALDH7A1 activity also acts directly to decrease lipid peroxidation by consuming reactive aldehydes. Furthermore, ALDH7A1 promotes the membrane recruitment of FSP1, which is instigated by ferroptotic stress activating AMP-activated protein kinase (AMPK) to promote the membrane localization of ALDH7A1 that stabilizes FSP1 on membranes. These findings advance a fundamental understanding of NADH by revealing a previously unappreciated pool on cellular membranes, with the elucidation of its function providing a major understanding of how FSP1 acts and how an aldehyde dehydrogenase protects against ferroptosis.
Collapse
Affiliation(s)
- Jia-Shu Yang
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Andrew J Morris
- Division of Cardiovascular Medicine, Department of Medicine, University of Kentucky and Lexington Veterans Affairs Medical Center, Lexington, KY 40536, USA; Central Arkansas VA Healthcare System and Arkansas Children's Nutrition Research Center, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Koki Kamizaki
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Kobe 650-0017, Japan
| | - Jianzhong Chen
- Division of Cardiovascular Medicine, Department of Medicine, University of Kentucky and Lexington Veterans Affairs Medical Center, Lexington, KY 40536, USA
| | - Jillian Stark
- Department of Biology, Massachusetts Institute of Technology, and Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA
| | - William M Oldham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Toshitaka Nakamura
- Institute of Metabolism and Cell Death, Molecular Targets and Therapeutics Center, Helmholtz Munich, Neuherberg, Germany
| | - Eikan Mishima
- Institute of Metabolism and Cell Death, Molecular Targets and Therapeutics Center, Helmholtz Munich, Neuherberg, Germany
| | - Joseph Loscalzo
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Yasuhiro Minami
- Department of Physiology and Cell Biology, Kobe University School of Medicine, Kobe 650-0017, Japan
| | - Marcus Conrad
- Institute of Metabolism and Cell Death, Molecular Targets and Therapeutics Center, Helmholtz Munich, Neuherberg, Germany
| | - Whitney S Henry
- Department of Biology, Massachusetts Institute of Technology, and Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA
| | - Victor W Hsu
- Division of Rheumatology, Inflammation and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
4
|
Zhou J, Lu P, He H, Zhang R, Yang D, Liu Q, Liu Q, Liu M, Zhang G. The metabolites of gut microbiota: their role in ferroptosis in inflammatory bowel disease. Eur J Med Res 2025; 30:248. [PMID: 40189555 PMCID: PMC11974165 DOI: 10.1186/s40001-025-02524-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 03/27/2025] [Indexed: 04/09/2025] Open
Abstract
Inflammatory bowel disease (IBD) includes chronic inflammatory conditions, such as Crohn's disease and ulcerative colitis, characterized by impaired function of the intestinal mucosal epithelial barrier. In recent years, ferroptosis, a novel form of cell death, has been confirmed to be involved in the pathological process of IBD and is related to various pathological changes, such as oxidative stress and inflammation. Recent studies have further revealed the complex interactions between the microbiome and ferroptosis, indicating that ferroptosis is an important target for the regulation of IBD by the gut microbiota and its metabolites. This article reviews the significant roles of gut microbial metabolites, such as short-chain fatty acids, tryptophan, and bile acids, in ferroptosis in IBD. These metabolites participate in the regulation of ferroptosis by influencing the intestinal microenvironment, modulating immune responses, and altering oxidative stress levels, thereby exerting an impact on the pathological development of IBD. Treatments based on the gut microbiota for IBD are gradually becoming a research hotspot. Finally, we discuss the potential of current therapeutic approaches, including antibiotics, probiotics, prebiotics, and fecal microbiota transplantation, in modulating the gut microbiota, affecting ferroptosis, and improving IBD symptoms. With a deeper understanding of the interaction mechanisms between the gut microbiota and ferroptosis, it is expected that more precise and effective treatment strategies for IBD will be developed in the future.
Collapse
Affiliation(s)
- Jingying Zhou
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Penghui Lu
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Haolong He
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Ruhan Zhang
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Dican Yang
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Qiong Liu
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Qianyan Liu
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Mi Liu
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Guoshan Zhang
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
5
|
Zheng J, Conrad M. Ferroptosis: when metabolism meets cell death. Physiol Rev 2025; 105:651-706. [PMID: 39661331 DOI: 10.1152/physrev.00031.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/18/2024] [Accepted: 11/28/2024] [Indexed: 12/12/2024] Open
Abstract
We present here a comprehensive update on recent advancements in the field of ferroptosis, with a particular emphasis on its metabolic underpinnings and physiological impacts. After briefly introducing landmark studies that have helped to shape the concept of ferroptosis as a distinct form of cell death, we critically evaluate the key metabolic determinants involved in its regulation. These include the metabolism of essential trace elements such as selenium and iron; amino acids such as cyst(e)ine, methionine, glutamine/glutamate, and tryptophan; and carbohydrates, covering glycolysis, the citric acid cycle, the electron transport chain, and the pentose phosphate pathway. We also delve into the mevalonate pathway and subsequent cholesterol biosynthesis, including intermediate metabolites like dimethylallyl pyrophosphate, squalene, coenzyme Q (CoQ), vitamin K, and 7-dehydrocholesterol, as well as fatty acid and phospholipid metabolism, including the biosynthesis and remodeling of ester and ether phospholipids and lipid peroxidation. Next, we highlight major ferroptosis surveillance systems, specifically the cyst(e)ine/glutathione/glutathione peroxidase 4 axis, the NAD(P)H/ferroptosis suppressor protein 1/CoQ/vitamin K system, and the guanosine triphosphate cyclohydrolase 1/tetrahydrobiopterin/dihydrofolate reductase axis. We also discuss other potential anti- and proferroptotic systems, including glutathione S-transferase P1, peroxiredoxin 6, dihydroorotate dehydrogenase, glycerol-3-phosphate dehydrogenase 2, vitamin K epoxide reductase complex subunit 1 like 1, nitric oxide, and acyl-CoA synthetase long-chain family member 4. Finally, we explore ferroptosis's physiological roles in aging, tumor suppression, and infection control, its pathological implications in tissue ischemia-reperfusion injury and neurodegeneration, and its potential therapeutic applications in cancer treatment. Existing drugs and compounds that may regulate ferroptosis in vivo are enumerated.
Collapse
Affiliation(s)
- Jiashuo Zheng
- Institute of Metabolism and Cell Death, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Marcus Conrad
- Institute of Metabolism and Cell Death, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
- Translational Redox Biology, Technical University of Munich (TUM), TUM Natural School of Sciences, Garching, Germany
| |
Collapse
|
6
|
Chang Y, Long M, Shan H, Liu L, Zhong S, Luo JL. Combining gut microbiota modulation and immunotherapy: A promising approach for treating microsatellite stable colorectal cancer. Crit Rev Oncol Hematol 2025; 208:104629. [PMID: 39864533 DOI: 10.1016/j.critrevonc.2025.104629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 01/28/2025] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent and lethal cancers worldwide, ranking third in incidence and second in mortality. While immunotherapy has shown promise in patients with deficient mismatch repair (dMMR) or high microsatellite instability (MSI-H), its effectiveness in proficient mismatch repair (pMMR) or microsatellite stable (MSS) CRC remains limited. Recent advances highlight the gut microbiota as a potential modulator of anti-tumor immunity. The gut microbiome can significantly influence the efficacy of immune checkpoint inhibitors (ICIs), especially in pMMR/MSS CRC, by modulating immune responses and systemic inflammation. This review explores the role of the gut microbiota in pMMR/MSS CRC, the mechanisms by which it may enhance immunotherapy, and current strategies for microbiota modulation. We discuss the potential benefits of combining microbiota-targeting interventions with immunotherapy to improve treatment outcomes for pMMR/MSS CRC patients.
Collapse
Affiliation(s)
- Yujie Chang
- The Cancer Research Institute and the Second Affiliated Hospital, Hengyang Medical School, University of South China (USC), Hunan 421001, China; MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, USC, Hunan 421001, China
| | - Min Long
- The Cancer Research Institute and the Second Affiliated Hospital, Hengyang Medical School, University of South China (USC), Hunan 421001, China; MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, USC, Hunan 421001, China
| | - Hanguo Shan
- The Cancer Research Institute and the Second Affiliated Hospital, Hengyang Medical School, University of South China (USC), Hunan 421001, China; Hunan Provincial Key Laboratory of Basic and Clinical Pharmacological Research of Gastrointestinal Cancer, USC, Hunan 421001, China
| | - Logen Liu
- Hunan Provincial Key Laboratory of Basic and Clinical Pharmacological Research of Gastrointestinal Cancer, USC, Hunan 421001, China
| | - Shangwei Zhong
- The Cancer Research Institute and the Second Affiliated Hospital, Hengyang Medical School, University of South China (USC), Hunan 421001, China; MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, USC, Hunan 421001, China
| | - Jun-Li Luo
- The Cancer Research Institute and the Second Affiliated Hospital, Hengyang Medical School, University of South China (USC), Hunan 421001, China; Hunan Provincial Key Laboratory of Basic and Clinical Pharmacological Research of Gastrointestinal Cancer, USC, Hunan 421001, China; MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, USC, Hunan 421001, China; National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, USC, Hunan 410008, China.
| |
Collapse
|
7
|
Cui W, Hao M, Yang X, Yin C, Chu B. Gut microbial metabolism in ferroptosis and colorectal cancer. Trends Cell Biol 2025; 35:341-351. [PMID: 39261152 DOI: 10.1016/j.tcb.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/13/2024]
Abstract
Ferroptosis is programmed cell death induced by iron-driven lipid peroxidation. Numerous studies have shown that ferroptosis is implicated in the progression of colorectal cancer (CRC) and has emerged as a promising strategy to combat therapy-resistant CRC. While the intrinsic antiferroptotic and proferroptotic pathways in CRC cells have been well characterized, extrinsic metabolism pathways regulating ferroptosis in CRC pathogenesis remain less understood. Emerging evidence shows that gut microbial metabolism is tightly correlated with the progression of CRC. This review provides an overview of gut microbial metabolism and discusses how these metabolites derived from intestinal microflora contribute to cancer plasticity through ferroptosis. Targeting gut microbe-mediated ferroptosis is a potential approach for CRC treatment.
Collapse
Affiliation(s)
- Weiwei Cui
- Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Meng Hao
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518107, China
| | - Xin Yang
- Jiangsu Key Laboratory of Infection and Immunity, The Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Chengqian Yin
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen 518107, China.
| | - Bo Chu
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China.
| |
Collapse
|
8
|
Sousa MGC, Brasino DSK, Krieger M, Dindar DA, Duhen R, Zhang Z, Franca CM, Bertassoni LE. Host-microbe-cancer interactions on-a-chip. Front Bioeng Biotechnol 2025; 13:1505963. [PMID: 40230461 PMCID: PMC11994592 DOI: 10.3389/fbioe.2025.1505963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 03/11/2025] [Indexed: 04/16/2025] Open
Abstract
The tumor microbiota has emerged as a pivotal contributor to a variety of cancers, impacting disease development, progression, and therapeutic resistance. Due to the complexity of the tumor microenvironment, reproducing the interactions between the microbes, tumor cells, and the immune system remains a great challenge for both in vitro and in vivo studies. To this end, significant progress has been made toward leveraging tumor-on-a-chip model systems to replicate critical hallmarks of the native disease in vitro. These microfluidic platforms offer the ability to mimic essential components of the tumor microenvironment, including controllable fluid flow conditions, manipulable extracellular matrix dynamics, and intricate 3D multi-cellular communication. The primary objective of this review is to discuss recent challenges and advances in engineering host-microbiota and tumor interactions on-a-chip. Ultimately, overcoming these obstacles will help us gain deeper insights into tumor-microbe interactions and enhance avenues for developing more effective cancer therapies.
Collapse
Affiliation(s)
- Mauricio G. C. Sousa
- Knight Cancer Precision Biofabrication Hub, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
- Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, OR, United States
- Department of Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University, Portland, OR, United States
| | - Danielle S. K. Brasino
- Department of Microbiology and Molecular Genetics, Robert Larner College of Medicine at the University of Vermont, Burlington, VT, United States
| | - Madeline Krieger
- Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Duygu A. Dindar
- Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Rebekka Duhen
- Knight Cancer Precision Biofabrication Hub, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
- Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Zhenzhen Zhang
- Division of Oncological Sciences, Oregon Health & Science University, Portland, OR, United States
| | - Cristiane Miranda Franca
- Knight Cancer Precision Biofabrication Hub, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
- Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, OR, United States
- Department of Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University, Portland, OR, United States
| | - Luiz E. Bertassoni
- Knight Cancer Precision Biofabrication Hub, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, United States
- Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, OR, United States
- Department of Biomaterial and Biomedical Sciences, School of Dentistry, Oregon Health & Science University, Portland, OR, United States
- Division of Oncological Sciences, Oregon Health & Science University, Portland, OR, United States
- Department of Biomedical Engineering, School of Medicine, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
9
|
Song Q, Jin Z, Zhang H, Hong K, Zhu B, Yin H, Yu B. Fusobacterium nucleatum-derived 3-indolepropionic acid promotes colorectal cancer progression via aryl hydrocarbon receptor activation in macrophages. Chem Biol Interact 2025; 414:111495. [PMID: 40174685 DOI: 10.1016/j.cbi.2025.111495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/15/2025] [Accepted: 03/26/2025] [Indexed: 04/04/2025]
Abstract
An increasing body of research indicates that Fusobacterium nucleatum (F. nucleatum) significantly influences the onset and progression of colorectal cancer (CRC). Our previous study has shown that F. nucleatum exerts pro-tumorigenic effects through aryl hydrocarbon receptor (AhR) activation. However, the role of its microbial metabolites in regulating immune responses remains unclear. Here, we report for the first time that F. nucleatum-derived 3-Indolepropionic acid (IPA) activates AhR in macrophages, driving M2 polarization and tumor-promoting immunosuppression. We discovered that culture supernatant of F. nucleatum (CSF) robustly activates AhR in macrophages. In co-culture systems, CSF upregulated the expression of the M2 marker CD206 and elevated mRNA levels of CD163, TGF-β, IL-10, and VEGF. In a subcutaneous allograft model, CSF induced an elevated number of CD206+ macrophages and decreased presence of CD8+ T cells within the tumor microenvironment, thereby promoting tumor growth. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) revealed IPA as a novel major AhR-activating metabolite in CSF. Strikingly, IPA recapitulated CSF's effects in promoting tumor cell migration and immunosuppression, both in vitro and in vivo. Critically, the AhR inhibitor CH223191 abolished both IPA-mediated M2 polarization and tumor growth. Our study revealed a novel mechanism by which F. nucleatum-derived IPA reprograms macrophages through AhR activation to fuel CRC progression, providing potential therapeutic targets for CRC treatment and prognosis improvement.
Collapse
Affiliation(s)
- Qi Song
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China; Key Laboratory of Hubei Province for Digestive System Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Zhiliang Jin
- Department of Oncology, The Second Clinical Medical College, Yangtze University, Jingzhou, 434000, Hubei Province, People's Republic of China
| | - Han Zhang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China; Key Laboratory of Hubei Province for Digestive System Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Kunqiao Hong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China; Key Laboratory of Hubei Province for Digestive System Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Beibei Zhu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China; Key Laboratory of Hubei Province for Digestive System Diseases, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China
| | - Haisen Yin
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China.
| | - Baoping Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, People's Republic of China.
| |
Collapse
|
10
|
Cai P, Yang Q, Lu J, Dai X, Xiong J. Fecal bacterial biomarkers and blood biochemical indicators as potential key factors in the development of colorectal cancer. mSystems 2025; 10:e0004325. [PMID: 40013832 PMCID: PMC11915818 DOI: 10.1128/msystems.00043-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 02/06/2025] [Indexed: 02/28/2025] Open
Abstract
The incidence of colorectal cancer (CRC) has been increasing in recent decades. Current methods for CRC screening have their own drawbacks, thus there is an urgent need to identify the key microbes that drive the development of CRC for wider application in the early detection and prevention of CRC. To address this issue, we performed fecal microbiome analysis by high-throughput sequencing of 16S rRNA gene combined with blood biochemical indicators in patients with CRC stages I, II, III, and IV, healthy people, and patients with polyps. Fecal microbiota of patients with CRC was disturbed, as evidenced by significantly reduced α-diversity in patients with CRC stage IV and markedly different β-diversity. The random forest model identified the top 25 genera from 174 training data, resulting in a diagnostic accuracy of 87.95%. Further, by combining with differential genera analysis, we screened out 11 biomarkers that significantly changed in different groups. Peptostreptococcus, Parvimonas, Shewanella, Oscillibacter, Eggerthella, and Gemella associated with the development of CRC were significantly enriched, while Fenollaria, Staphylococcus, Ezakiella, Finegoldia, and Neisseria associated with the remission of CRC were significantly suppressed in patients with CRC. Importantly, carcinoembryonic antigen (CEA) was significantly correlated with these 11 microbial biomarkers, and carbohydrate antigen 19-9 (CA 19-9) was markedly correlated with Oscillibacter. Notably, co-occurrence network analysis at the genus level exhibited that the microbial co-occurrence network of CRC IV was the most complex and stable. These results suggested that CEA, CA 19-9 and 11 microbial biomarkers may be co-biomarkers for the disease occurrence and development, and non-invasive diagnosis of CRC. IMPORTANCE Identifying the key microbes that drive the development of colorectal cancer (CRC) has been important in this field. We delved into the research on the association between CRC and fecal microbiota in this study, providing a detailed analysis of the characteristics of fecal microbiota during the transition from normal intestine to polyps to cancer. Fecal bacterial biomarkers and blood biochemical indicators may be co-biomarkers in the development of CRC.
Collapse
Affiliation(s)
- Ping Cai
- Ningbo No.2 Hospital, Ningbo, China
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Qingzhen Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, China
| | - Jiaqi Lu
- Zhejiang KinGene Bio-technology Co., Ltd, Ningbo, China
| | | | - Jinbo Xiong
- Institute of One Health, School of Marine Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
11
|
Qian LH, Wen KL, Guo Y, Liao YN, Li MY, Li ZQ, Li SX, Nie HZ. Nutrient deficiency-induced downregulation of SNX1 inhibits ferroptosis through PPARs-ACSL1/4 axis in colorectal cancer. Apoptosis 2025:10.1007/s10495-025-02088-y. [PMID: 40095264 DOI: 10.1007/s10495-025-02088-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2025] [Indexed: 03/19/2025]
Abstract
Colorectal cancer (CRC) is among the most prevalent and deadly gastrointestinal malignancies, with advanced-stage tumors often exhibiting resistance to both chemotherapy and targeted therapies, underscoring the urgent need for novel therapeutic targets to improve clinical outcomes. Sorting nexin 1 (SNX1), previously implicated in receptor trafficking between early and late endosomes/lysosomes in cancer studies, has an unclear role in CRC tumorigenesis and progression. Our study revealed that SNX1 expression was downregulated in CRC, and its low levels correlated with advanced tumor stages and unfavorable clinical outcomes. Functionally, SNX1 significantly inhibited tumor cell growth both in vitro and in vivo. Further experiments showed that SNX1 induced ferroptosis in CRC cells by modulating the PPARs-ACSL1/4 pathway downstream of EGFR signaling. Moreover, glucose deprivation suppressed the Hippo pathway, promoted YAP nuclear translocation, and activated the transcription factor Yin Yang 1 (YY1), leading to SNX1 downregulation. This subsequently activated EGFR signaling and ultimately suppressed ferroptosis in CRC cells. Notably, the combination of SNX1 overexpression and 5-fluorouracil (5-FU) treatment exhibited a synergistic anti-tumor effect in a cell-derived xenograft (CDX) model. These findings underscore the critical role of SNX1 in regulating ferroptosis and tumor progression in CRC and highlight its potential as a therapeutic target to enhance chemotherapy effectiveness in CRC.
Collapse
Affiliation(s)
- Li-Heng Qian
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kai-Ling Wen
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ying Guo
- Radiology Department, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Ying-Na Liao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ming-Yue Li
- Innomodels Biotechnology Co., Ltd., Building 14, 79 Shuangying Xi Road, Changping District, Beijing, 102299, China
| | - Zuo-Qing Li
- Innomodels Biotechnology Co., Ltd., Building 14, 79 Shuangying Xi Road, Changping District, Beijing, 102299, China
| | - Shu-Xin Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Hui-Zhen Nie
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
12
|
Wang Z, Liu T, Liu L, Xie J, Tang F, Pi Y, Zhong Y, He Z, Zhang W, Zheng C. Lactobacillus vaginalis alleviates DSS induced colitis by regulating the gut microbiota and increasing the production of 3-indoleacrylic acid. Pharmacol Res 2025; 213:107663. [PMID: 39961405 DOI: 10.1016/j.phrs.2025.107663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 02/23/2025]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory disorder, and its incidence is experiencing an upward trend worldwide. UC can result in gut microbiota dysbiosis, impaired intestinal epithelial barrier, and systemic inflammation, for all of which there is presently no definitive treatment available. Lactobacillus is known to regulate gut microbiota and related metabolites to intervene in the development of UC. The objective of this study was to explore the underlying mechanism through which a novel probiotic, Lactobacillus vaginalis, alleviates DSS-induced colitis. Specifically, L. vaginalis were found to ameliorate the DSS-induced UC phenotype, restore intestinal microbiota balance and intestinal barrier function, and elevate the levels of 3-indoleacrylic acid (IAA) in mouse feces. Furthermore, fecal microbiota transplantation and fecal filtrate transplantation provide additional evidence that L. vaginalis alleviate DSS-induced colitis through metabolic products. Additionally, IAA has been shown to alleviate DSS-induced colitis symptoms, decrease inflammatory responses, and enhance intestinal barrier function. Finally, our findings confirm that L. vaginal and metabolites possess the capability to regulate the immune microenvironment in mice with colitis. And the RNA-seq analysis suggests that L. vaginal may play a pivotal role in alleviating colitis by modulating the PPAR signaling pathway. In conclusion, our findings suggest that oral administration of L. vaginalis alleviates DSS induced colonic inflammation by increasing the levels of IAA. L. vaginalis, as an emerging probiotic, provides a potential therapeutic strategy for clinical UC.
Collapse
Affiliation(s)
- Zhuoya Wang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Tian Liu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Li Liu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Graduate School of Jiangxi University of Chinese Medicine, Nanchang 330004, PR China
| | - Jian Xie
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Furui Tang
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Yimin Pi
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Yuchun Zhong
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Zhidong He
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Wenming Zhang
- Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Jiangxi Province Key Laboratory of Precision Cell Therapy, The Institute of Translational Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, PR China.
| | - Cihua Zheng
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China; Department of Rehabilitation Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China.
| |
Collapse
|
13
|
Chen Z, Han C, Xie H, Chen X, Zhang H, Sun Z, Liu M. 2-Undecanone induces ferroptosis via the STAT3/GPX4 pathway to enhance sensitivity of renal cell carcinoma to sunitinib. Biofactors 2025; 51:e70016. [PMID: 40200786 DOI: 10.1002/biof.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 04/02/2025] [Indexed: 04/10/2025]
Abstract
The development of resistance significantly reduces the efficacy of targeted therapies, such as sunitinib, in renal cell carcinoma (RCC) patients, emphasizing the need for novel therapeutic agents. Natural products, known for their diverse chemical structures and mechanisms of action, offer promising anti-tumor potential with favorable safety profiles and lower toxicity compared to synthetic drugs. 2-Undecanone, a natural compound extracted from Houttuynia cordata Thunb., has demonstrated anti-tumor effects, but its specific role in RCC treatment remains unclear. In this study, we integrated network pharmacology with in vitro experiments to explore the mechanisms underlying 2-Undecanone's effects on RCC. Our results reveal that 2-Undecanone effectively inhibits RCC cell viability, proliferation, and migration. Mechanistically, we discovered that 2-Undecanone induces ferroptosis in RCC cells by promoting reactive oxygen species (ROS) generation, intracellular Fe2+ accumulation, glutathione (GSH) production, lipid peroxidation, and modulation of the STAT3/GPX4 signaling pathway. Furthermore, 2-Undecanone lowers the IC50 value of sunitinib in RCC cells, enhancing their sensitivity to this targeted therapy. Additionally, 2-Undecanone potentiates sunitinib-induced ferroptosis. In summary, our research reveals that 2-Undecanone enhances the sensitivity of RCC cells to sunitinib through targeting the STAT3/GPX4 pathway, providing new insights into potential therapeutic strategies for RCC.
Collapse
Affiliation(s)
- Zixuan Chen
- Department of Urology, Tongren Hospital Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengtao Han
- Department of Urology, Tongren Hospital Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huiwen Xie
- Department of General Surgery, Tongren Hospital Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xingyu Chen
- School of Health Policy and Management, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Haojie Zhang
- Center of Structural Heart Disease, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zongrun Sun
- Department of Urology, Tongren Hospital Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Liu
- Department of Urology, Tongren Hospital Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
14
|
Sun X, Gong Y, Xie T, Fu Z, Lu D, Wei B, Cai Y, Yao W, Shen J. Nanoscale Liposomes Co-Loaded with Irinotecan Hydrochloride and Thalidomide for Colorectal Cancer Synergistic Therapy. Macromol Biosci 2025; 25:e2400478. [PMID: 39704649 DOI: 10.1002/mabi.202400478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/03/2024] [Indexed: 12/21/2024]
Abstract
Irinotecan hydrochloride (CPT-11) is one of the first-line drugs used in the clinical treatment of colorectal cancer (CRC). However, the concomitant adverse effect of delayed diarrhea has hindered its clinical use. CPT-11 combined with Thalidomide (THA) therapy is considered a palliative strategy. To optimize the synergistic treatment of CPT-11 and THA, co-loaded liposomes are constructed using cholesterol, lecithin, and 1, 2-Distearoyl-sn-glycero-3-phosphoethanolamine-Poly(ethylene glycol) (DSPE-PEG) as the "immune and gut microbiota regulator." The co-loaded liposomes, which possess good stability, are prepared by the solvent injection method. After the treatment with the co-loaded liposomes, tumor growth in CRC-bearing mice is significantly inhibited. In particular, the co-loaded liposomes demonstrate favorable diarrhea-relieving effects through the modulation of inflammatory cytokines and gut microbiota. These findings suggest that the co-loaded liposomes have great potential as a combined drug-delivery platform for CRC therapy.
Collapse
Affiliation(s)
- Xuanrong Sun
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yubei Gong
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Ting Xie
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zixi Fu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Dongze Lu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Bin Wei
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yue Cai
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Wenlong Yao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, and Chemical Biology Center, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Jie Shen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
15
|
Bai X, Liu B, Fan D, Lu Y, Zhao X. Modulating the gut microbiota: A novel perspective in colorectal cancer treatment. Cancer Lett 2025; 612:217459. [PMID: 39805389 DOI: 10.1016/j.canlet.2025.217459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/07/2025] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
Colorectal cancer (CRC), the second leading cause of cancer-related deaths worldwide, is intricately linked to the dysregulation of the gut microbiota. Manipulating the gut microbiota has emerged as a novel strategy for the prevention and treatment of CRC. Natural products, a pivotal source in new drug discovery, have shown promise in recent research as regulators of the gut microbiota, offering potential applications in the prevention and treatment of CRC. In this work, commencing with a focus on the gut microbiota, we first elucidate the latest research on the intricate relationship between the gut microbiota and CRC. Additionally, we explore the impact of the gut microbiota on immunotherapy and chemotherapy treatments for CRC. Subsequently, we review the latest research findings on the regulation of the gut microbiota for CRC prevention through various mechanisms by natural products. These mechanisms include promoting the growth of beneficial bacteria, eradicating harmful bacteria, and enhancing the synthesis of beneficial metabolites. Furthermore, we summarize the advancements in research on natural products that alleviate chemotherapy toxicity and enhance the efficacy of immunotherapy by modulating the gut microbiota. Ultimately, we aspire to leverage advancements in nanomedicine and multiomics technologies to gain a deeper understanding of the mechanisms by which natural products regulate the gut microbiota. This work leverages gut microbiota as a focal point, aiming to offer new perspectives for developing novel natural products for colorectal cancer prevention and treatment.
Collapse
Affiliation(s)
- Xue Bai
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Boyang Liu
- Department of General Surgery, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, 710000, China
| | - Daiming Fan
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yuanyuan Lu
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| | - Xiaodi Zhao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, National Clinical Research Center for Digestive Diseases, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
16
|
Yang G, Qian B, He L, Zhang C, Wang J, Qian X, Wang Y. Application prospects of ferroptosis in colorectal cancer. Cancer Cell Int 2025; 25:59. [PMID: 39984914 PMCID: PMC11846473 DOI: 10.1186/s12935-025-03641-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 01/07/2025] [Indexed: 02/23/2025] Open
Abstract
Colorectal cancer (CRC) is a serious threat to human health with the third morbidity and the second cancer-related mortality worldwide. It is urgent to explore more effective strategy for CRC because of the acquired treatment resistance from the non-surgical conventional therapies, including radiation, chemotherapy, targeted therapy and immunotherapy. Ferroptosis is a novel form of programmed cell death characterized by iron-dependent lipid peroxidation species (ROS) accumulation and has been identified as a promising target for cancer treatment, especially for those with treatment resistance. In this review, we mainly summarize the recent studies on the influence and regulation of ferroptosis by which (including gut microbiota) modulating the metabolism of iron, amino acid and lipid. Thus this analysis may provide potential targets for inducing CRC ferroptosis and shed lights on the future application of ferroptosis in CRC.
Collapse
Affiliation(s)
- Gen Yang
- Department of Pathology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Boning Qian
- Department of Pathology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Liya He
- Department of Pathology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Chi Zhang
- Department of Pathology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Jianqiang Wang
- Department of Pathology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Xinlai Qian
- Department of Pathology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, Henan, China.
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
- Henan Provincial Key Laboratory of Molecular Oncologic Pathology, Xinxiang, Henan, China.
| | - Yongxia Wang
- Department of Pathology, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453003, Henan, China.
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, 453003, Henan, China.
- Henan Provincial Key Laboratory of Molecular Oncologic Pathology, Xinxiang, Henan, China.
| |
Collapse
|
17
|
Dong L, Ji Z, Sun J, Hu J, Jiang Q, Wei W. Multi-omics investigation of Porphyromonas gingivalis exacerbating acute kidney injury through the gut-kidney axis. mSystems 2025; 10:e0113624. [PMID: 39807890 PMCID: PMC11834432 DOI: 10.1128/msystems.01136-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025] Open
Abstract
Periodontitis is closely related to renal health, but the specific influence of Porphyromonas gingivalis (P. gingivalis), a key pathogen in periodontitis, on the development of acute kidney injury (AKI) in mice has not been fully elucidated. In our study, AKI was induced in mice through ischemia-reperfusion injury while administering oral infection with P. gingivalis. Comprehensive analyses were conducted, including 16S rRNA sequencing, liquid chromatography-mass spectrometry (LC-MS) metabolomics, and transcriptome sequencing. In vitro, the identified metabolite was used to stimulate mouse neutrophils. Subsequently, these modified neutrophils were co-cultured with mouse renal tubular epithelial cells. The results showed that oral infection with P. gingivalis significantly exacerbated AKI in mice. 16S rRNA sequencing revealed notable shifts in gut microbiota composition. LC-MS metabolomics analysis identified significant metabolic alterations, particularly the upregulation of 3-indoleacrylic acid in the serum. Transcriptome sequencing showed an increased expression of neutrophilic granule protein (Ngp), which was closely associated with 3-indoleacrylic acid, and the presence of Porphyromonas. Cellular experiments demonstrated that 3-indoleacrylic acid could activate neutrophils, leading to an elevation in NGP protein levels, a response that was associated with renal epithelial cell injury. Oral infection with P. gingivalis exacerbated AKI through the gut-kidney axis, involving gut microbiota dysbiosis, metabolic disturbances, and increased renal expression of Ngp. IMPORTANCE This study provides novel insights into the relationship between periodontal health and renal function. Porphyromonas gingivalis oral infection disrupted the balance of gut microbiota and was an important modifier determining the severity of acute kidney injury. Under the "gut-kidney axis," P. gingivalis might cause an increase in the level of the gut microbial metabolite 3-indoleacrylic acid, interfering with kidney immunity and disrupting the maintenance of kidney epithelium.
Collapse
Affiliation(s)
- Ling Dong
- Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Zhaoxin Ji
- Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Jing Sun
- Department of Periodontology, Jinan Key Medical and Health Laboratory of Oral Diseases and Tissue Regeneration, Jinan Key Laboratory of Oral Diseases and Tissue Regeneration, Shandong Provincial Key Medical and Health Laboratory of Oral Diseases and Tissue Regeneration, Shandong Provincial Key Medical and Health Discipline of Oral Medicine, Jinan Stomatological Hospital, Jinan, Shandong, China
| | - Jiangqi Hu
- Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Qingsong Jiang
- Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Wei Wei
- Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
18
|
Peng X, Khan Z, Dong Y, Xing LX. Oral Transfer of Anti-Aging Substances: Key Chemical Found in Reproductive Caste of Termites. Int J Mol Sci 2025; 26:1543. [PMID: 40004008 PMCID: PMC11855088 DOI: 10.3390/ijms26041543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/18/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025] Open
Abstract
With the rapid increase in global population aging, the incidence and mortality rates of age-related diseases are rising, becoming a worldwide issue. Therefore, researching and discovering natural compounds with anti-aging properties is crucial. Social insects such as termites exhibit significant differences in lifespan between reproductive and non-reproductive castes. Reproductive castes are exclusively fed by worker termites through trophallaxis, providing a convenient model for the discovery of natural anti-aging compounds. This thesis systematically investigates the trophallactic fluid among different caste members of termite Reticulitermes labralis. A total of 1028 metabolites were identified in the trophallactic fluid, seven of which have been validated in the KEGG database to possess anti-aging functions. This indicates that the trophallactic fluid of termites indeed contains natural compounds that promote longevity. Using the "fishing method", we successfully screened out potential life-extending compounds, including IDA (trans-3-indoleacrylic acid). Preliminary experimental results showed that IDA influences lifespan by modulating the IIS (insulin/insulin-like growth factor signaling) pathway and the RAS pathway. Notably, the modulation of the IIS pathway by IDA does not require the involvement of foxoa. Our research findings suggest that the extended lifespan of reproductive termites is diet-related and that the lifespan-extending effects of these nutritionally regulated natural compounds are conserved across different taxa.
Collapse
Affiliation(s)
- Xin Peng
- Key Laboratory of Resource Biology and Biotechnology, Xi’an International University, Xi’an 710077, China;
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Zahid Khan
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Xi’an 710069, China
| | - Yanan Dong
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China;
| | - Lian-Xi Xing
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Xi’an 710069, China
| |
Collapse
|
19
|
Diao X, Shang Q, Guo M, Huang Y, Zhang M, Chen X, Liang Y, Sun X, Zhou F, Zhuang J, Liu SJ, Vogel CFA, Rastinejad F, Wu D. Structural basis for the ligand-dependent activation of heterodimeric AHR-ARNT complex. Nat Commun 2025; 16:1282. [PMID: 39900897 PMCID: PMC11791172 DOI: 10.1038/s41467-025-56574-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 01/23/2025] [Indexed: 02/05/2025] Open
Abstract
The aryl hydrocarbon receptor (AHR) possesses an extraordinary capacity to sense and respond to a wide range of small-molecule ligands, ranging from polycyclic aromatic hydrocarbons to endogenous compounds. Upon ligand binding, AHR translocates from the cytoplasm to nucleus, forming a transcriptionally active complex with aryl hydrocarbon receptor nuclear translocator (ARNT), for DNA binding and initiation of gene expression programs that include cellular detoxification pathways and immune responses. Here, we examine the molecular mechanisms governing AHR's high-affinity binding and activation by a diverse group of ligands. Crystal structures of the AHR-ARNT-DNA complexes, bound with each of six established AHR ligands, including Tapinarof, 6-formylindolo[3,2-b]carbazole (FICZ), benzo[a]pyrene (BaP), β-naphthoflavone (BNF), Indigo and Indirubin, reveal an unconventional mode of subunit assembly with intimate association between the PAS-B domains of AHR and ARNT. AHR's PAS-B domain utilizes eight conserved residues whose dynamic rearrangements account for the ability to bind to ligands through hydrophobic and π-π interactions. Our findings further reveal the structural underpinnings of a ligand-driven activation mechanism, whereby a segment of the AHR protein undergoes a structural transition from chaperone engagement to ARNT heterodimer stabilization, to generate the transcriptionally competent assembly. Our results provide key information for the future development of AHR-targeting drugs.
Collapse
Affiliation(s)
- Xiaotong Diao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Qinghong Shang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Mengqi Guo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yubin Huang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Meina Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xiaoyu Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yinping Liang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xiangnan Sun
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Fan Zhou
- Shanghai Zelixir Biotech, Shanghai, China
| | - Jingjing Zhuang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Christoph F A Vogel
- Center for Health and the Environment, University of California, One Shields Avenue, Davis, CA, USA
| | - Fraydoon Rastinejad
- Target Discovery Institute, NDM Research Building, University of Oxford, Old Road Campus, Oxford, UK
| | - Dalei Wu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
| |
Collapse
|
20
|
Xu H, Wang Y, Liu G, Zhu Z, Shahbazi M, Reis RL, Kundu SC, Shi X, Zu M, Xiao B. Nano-Armed Limosilactobacillus reuteri for Enhanced Photo-Immunotherapy and Microbiota Tryptophan Metabolism against Colorectal Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410011. [PMID: 39739630 PMCID: PMC11831460 DOI: 10.1002/advs.202410011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/10/2024] [Indexed: 01/02/2025]
Abstract
Despite being a groundbreaking approach to treating colorectal cancer (CRC), the efficacy of immunotherapy is significantly compromised by the immunosuppressive tumor microenvironment and dysbiotic intestinal microbiota. Here, leveraging the superior carrying capacity and innate immunity-stimulating property of living bacteria, a nanomedicine-engineered bacterium, LR-S-CD/CpG@LNP, with optical responsiveness, immune-stimulating activity, and the ability to regulate microbiota metabolome is developed. Immunoadjuvant (CpG) and carbon dot (CD) co-loaded plant lipid nanoparticles (CD/CpG@LNPs) are constructed and conjugated to the surface of Limosilactobacillus reuteri (LR) via reactive oxygen species (ROS)-responsive linkers. The inherent photothermal and photodynamic properties of oral CD/CpG@LNPs induce in situ cytotoxic ROS generation and immunogenic cell death of colorectal tumor cells. The generated neoantigens and the released CpG function as a potent in situ vaccine that stimulates the maturation of immature dendritic cells. The mature dendritic cells and metabolites secreted by LR subsequently facilitated the tumor infiltration of cytotoxic T lymphocytes to eradicate colorectal tumors. The further in vivo results demonstrate that the photo-immunotherapy and intestinal microbial metabolite regulation of LR-S-CD/CpG@LNPs collectively suppressed the growth of orthotopic colorectal tumors and their liver metastases, presenting a promising avenue for synergistic treatment of CRC via the oral route.
Collapse
Affiliation(s)
- Haiting Xu
- State Key Laboratory of Resource InsectsCollege of SericultureTextile, and Biomass SciencesSouthwest UniversityChongqing400715China
| | - Yajun Wang
- Department of PharmacyPersonalized Drug Therapy Key Laboratory of Sichuan ProvinceSichuan Academy of Medical Sciences & Sichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and TechnologyChengdu610054China
| | - Ga Liu
- State Key Laboratory of Resource InsectsCollege of SericultureTextile, and Biomass SciencesSouthwest UniversityChongqing400715China
| | - Zhenhua Zhu
- Department of GastroenterologyThe First Affiliated Hospital of Nanchang UniversityNanchang330006China
| | - Mohammad‐Ali Shahbazi
- Department of Biomedical EngineeringUniversity Medical Center GroningenUniversity of GroningenAntonius Deusinglaan 1Groningen9713 AVNetherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials ScienceUniversity of GroningenAntonius Deusinglaan 1Groningen9713 AVNetherlands
| | - Rui L. Reis
- 3Bs Research GroupI3Bs — Research Institute on BiomaterialsBiodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineAvePark, BarcoGuimarães4805‐017Portugal
- ICVS/3B's‐PT Government Associate LaboratoryBragaGuimarães4800‐058Portugal
| | - Subhas C. Kundu
- 3Bs Research GroupI3Bs — Research Institute on BiomaterialsBiodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineAvePark, BarcoGuimarães4805‐017Portugal
- ICVS/3B's‐PT Government Associate LaboratoryBragaGuimarães4800‐058Portugal
| | - Xiaoxiao Shi
- State Key Laboratory of Resource InsectsCollege of SericultureTextile, and Biomass SciencesSouthwest UniversityChongqing400715China
| | - Menghang Zu
- State Key Laboratory of Resource InsectsCollege of SericultureTextile, and Biomass SciencesSouthwest UniversityChongqing400715China
| | - Bo Xiao
- Department of PharmacyPersonalized Drug Therapy Key Laboratory of Sichuan ProvinceSichuan Academy of Medical Sciences & Sichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and TechnologyChengdu610054China
| |
Collapse
|
21
|
Fan B, Liu D, Qin J, Shi Z, Hu Z, Gao X, Ren Y, Zhao P, Chen X, Ren Y, Ning G, Liu T, Feng S. Ferroptosis suppressor protein 1 regulated oligodendrocytes ferroptosis rescued by idebenone in spinal cord injury. Free Radic Biol Med 2025; 227:129-142. [PMID: 39626861 DOI: 10.1016/j.freeradbiomed.2024.11.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/28/2024] [Accepted: 11/30/2024] [Indexed: 12/09/2024]
Abstract
Ferroptosis has been demonstrated to be involved in the progression of spinal cord injury (SCI). Ferroptosis suppressor protein 1 (FSP1) can inhibit ferroptosis in parallel with Glutathione peroxidase 4 (GPX4). However, the role of FSP1 in the pathogenesis of spinal cord injury is unclear. The protein and gene levels of FSP1 were found to be downregulated during both the acute and subacute stages after SCI. In addition to regulating ferroptosis by mediating CoQ, FSP1 also influences ferroptosis sensitivity by modulating cellular homeostasis and the metal ion response system, as demonstrated by FSP1 knockdown experiments. Furthermore, Idebenone (IDE) was identified as a ferroptosis inhibitor. IDE was shown to inhibit reactive oxygen species (ROS) and restore the expression of GPX4 and xCT, thereby suppressing ferroptosis of oligodendrocytes, even when FSP1 was knocked down. In vivo results indicated that IDE could effectively rescue oligodendrocytes and neurons from ferroptosis, promoting myelination of the injured spinal cord and facilitating tissue repair and functional recovery. This study provides a novel strategy for repairing SCI through the regulation of FSP1 in ferroptosis.
Collapse
Affiliation(s)
- Baoyou Fan
- Department of Othopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, PR China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Derong Liu
- Department of Othopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, PR China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Jia Qin
- Department of Orthopedics, The First Affiliated Hospital of Sun Yat-sen University, Guizhou Hospital, No.58 Zhongshan Er Road, Guangzhou, Guangdong Province, 510080, PR China
| | - Zhongju Shi
- Department of Othopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, PR China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Zicheng Hu
- Department of Othopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, PR China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Xiang Gao
- Department of Othopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, PR China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Yifei Ren
- Department of Othopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, PR China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Pengtian Zhao
- Department of Othopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, PR China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Xiaoyang Chen
- Department of Othopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, PR China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Yiming Ren
- Department of Othopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, PR China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Guangzhi Ning
- Department of Othopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, PR China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Tao Liu
- Department of Othopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, PR China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, PR China.
| | - Shiqing Feng
- Department of Othopaedics, Tianjin Medical University General Hospital, 154 Anshan Road, Heping District, Tianjin, 300052, PR China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, PR China.
| |
Collapse
|
22
|
Wang C, You Z, Zhou G, Dong J, Tong S, Sun G. Amarogentin suppresses cell proliferation and EMT process through inducing ferroptosis in colorectal cancer. BMC Gastroenterol 2025; 25:46. [PMID: 39885392 PMCID: PMC11780999 DOI: 10.1186/s12876-025-03649-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/24/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is one common tumor with the high death rate, and badly affects the normal lives of CRC patients. Amarogentin (AG) has been found to exhibit regulatory roles and join into the progression of multiple diseases. However, the regulatory impacts and associated molecular mechanisms of AG in CRC progression keep unclear. METHODS AND RESULTS In this study, it was demonstrated that AG weakened CRC cell viability in a concentration- and time-dependent manner. In addition, AG accelerated cell apoptosis by triggering ferroptosis. The cell invasion and EMT process were restrained after AG treatment, but these impacts were reversed after Fer-1 addition. Moreover, it was uncovered that AG retarded Nrf2/HO-1/GPX4 activation. Additionally, AG modulated PTC cell viability and stimulated ferroptosis. At last, it was illustrated that AG suppressed tumor growth in vivo. CONCLUSION In conclusion, it was disclosed that AG suppressed cell proliferation and EMT process through inducing ferroptosis in CRC, and retarded Nrf2/HO-1/GPX4 activation. This discovery suggested that AG may be one effective drug for ameliorating CRC progression.
Collapse
Affiliation(s)
- Chao Wang
- Anhui Medical University, Hefei, 230022, China
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
- Department of Oncology, Chaohu Hospital of Anhui Medical University, Chaohu, 238000, China
| | - Zihao You
- Department of Oncology, Chaohu Hospital of Anhui Medical University, Chaohu, 238000, China
| | - Guoqing Zhou
- Department of Oncology, Chaohu Hospital of Anhui Medical University, Chaohu, 238000, China
| | - Juanjuan Dong
- Department of Oncology, Chaohu Hospital of Anhui Medical University, Chaohu, 238000, China
| | - Sihao Tong
- Department of Oncology, Chaohu Hospital of Anhui Medical University, Chaohu, 238000, China
| | - Guoping Sun
- Anhui Medical University, Hefei, 230022, China.
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China.
| |
Collapse
|
23
|
Huang B, Wang H, Liu S, Hao M, Luo D, Zhou Y, Huang Y, Nian Y, Zhang L, Chu B, Yin C. Palmitoylation-dependent regulation of GPX4 suppresses ferroptosis. Nat Commun 2025; 16:867. [PMID: 39833225 PMCID: PMC11746948 DOI: 10.1038/s41467-025-56344-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 01/16/2025] [Indexed: 01/22/2025] Open
Abstract
S-palmitoylation is a reversible and widespread post-translational modification, but its role in the regulation of ferroptosis has been poorly understood. Here, we elucidate that GPX4, an essential regulator of ferroptosis, is reversibly palmitoylated on cysteine 66. The acyltransferase ZDHHC20 palmitoylates GPX4 and increases its protein stability. ZDHHC20 depletion or inhibition of protein palmitoylation by 2-BP sensitizes cancer cells to ferroptosis. Moreover, we identify APT2 as the depalmitoylase of GPX4. Genetic silencing or pharmacological inhibition of APT2 with ML349 increases GPX4 palmitoylation, thereby stabilizing the protein and conferring resistance to ferroptosis. Notably, disrupting GPX4 palmitoylation markedly potentiates ferroptosis in xenografted and orthotopically implanted tumor models, and inhibits tumor metastasis through blood vessels. In the chemically induced colorectal cancer model, knockout of APT2 significantly aggravates cancer progression. Furthermore, pharmacologically modulating GPX4 palmitoylation impacts liver ischemia-reperfusion injury. Overall, our findings uncover the intricate network regulating GPX4 palmitoylation, highlighting its pivotal role in modulating ferroptosis sensitivity.
Collapse
Affiliation(s)
- Bin Huang
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Peking University, Shenzhen, Guangdong, China
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Hui Wang
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
- Shenzhen Medical Academy of Research and Translation (SMART), Shenzhen, Guangdong, China
| | - Shuo Liu
- Department of Geriatric Medicine, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Meng Hao
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Dan Luo
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Yi Zhou
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Ying Huang
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Yong Nian
- College of Pharmacy, Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Lei Zhang
- School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Peking University, Shenzhen, Guangdong, China
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
- Shenzhen Medical Academy of Research and Translation (SMART), Shenzhen, Guangdong, China
| | - Bo Chu
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Chengqian Yin
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China.
- Shenzhen Medical Academy of Research and Translation (SMART), Shenzhen, Guangdong, China.
| |
Collapse
|
24
|
Zhang Y, Chen Q, Wang L, Geng H, Zhu Z, Lv C, Zhao Y, Wang X, Sun C, Chen P, Zhang C. Spatially-resolved characterization of the metabolic and N-glycan alterations in colorectal cancer using matrix-assisted laser desorption/ionization mass spectrometry imaging. RSC Adv 2025; 15:1838-1845. [PMID: 39839237 PMCID: PMC11747861 DOI: 10.1039/d4ra08100e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/10/2025] [Indexed: 01/23/2025] Open
Abstract
Colorectal cancer is the second leading cause of cancer-related deaths worldwide, and its development typically involves complex metabolic reprogramming. By mapping the spatial distributions of metabolites and N-glycans in heterogeneous colorectal cancer tissues, we can elucidate cancer-associated metabolic and N-glycan changes. Herein, we combine mass spectrometry imaging-based metabolomics and N-glycomics to characterize the spatially resolved reprogramming of metabolites and N-glycans in colorectal cancer tissues. The metabolic characteristics of different regions of colorectal cancer were evaluated through the utilization of orthogonal partial least squares discriminant analysis. In combination with metabolic pathway enrichment analysis, significant alterations were identified in the fatty acid metabolism, arginine and proline metabolism of colorectal cancer. Cancer cell regions exhibited a marked upregulation of saturated fatty acids, monounsaturated fatty acids, polyamines, and histidine. Additionally, we discovered that the high-mannose N-glycans were predominantly distributed in tumor tissue regions, whereas complex N-glycans were more commonly found in the normal tissue regions adjacent to the tumor. Such findings provide new insights into the spatial signatures of metabolites and N-glycans in colorectal cancer, thereby offering a crucial basis for the diagnosis of colorectal cancer and potential vulnerabilities that might be targeted for cancer therapy.
Collapse
Affiliation(s)
- Yaqi Zhang
- Shandong Engineering Research Center for Innovation and Application of General Technology for Separation of Natural Products, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250014 China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250014 China
| | - Qiangjun Chen
- Department of Breast and Thyroid Surgery, Yi Du Central Hospital of Weifang, Shangdong Province No. 5168 Jiangjunshan Road Weifang 262500 China
| | - Lei Wang
- Shandong Engineering Research Center for Innovation and Application of General Technology for Separation of Natural Products, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250014 China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250014 China
| | - Haoyuan Geng
- Shandong Engineering Research Center for Innovation and Application of General Technology for Separation of Natural Products, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250014 China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250014 China
| | - Zihan Zhu
- Shandong Engineering Research Center for Innovation and Application of General Technology for Separation of Natural Products, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250014 China
| | - Cancan Lv
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250014 China
| | - Yisheng Zhao
- Shandong Engineering Research Center for Innovation and Application of General Technology for Separation of Natural Products, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250014 China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250014 China
| | - Xiao Wang
- Shandong Engineering Research Center for Innovation and Application of General Technology for Separation of Natural Products, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250014 China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250014 China
| | - Chenglong Sun
- Shandong Engineering Research Center for Innovation and Application of General Technology for Separation of Natural Products, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250014 China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250014 China
| | - Panpan Chen
- Shandong Engineering Research Center for Innovation and Application of General Technology for Separation of Natural Products, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250014 China
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250014 China
| | - Chao Zhang
- Department of Pediatrics, Qilu Hospital of Shandong University Jinan 250012 China
| |
Collapse
|
25
|
Xia W, Lv Y, Zou Y, Kang Z, Li Z, Tian J, Zhou H, Su W, Zhong J. The role of ferroptosis in colorectal cancer and its potential synergy with immunotherapy. Front Immunol 2025; 15:1526749. [PMID: 39850905 PMCID: PMC11754392 DOI: 10.3389/fimmu.2024.1526749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 12/20/2024] [Indexed: 01/25/2025] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent and deadly malignancies worldwide. Recently, ferroptosis, a novel form of regulated cell death characterized by iron dependency and lipid peroxidation, has garnered significant attention from researchers. The mechanisms underlying ferroptosis, including intracellular iron levels, lipid peroxidation, and antioxidant system regulation, offer new insights into cancer treatment strategies. This study aims to explore the emerging role of ferroptosis in the context of immunotherapy for CRC, highlighting its potential mechanisms and clinical applications. We employed a comprehensive review of current literature to elucidate the biological mechanisms of ferroptosis, its relationship with CRC, and the interplay between ferroptosis and immunotherapy. Ferroptosis reshapes the tumor microenvironment (TME) by regulating intracellular iron levels, lipid metabolism, and antioxidant systems, significantly enhancing the efficacy of immune checkpoint inhibitors (ICIs). Meanwhile, traditional Chinese medicine therapies promote antitumor immunity by modulating the TME and inducing ferroptosis. Additionally, advances in nanotechnology have facilitated precise therapy by enabling targeted delivery of ferroptosis inducers or immunomodulators, transforming "cold" tumors into "hot" tumors and further boosting ICI efficacy. This study comprehensively reviews the latest developments in ferroptosis, immunotherapy, traditional Chinese medicine, and nanotechnology in CRC, highlighting the importance of ferroptosis-related biomarkers and novel inducers for personalized treatment. In summary, ferroptosis offers a promising strategy to overcome CRC therapy resistance and enhance immunotherapy efficacy, warranting further investigation and translational application.
Collapse
Affiliation(s)
- Wenhua Xia
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yuanhao Lv
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Yan Zou
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Zhanting Kang
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Zhaoyi Li
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Jiaqi Tian
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Hongyan Zhou
- Xinxiang Key Laboratory of Precision Diagnosis and Treatment for Colorectal Cancer, Xinxiang First People’s Hospital, Xinxiang, China
| | - Wei Su
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Xinxiang Engineering Technology Research Center of Digestive Tumor Molecular Diagnosis, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Jiateng Zhong
- Department of Pathology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
- Department of Pathology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Xinxiang Key Laboratory of Precision Diagnosis and Treatment for Colorectal Cancer, Xinxiang First People’s Hospital, Xinxiang, China
- Xinxiang Engineering Technology Research Center of Digestive Tumor Molecular Diagnosis, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
26
|
Jian J, Wei J. Ferroptosis: A New Pathway in the Interaction between Gut Microbiota and Multiple Sclerosis. FRONT BIOSCI-LANDMRK 2025; 30:26265. [PMID: 39862079 DOI: 10.31083/fbl26265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/28/2024] [Accepted: 11/01/2024] [Indexed: 01/27/2025]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disorder marked by neuroinflammation, demyelination, and neuronal damage. Recent advancements highlight a novel interaction between iron-dependent cell death, known as ferroptosis, and gut microbiota, which may significantly influences the pathophysiology of MS. Ferroptosis, driven by lipid peroxidation and tightly linked to iron metabolism, is a pivotal contributor to the oxidative stress observed in MS. Concurrently, the gut microbiota, known to affect systemic immunity and neurological health, emerges as an important regulator of iron homeostasis and inflammatory responses, thereby influencing ferroptotic pathways. This review investigates how gut microbiota dysbiosis and ferroptosis impact MS, emphasizing their potential as therapeutic targets. Through an integrated examination of mechanistic pathways and clinical evidence, we discuss how targeting these interactions could lead to novel interventions that not only modulate disease progression but also offer personalized treatment strategies based on gut microbiota profiling. This synthesis aims at deepening insights into the microbial contributions to ferroptosis and their implications in MS, setting the stage for future research and therapeutic exploration.
Collapse
Affiliation(s)
- Junjie Jian
- The First College of Clinical Medical Science, China Three Gorges University, 443000 Yichang, Hubei, China
- Department of Neurology, Yichang Central People's Hospital, 443003 Yichang, Hubei, China
| | - Jun Wei
- The First College of Clinical Medical Science, China Three Gorges University, 443000 Yichang, Hubei, China
- Department of Neurology, Yichang Central People's Hospital, 443003 Yichang, Hubei, China
| |
Collapse
|
27
|
Sun Y, Wang D, Yuan C, Lang X, Fu S. Lapatinib: A Potential Therapeutic Agent for Colon Cancer Targeting Ferroptosis. Anticancer Agents Med Chem 2025; 25:114-123. [PMID: 39238394 DOI: 10.2174/0118715206327756240830062531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND Colon cancer poses a significant threat to the lives of several patients, impacting their quality of life, thus necessitating its urgent treatment. Lapatinib, a new generation of targeted anti-tumor drugs for clinical application, has yet to be studied for its molecular mechanisms in treating colon cancer. OBJECTIVES This study aimed to uncover the underlying molecular mechanisms through which lapatinib exerts its therapeutic effects in colon cancer treatment. METHODS We accessed pertinent data on patients with colon cancer from the Cancer Genome Atlas (TCGA) database and performed bioinformatics analysis to derive valuable insights. The cell counting kit-8 (CCK8) assay was employed to assess whether lapatinib has a potential inhibitory effect on the growth and proliferation of HT- 29 cells. Additionally, we employed western blot and real-time quantitative polymerase chain reaction methods to investigate whether lapatinib regulates the expression of the ferroptosis-associated protein GPX4 in HT-29 cells. Furthermore, we utilized specific assay kits to measure the levels of reactive oxygen species (ROS) and malondialdehyde in HT-29 cells treated with lapatinib, aiming to elucidate the precise pattern of cell damage induced by this compound. RESULTS GPX4 exhibited high expression levels in tissues from patients with colon cancer and was significantly associated with patient prognosis and diagnosis. Lapatinib inhibited the growth and proliferation of the colon cancer cell line HT-29. Additionally, lapatinib suppressed the expression of GPX4 in HT-29 cells, while the ferroptosis inhibitor ferrostatin-1 (Fer-1) partially restored its expression. Lapatinib induced an increase in intracellular ROS levels and malondialdehyde content in HT-29 cells, with Fer-1 partially restoring these levels. CONCLUSION Our findings demonstrated that lapatinib could effectively suppress the mRNA and protein expression of GPX4 in colon cancer cells, which elevates intracellular levels of ROS and malondialdehyde, ultimately inducing ferroptosis in these cells. This mechanism underscores the potential of lapatinib as a therapeutic strategy for targeting tumors.
Collapse
Affiliation(s)
- Yue Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Harbin, Heilongjiang, 150081, China
- NHC Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, China
| | - Dan Wang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Harbin, Heilongjiang, 150081, China
- NHC Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, China
| | - Chen Yuan
- Basic Medical College, Harbin Medical University, Harbin, Heilongjiang, 150086, China
| | - Xiujuan Lang
- Department of Neurobiology, Harbin Medical University, Heilongjiang Provincial Key Laboratory of Neurobiology, Harbin, Heilongjiang, 150081, China
| | - Songbo Fu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Harbin, Heilongjiang, 150081, China
- NHC Key Laboratory of Etiology and Epidemiology, Harbin Medical University, Harbin, China
| |
Collapse
|
28
|
Song P, Peng Z, Guo X. Gut microbial metabolites in cancer therapy. Trends Endocrinol Metab 2025; 36:55-69. [PMID: 39004537 DOI: 10.1016/j.tem.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024]
Abstract
The gut microbiota plays a crucial role in maintaining homeostasis and promoting health. A growing number of studies have indicated that gut microbiota can affect cancer development, prognosis, and treatment through their metabolites. By remodeling the tumor microenvironment and regulating tumor immunity, gut microbial metabolites significantly influence the efficacy of anticancer therapies, including chemo-, radio-, and immunotherapy. Several novel therapies that target gut microbial metabolites have shown great promise in cancer models. In this review, we summarize the current research status of gut microbial metabolites in cancer, aiming to provide new directions for future tumor therapy.
Collapse
Affiliation(s)
- Panwei Song
- Institute for Immunology, Tsinghua University, Beijing 100084, China; School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing 100084, China; State Key Laboratory of Molecular Oncology, Tsinghua University, Beijing 100084, China; SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi Province 030001, China
| | - Zhi Peng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Department of Gastrointestinal Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| | - Xiaohuan Guo
- Institute for Immunology, Tsinghua University, Beijing 100084, China; School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing 100084, China; State Key Laboratory of Molecular Oncology, Tsinghua University, Beijing 100084, China; SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi Province 030001, China.
| |
Collapse
|
29
|
Li Y, Liu C, Fang B, Chen X, Wang K, Xin H, Wang K, Yang SM. Ferroptosis, a therapeutic target for cardiovascular diseases, neurodegenerative diseases and cancer. J Transl Med 2024; 22:1137. [PMID: 39710702 DOI: 10.1186/s12967-024-05881-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/13/2024] [Indexed: 12/24/2024] Open
Abstract
The identification of ferroptosis represents a pivotal advancement in the field of cell death research, revealing an entirely novel mechanism of cellular demise and offering new insights into the initiation, progression, and therapeutic management of various diseases. Ferroptosis is predominantly induced by intracellular iron accumulation, lipid peroxidation, or impairments in the antioxidant defense system, culminating in membrane rupture and consequent cell death. Studies have associated ferroptosis with a wide range of diseases, and by enhancing our comprehension of its underlying mechanisms, we can formulate innovative therapeutic strategies, thereby providing renewed hope for patients.
Collapse
Affiliation(s)
- Yinghui Li
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Cuiyun Liu
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Bo Fang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Xinzhe Chen
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Kai Wang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Hui Xin
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266021, China.
| | - Kun Wang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China.
| | - Su-Min Yang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
30
|
Li J, Xiao F, Lin B, Huang Z, Wu M, Ma H, Dou R, Song X, Wang Z, Cai C, Guan X, Xu J, Xiang FL. Ferrostatin-1 improves acute sepsis-induced cardiomyopathy via inhibiting neutrophil infiltration through impaired chemokine axis. Front Cell Dev Biol 2024; 12:1510232. [PMID: 39726718 PMCID: PMC11669711 DOI: 10.3389/fcell.2024.1510232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 11/29/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction Sepsis-induced cardiomyopathy is a common complication of sepsis and is associated with higher mortality. To date, effective diagnostic and management strategies are still lacking. Recent studies suggest that ferroptosis plays a critical role in sepsis-induced cardiomyopathy and ferroptosis inhibitor Ferrostatin-1 (Fer-1) improved cardiac dysfunction and survival in lipopolysaccharide (LPS) induced endotoxemia. However, the effects of Fer-1 in cardiac dysfunction in the early stages of cecal ligation and puncture (CLP) induced sepsis remains unclear. Our study aims to elucidate the role of Fer-1 in the acute phase of peritonitis sepsis induced cardiac injury. Methods and Results CLP was used to induce peritonitis sepsis in mice. Pretreatment of ferroptosis inhibitor ferrostatin-1 (Fer-1) was used in the in vivo models. Survival was monitored for 48h. Cardiac function and histology were analyzed 6h after surgery. We found that ejection fraction (EF) remained normal at 6h after CLP, but the contractility detected by cardiac muscle strain analysis was significantly reduced, along with increased immune cell infiltration. Pretreating the CLP mice with 5 mg/kg Fer-1 significantly reduced mortality. At 6h after CLP, ferroptosis key regulator Gpx4, cardiac iron and malonaldehyde (MDA) did not change, but ferroptosis marker gene expression increased. Fer-1 treatment showed beneficial effects in cardiac function, less myocardial inflammatory cytokine expression and significantly inhibited immune cells, especially neutrophil infiltration in the heart. Consistently, expression of neutrophil associated chemokines (Ccrl2, Cxcl2, Cxcl3 and Cxcl5) as well as extracellular matrix (ECM) degradation enzymes (Adamts1, Adamts4, Adamts9 and Mmp8) significantly decreased in Fer-1 pre-treated CLP heart. Conclusion and Discussion Our findings suggest that Fer-1 inhibits neutrophil infiltration in early sepsis by disrupting the chemokine axis, highlighting its potential as a therapeutic option to manage acute immune overactivation in early stages of sepsis-induced cardiomyopathy.
Collapse
Affiliation(s)
- Jialin Li
- Department of Critical Care Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Institute of Precision Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Fang Xiao
- Department of Critical Care Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Institute of Precision Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bingsen Lin
- Institute of Precision Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Department of Anesthesia, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhilei Huang
- Institute of Precision Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mingyue Wu
- Institute of Precision Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Huan Ma
- Department of Critical Care Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ruoxu Dou
- Department of Critical Care Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaodong Song
- Department of Critical Care Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhongxing Wang
- Department of Anesthesia, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Changjie Cai
- Department of Critical Care Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiangdong Guan
- Department of Critical Care Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jie Xu
- Institute of Precision Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases, Sun Yat-sen University, Guangzhou, China
| | - Fu-Li Xiang
- Institute of Precision Medicine, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Assisted Circulation and Vascular Diseases, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
31
|
Shen XH, Guan J, Lu DP, Hong SC, Yu L, Chen X. Peptostreptococcus Anaerobius enhances dextran sulfate sodium-induced colitis by promoting nf-κB-NLRP3-Dependent macrophage pyroptosis. Virulence 2024; 15:2435391. [PMID: 39611567 PMCID: PMC11610558 DOI: 10.1080/21505594.2024.2435391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 09/22/2024] [Accepted: 11/24/2024] [Indexed: 11/30/2024] Open
Abstract
Evidence indicates that gut microbiota is crucial in ulcerative colitis (UC) development. Increased Peptostreptococcus species abundance is linked to UC, but its role and mechanisms in intestinal inflammation are not well understood. This study used a dextran sulfate sodium (DSS)-induced colitis model in mice, and different bacterial strains were administered via gavage. We assessed clinical manifestations, colonic barrier function, gut microbiota composition, and levels of inflammatory cytokines, NOD-like receptor family pyrin domain-containing 3 (NLRP3) signaling molecules, and pyroptosis-related proteins. Mouse bone marrow-derived macrophages (BMDMs) were infected with Peptostreptococcus anaerobius at different time points and multiplicities of infection (MOI). Cell viability and the expression of NLRP3 signaling molecules and pyroptosis-associated proteins were assessed. The inhibitors C29, TAK-242, and MCC950 were employed for Toll-like receptor (TLR) and NLRP3 signaling pathways. It was observed that P. anaerobius exacerbated intestinal inflammation and barrier injury in DSS-induced colitis in mice. Additionally, P. anaerobius contributed to gut microbiota dysbiosis during colitis progression. P. anaerobius induced the expression of NLRP3 signaling molecules and pyroptosis-associated proteins in mouse colitis tissues. In vitro assays demonstrated that P. anaerobius activated NLRP3 inflammasome and evoked gasdermin D-mediated pyroptosis and interleukin (IL)-1β secretion in macrophages. Furthermore, TLR2 and TLR4 were identified as key mediators of P. anaerobius-induced macrophage pyroptosis via activation of the Nuclear Factor-kappa B (NF-κB)-NLRP3 pathway. In conclusion, P. anaerobius promotes macrophage pyroptosis and IL-1β secretion through the TLR2/4-NF-κB-NLRP3 signaling axis, thereby aggravating colitis. P. anaerobius may represent a potential risk factor for UC development.
Collapse
Affiliation(s)
- Xu-Hang Shen
- Department of Gastroenterology, First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Provincial Key Laboratory of Digestive Disease, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jing Guan
- Department of Gastroenterology, First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Provincial Key Laboratory of Digestive Disease, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - De-Peng Lu
- Department of Gastroenterology, First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Provincial Key Laboratory of Digestive Disease, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shao-Cheng Hong
- Department of Gastroenterology, First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Provincial Key Laboratory of Digestive Disease, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Li Yu
- Anhui Provincial Key Laboratory of Zoonoses, Anhui Medical University, Hefei, China
- Department of Microbiology and Parasitology, Anhui Medical University, Hefei, China
| | - Xi Chen
- Department of Gastroenterology, First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Provincial Key Laboratory of Digestive Disease, First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
32
|
Ge Y, Janson V, Liu H. Comprehensive review on leucine-rich pentatricopeptide repeat-containing protein (LRPPRC, PPR protein): A burgeoning target for cancer therapy. Int J Biol Macromol 2024; 282:136820. [PMID: 39476900 DOI: 10.1016/j.ijbiomac.2024.136820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/12/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024]
Abstract
Leucine-rich pentatricopeptide repeat-containing (LRPPRC), known as the gene mutations that cause Leigh Syndrome French Canadian, encodes a high molecular weight PPR protein (157,905 Da), LRPPRC. LRPPRC binds to DNA, RNA, and proteins to regulate transcription and translation, leading to changes in cell fate. Increasing evidence indicates that LRPPRC plays a pivotal role in various human diseases, particularly cancer in recent years. Here, we review the structure, function, molecular mechanism, as well as inhibitors of LRPPRC. LRPPRC expression elevates in most cancer types and high expression of LRPPRC predicts the poor prognosis of cancer patients. Targeting LRPPRC suppresses tumor progression by affecting several cancer hallmarks, including signal transduction, cancer metabolism, and immune regulation. LRPPRC is a promising target in cancer research, serving as both a biomarker and therapeutic target. Further studies are required to extend the understanding of LRPPRC function and molecular mechanism, as well as to refine novel therapeutic strategies targeting LRPPRC in cancer therapy.
Collapse
Affiliation(s)
- Yunxiao Ge
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China; China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan 450008, China
| | - Victor Janson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Hui Liu
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, Henan 450001, China; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; China-US (Henan) Hormel Cancer Institute, No.127, Dongming Road, Jinshui District, Zhengzhou, Henan 450008, China.
| |
Collapse
|
33
|
Yu J, Feng L, Luo Z, Yang J, Zhang Q, Liu C, Liang D, Xie Y, Li H, Gong J, He Z, Lan P. Interleukin-10 deficiency suppresses colorectal cancer metastasis by enriching gut Parabacteroides distasonis. J Adv Res 2024:S2090-1232(24)00543-5. [PMID: 39571733 DOI: 10.1016/j.jare.2024.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 11/29/2024] Open
Abstract
INTRODUCTION The intricate interplay of interleukin-10 (IL-10) and gut microbiota influences tumor development and progression, yet the impacts on colorectal cancer (CRC) metastasis remain incompletely understood. METHODS The impact of Il10 deficiency on CRC metastasis was first evaluated in CRC metastasis tumor samples and mouse model. Antibiotic sterilization and fecal microbiota transplantation (FMT) experiment were used to assess the role of gut microbiota in IL-10 mediated CRC metastasis, and full-length 16S rDNA sequencing analysis further identified the potential target bacteria influencing CRC metastasis. The inhibitory effect of Parabacteroides distasonis (P. distasonis) on CRC metastasis was evaluated by oral administration in mice. Key metabolites involved in P. distasonis inhibition of CRC metastasis was identified by widely-targeted metabolome analysis and validated both in vivo and in vitro. The underlying mechanisms of P-hydroxyphenyl acetic acid (4-HPAA) inhibiting CRC metastasis was investigated via RNA-sequencing and validated in cellular experiments. RESULTS We revealed that serum IL-10 levels were markedly elevated in metastatic CRC patients compared to non-metastatic cases. In parallel, Il10-deficiency (Il10-/-) in mice resulted in decreased CRC metastasis in a gut microbiota-dependent manner. Mechanistically, Il10-/- mice reshaped gut microbiota composition, notably enriching P. distasonis. The enriched P. distasonis produced 4-HPAA, which activated the aryl hydrocarbon receptor (AHR) and subsequently inhibited the expression of VEGFA, a typical oncogene, thereby sequentially suppressing CRC metastasis. Importantly, engineered bacteria capable of producing 4-HPAA effectively hindered CRC metastasis. Furthermore, AHR depletion significantly disrupted the 4-HPAA-induced reduction in CRC cell migration and the inhibition of metastasis in both in vitro and in vivo lung metastasis mouse models. CONCLUSIONS These findings demonstrate the significance of IL-10 deficiency in suppressing CRC metastasis through the 4-HPPA-AHR-VEGFA axis mediated by gut P. distasonis, suggesting that P. distasonis or 4-HPAA supplementation could offer a promising therapeutic strategy for CRC metastasis prevention.
Collapse
Affiliation(s)
- Jing Yu
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510655, China
| | - Lili Feng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China; Department of Radiology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Zhanhao Luo
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510655, China
| | - Jingyi Yang
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510655, China
| | - Qiang Zhang
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong 518107, China
| | - Chen Liu
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510655, China
| | - Dayi Liang
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510655, China
| | - Yanchun Xie
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510655, China
| | - Hongmin Li
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510655, China
| | - Junli Gong
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510655, China.
| | - Zhen He
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510655, China.
| | - Ping Lan
- Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655, China.
| |
Collapse
|
34
|
Yang X, Liu Y, Wang Z, Jin Y, Gu W. Ferroptosis as a new tool for tumor suppression through lipid peroxidation. Commun Biol 2024; 7:1475. [PMID: 39521912 PMCID: PMC11550846 DOI: 10.1038/s42003-024-07180-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
As a newly defined type of programmed cell death, ferroptosis is considered a potent weapon against tumors due to its distinct mechanism from other types of programmed cell death. Ferroptosis is triggered by the uncontrolled accumulation of hydroperoxyl polyunsaturated fatty acid-containing phospholipids, also called lipid peroxidation. The lipid peroxidation, generated through enzymatic and non-enzymatic mechanisms, drives changes in cell morphology and the destruction of membrane integrity. Here, we dissect the mechanisms of ferroptosis induced enzymatically or non-enzymatically, summarize the major metabolism pathways in modulating lipid peroxidation, and provide insights into the relationship between ferroptosis and tumor suppression. In this review, we discuss the recent advances of ferroptosis in tumor microenvironments and the prospect of potential therapeutic application.
Collapse
Affiliation(s)
- Xin Yang
- Suzhou Ninth Hospital Affiliated to Soochow University, The Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA.
| | - Yanqing Liu
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Zhe Wang
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Ying Jin
- Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou Ninth People's Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Wei Gu
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA.
- Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
35
|
Tang D, Kang R. NFE2L2 and ferroptosis resistance in cancer therapy. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:41. [PMID: 39534872 PMCID: PMC11555182 DOI: 10.20517/cdr.2024.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/09/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
NFE2-like basic leucine zipper transcription factor 2 (NFE2L2, also known as NRF2), is a key transcription factor in the cellular defense against oxidative stress, playing a crucial role in cancer cell survival and resistance to therapies. This review outlines the current knowledge on the link between NFE2L2 and ferroptosis - a form of regulated cell death characterized by iron-dependent lipid peroxidation - within cancer cells. While NFE2L2 activation can protect normal cells from oxidative damage, its overexpression in cancer cells contributes to drug resistance by upregulating antioxidant defenses and inhibiting ferroptosis. We delve into the molecular pathways of ferroptosis, highlighting the involvement of NFE2L2 and its target genes, such as NQO1, HMOX1, FTH1, FTL, HERC2, SLC40A1, ABCB6, FECH, PIR, MT1G, SLC7A11, GCL, GSS, GSR, GPX4, AIFM2, MGST1, ALDH1A1, ALDH3A1, and G6PD, in ferroptosis resistance. Understanding the delicate balance between NFE2L2's protective and deleterious roles could pave the way for novel therapeutic strategies targeting NFE2L2 to enhance the efficacy of ferroptosis inducers in cancer therapy.
Collapse
Affiliation(s)
- Daolin Tang
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TA 75390, USA
| | - Rui Kang
- Department of Surgery, University of Texas Southwestern Medical Center, Dallas, TA 75390, USA
| |
Collapse
|
36
|
Li Y, Chen J, Xia Q, Shang J, He Y, Li Z, Chen Y, Gao F, Yu X, Yuan Z, Yin P. Photothermal Fe 3O 4 nanoparticles induced immunogenic ferroptosis for synergistic colorectal cancer therapy. J Nanobiotechnology 2024; 22:630. [PMID: 39415226 PMCID: PMC11484360 DOI: 10.1186/s12951-024-02909-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/05/2024] [Indexed: 10/18/2024] Open
Abstract
Photothermal therapy (PTT) is a promising non-invasive treatment that has shown great potential in eliminating tumors. It not only induces apoptosis of cancer cells but also triggers immunogenic cell death (ICD) which could activate the immune system against cancer. However, the immunosuppressive tumor microenvironment (TIME) poses a challenge to triggering strong immune responses with a single treatment, thus limiting the therapeutic effect of cancer immunotherapy. In this study, dual-targeted nano delivery system (GOx@FeNPs) combined with αPD-L1 immune checkpoint blocker could inhibit colorectal cancer (CRC) progression by mediating PTT, ferroptosis and anti-tumor immune response. Briefly, specific tumor delivery was achieved by the cyclic arginine glycyl aspartate (cRGD) peptide and anisamide (AA) in GOx@FeNPs which not only had a good photothermal effect to realize PTT and induce ICD, but also could deplete glutathione (GSH) and catalyze the production of reactive oxygen species (ROS) from endogenous H2O2. All these accelerated the Fenton reaction and augmented the process of PTT-induced ICD. Thus, a large amount of tumor specific antigen was released to stimulate the maturation of dendritic cells (DCs) in lymph nodes and enhance the infiltration of CD8+ T cells in tumor. At the same time, the combination with αPD-L1 has favorable synergistic effectiveness against CRC with tumor inhibition rate over 90%. Furthermore, GOx@FeNPs had good magnetic resonance imaging (MRI) capability under T2-weighting owing to the presence of Fe3+, which is favorable for integrated diagnosis and treatment systems of CRC. By constructing a dual-targeted GOx@FeNPs nanoplatform, PTT synergistically combined with ferroptosis was realized to improve the immunotherapeutic effect, providing a new approach for CRC immunotherapy.
Collapse
Affiliation(s)
- Yue Li
- Interventional Cancer Institute of Chinese Integrative Medicine & Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Jia Chen
- Interventional Cancer Institute of Chinese Integrative Medicine & Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Qi Xia
- Interventional Cancer Institute of Chinese Integrative Medicine & Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Jing Shang
- Interventional Cancer Institute of Chinese Integrative Medicine & Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Shanghai, 200062, China
| | - Yujie He
- Interventional Cancer Institute of Chinese Integrative Medicine & Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Zhi Li
- Interventional Cancer Institute of Chinese Integrative Medicine & Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Yingying Chen
- Interventional Cancer Institute of Chinese Integrative Medicine & Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Feng Gao
- Department of Pharmaceutics, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Xi Yu
- Interventional Cancer Institute of Chinese Integrative Medicine & Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.
| | - Zeting Yuan
- Interventional Cancer Institute of Chinese Integrative Medicine & Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.
- Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.
- Department of Pharmaceutics, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Shanghai, 200062, China.
| | - Peihao Yin
- Interventional Cancer Institute of Chinese Integrative Medicine & Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Shanghai, 200062, China.
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| |
Collapse
|
37
|
Xu Z, Xu C, Lu J, He C, Wang X, Zhu D, Wang A, Zhang Z, Jiang C. Cytochrome P450 F3 promotes colorectal cancer via inhibiting NRF2-mediated ferroptosis. Transl Oncol 2024; 48:102077. [PMID: 39106550 PMCID: PMC11357859 DOI: 10.1016/j.tranon.2024.102077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/27/2024] [Accepted: 08/01/2024] [Indexed: 08/09/2024] Open
Abstract
Cytochrome P450 F3 (CYP4F3) is recognized as a disease-associated immune response initiator that is involved in the synthesis of cholesterol, steroids, and lipids. This study identified the upregulation of CYP4F3 expression in colorectal cancer (CRC) and its association with poor patient prognosis through a comparative analysis between CRC tumor tissues with normal tissues from public databases. The overexpression of CYP4F3 in CT26.wt and SW620, promoted cell proliferation and migration, a reduction of cellular oxidative stress, an up-regulation of the oxidative stress-related pathway NRF2, and an inhibition of cellular ferroptosis. Additionally, inhibition of NRF2 activity stimulated cellular ferroptosis when CYP4F3 was overexpressed. Ferroptosis, characterized by iron-dependent lipid peroxidation, is a non-apoptotic way of cell death with a critical role in cancer development. When given a ferroptosis agonist to CYP4F3-overexpression CRC cells, NRF2 was activated, and cell proliferation and migration were reduced. Furthermore, the mice subcutaneously injected with CYP4F3-overexpression CT26.wt cells formed significantly larger tumors compared to the CYP4F3-vector CT26.wt cell group. This study systematically identified an important role of CYP4F3 in CRC development as a regulator of CRC cells to escape ferroptosis via NRF2, highlighting the significance of CYP4F3 as a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Ziyang Xu
- The Department of Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai 200233, China
| | - Cheng Xu
- The Department of Anesthesiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai 200233, China
| | - Jie Lu
- The Department of Anesthesiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai 200233, China
| | - Chenfeng He
- The Department of Integrative Bioanalytics, Aging and Cancer (IDAC), Institute of Development, Tohoku University, Sendai, Japan
| | - Xinyue Wang
- The Department of Investigative Pathology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Dongfei Zhu
- The Department of Cardiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aizhong Wang
- The Department of Anesthesiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai 200233, China.
| | - Zhengyun Zhang
- The Department of Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai 200233, China.
| | - Can Jiang
- The Department of Anesthesiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Yishan Road 600, Shanghai 200233, China.
| |
Collapse
|
38
|
Le Ngoc K, Pham TTH, Nguyen TK, Huong PT. Pharmacomicrobiomics in precision cancer therapy: bench to bedside. Front Immunol 2024; 15:1428420. [PMID: 39315107 PMCID: PMC11416994 DOI: 10.3389/fimmu.2024.1428420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
The burgeoning field of pharmacomicrobiomics offers promising insights into the intricate interplay between the microbiome and cancer, shaping responses to diverse treatment modalities. This review aims to analyze the molecular mechanisms underlying interactions between distinct microbiota types and cancer, as well as their influence on treatment outcomes. We explore how the microbiome impacts antitumor immunity, and response to chemotherapy, immunotherapy, and radiation therapy, unveiling its multifaceted roles in cancer progression and therapy resistance. Moreover, we discuss the challenges hindering the development of microbiome-based interventions in cancer therapy, including standardization, validation, and clinical translation. By synthesizing clinical evidence, we underscore the transformative potential of harnessing pharmacomicrobiomics in guiding cancer treatment decisions, paving the way for improved patient outcomes in clinical practice.
Collapse
Affiliation(s)
| | | | | | - Phung Thanh Huong
- Faculty of Biotechnology, Hanoi University of Pharmacy,
Hanoi, Vietnam
| |
Collapse
|
39
|
Lin X, He K, Gu Z, Zhao X. Emerging chemophysiological diversity of gut microbiota metabolites. Trends Pharmacol Sci 2024; 45:824-838. [PMID: 39129061 DOI: 10.1016/j.tips.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 08/13/2024]
Abstract
Human physiology is profoundly influenced by the gut microbiota, which generates a wide array of metabolites. These microbiota-derived compounds serve as signaling molecules, interacting with various cellular targets in the gastrointestinal tract and distant organs, thereby impacting our immune, metabolic, and neurobehavioral systems. Recent advancements have unveiled unique physiological functions of diverse metabolites derived from tryptophan (Trp) and bile acids (BAs). This review highlights the emerging chemophysiological diversity of these metabolites and discusses the role of chemical and biological tools in analyzing and therapeutically manipulating microbial metabolism and host targets, with the aim of bridging the chemical diversity with physiological complexity in host-microbe molecular interactions.
Collapse
Affiliation(s)
- Xiaorong Lin
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Kaixin He
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China; Jinhua Institute of Zhejiang University, Jinhua 321299, Zhejiang, China; State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Zhen Gu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China; Jinhua Institute of Zhejiang University, Jinhua 321299, Zhejiang, China; State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, Zhejiang, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311121, Zhejiang, China; Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China
| | - Xiaohui Zhao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China; Jinhua Institute of Zhejiang University, Jinhua 321299, Zhejiang, China; State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
40
|
Liu R, Wang J, Liu Y, Gao Y, Yang R. Regulation of gut microbiota on immune cell ferroptosis: A novel insight for immunotherapy against tumor. Cancer Lett 2024; 598:217115. [PMID: 39025428 DOI: 10.1016/j.canlet.2024.217115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/26/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
Gut microbiota contributes to the homeostasis of immune system and is related to various diseases such as tumorigenesis. Ferroptosis, a new type of cell death, is also involved in the disease pathogenesis. Recent studies have found the correlations of gut microbiota mediated ferroptosis and immune cell death. Gut microbiota derived immunosuppressive metabolites, which can promote differentiation and function of immune cells, tend to inhibit ferroptosis through their receptors, whereas inflammatory metabolites from gut microbiota also affect the differentiation and function of immune cells and their ferroptosis. Thus, it is possible for gut microbiota to regulate immune cell ferroptosis. Indeed, gut microbiota metabolite receptor aryl hydrocarbon receptor (AhR) can affect ferroptosis of intestinal intraepithelial lymphocytes, leading to disease pathogenesis. Since immune cell ferroptosis in tumor microenvironment (TME) affects the occurrence and development of tumor, the modulation of gut microbiota in these cell ferroptosis might influence on the tumorigenesis, and also immunotherapy against tumors. Here we will summarize the recent advance of ferroptosis mediated by gut microbiota metabolites, which potentially acts as regulator(s) on immune cells in TME for therapy against tumor.
Collapse
Affiliation(s)
- Ruobing Liu
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Juanjuan Wang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Yuqing Liu
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Yunhuan Gao
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China
| | - Rongcun Yang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China; Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin 300071, China.
| |
Collapse
|
41
|
Han L, Sun X, Kong J, Li J, Feng K, Bai Y, Wang X, Zhu Z, Yang F, Chen Q, Zhang M, Yue B, Wang X, Fu L, Chen Y, Yang Q, Wang S, Xin Q, Sun N, Zhang D, Zhou Y, Gao Y, Zhao J, Jiang Y, Guo R. Multi-omics analysis reveals a feedback loop amplifying immune responses in acute graft-versus-host disease due to imbalanced gut microbiota and bile acid metabolism. J Transl Med 2024; 22:746. [PMID: 39113144 PMCID: PMC11308528 DOI: 10.1186/s12967-024-05577-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024] Open
Abstract
Acute graft-versus-host disease (aGVHD) is primarily driven by allogeneic donor T cells associated with an altered composition of the host gut microbiome and its metabolites. The severity of aGVHD after allogeneic hematopoietic stem cell transplantation (allo-HSCT) is not solely determined by the host and donor characteristics; however, the underlying mechanisms remain unclear. Using single-cell RNA sequencing, we decoded the immune cell atlas of 12 patients who underwent allo-HSCT: six with aGVHD and six with non-aGVHD. We performed a fecal microbiota (16SrRNA sequencing) analysis to investigate the fecal bacterial composition of 82 patients: 30 with aGVHD and 52 with non-aGVHD. Fecal samples from these patients were analyzed for bile acid metabolism. Through multi-omic analysis, we identified a feedback loop involving "immune cell-gut microbes-bile acid metabolites" contributing to heightened immune responses in patients with aGVHD. The dysbiosis of the gut microbiota and disruption of bile acid metabolism contributed to an exaggerated interleukin-1 mediated immune response. Our findings suggest that resistin and defensins are crucial in mitigating against aGVHD. Therefore, a comprehensive multi-omic atlas incorporating immune cells, gut microbes, and bile acid metabolites was developed in this study and used to propose novel, non-immunosuppressive approaches to prevent aGVHD.
Collapse
Affiliation(s)
- Lijie Han
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xianlei Sun
- Basic Medical Research Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Jingjing Kong
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jin Li
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Kai Feng
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yanliang Bai
- Department of Hematology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, China
| | - Xianjing Wang
- Department of Hematology, The Third People's Hospital of Zhengzhou, Zhengzhou, 450000, Henan, China
| | - Zhenhua Zhu
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Fengyuan Yang
- Basic Medical Research Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Qingzhou Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mengmeng Zhang
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Baohong Yue
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaoqian Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Liyan Fu
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Yaoyao Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qiankun Yang
- Department of Blood Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shuya Wang
- Department of Blood Transfusion, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Qingxuan Xin
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Nannan Sun
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Danfeng Zhang
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yiwei Zhou
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yanxia Gao
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Junwei Zhao
- Department of Laboratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Yong Jiang
- Henan Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine and Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Rongqun Guo
- Translational Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
42
|
Wei Y, Shen F, Song H, Zhao R, Feng W, Pan Y, Li X, Yu H, Familiari G, Relucenti M, Aschner M, Shi H, Chen R, Nie G, Chen H. The challenge and opportunity of gut microbiota-targeted nanomedicine for colorectal cancer therapy. IMETA 2024; 3:e213. [PMID: 39135695 PMCID: PMC11316922 DOI: 10.1002/imt2.213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 08/15/2024]
Abstract
The gut microbiota is an integral component of the colorectal cancer (CRC) microenvironment and is intimately associated with CRC initiation, progression, and therapeutic outcomes. We reviewed recent advancements in utilizing nanotechnology for modulating gut microbiota, discussing strategies and the mechanisms underlying their design. For future nanomedicine design, we propose a 5I principle for individualized nanomedicine in CRC management.
Collapse
Affiliation(s)
- Yaohua Wei
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and TechnologyBeijingChina
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijingChina
| | - Feng Shen
- Department of Gastroenterology and Endoscopy, Xinhua HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Huidong Song
- Guangzhou Twelfth People's HospitalGuangzhouChina
| | - Ruifang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and TechnologyBeijingChina
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijingChina
| | - Weiyue Feng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy PhysicsChinese Academy of Sciences (CAS)BeijingChina
| | - Yue Pan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong‐Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhouChina
| | - Xiaobo Li
- Department of Occupational and Environmental Health, School of Public HealthCapital Medical UniversityBeijingChina
| | - Huanling Yu
- Department of Nutrition & Food Hygiene, School of Public HealthCapital Medical UniversityBeijingChina
| | - Giuseppe Familiari
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic ScienceSapienza University of RomeRomaItalia
| | - Michela Relucenti
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic ScienceSapienza University of RomeRomaItalia
| | - Michael Aschner
- Department of Molecular PharmacologyAlbert Einstein College of MedicineBronxNew York StateUSA
| | - Hanping Shi
- Department of Gastrointestinal Surgery and Department of Clinical Nutrition, Beijing Shijitan HospitalCapital Medical UniversityBeijingChina
| | - Rui Chen
- School of Public HealthCapital Medical UniversityBeijingChina
- Beijing Laboratory of Allergic DiseasesBeijing Municipal Education CommissionBeijingChina
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center of Excellence in Nanoscience, National Center for Nanoscience and TechnologyBeijingChina
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijingChina
| | - Hanqing Chen
- Department of Nutrition & Food Hygiene, School of Public HealthCapital Medical UniversityBeijingChina
| |
Collapse
|
43
|
Gu X, Liao S, Li M, Wang J, Tan B. Chloroquine Downregulation of Intestinal Autophagy Changed Intestinal Microbial Community Compositions and Metabolite Profiles in Piglets. Vet Sci 2024; 11:333. [PMID: 39195787 PMCID: PMC11360670 DOI: 10.3390/vetsci11080333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 08/29/2024] Open
Abstract
Our previous study demonstrated that moderate inhibition of intestinal autophagy was beneficial to alleviate early weaning stress in piglets, but the detailed mechanism behind this was unclear. Microbiota-mediated enterocyte autophagy helps maintain intestinal homeostasis. This study investigated the effects of inhibition or activation of autophagy in intestinal microbial community compositions and metabolite profiles in piglets. Eighteen 24-day-old weaned piglets were divided into three groups (each treatment of six piglets) and treated daily with rapamycin (RAPA), chloroquine (CQ) or a control volume of normal saline (CON group). Before the formal trial, the piglets were allowed to acclimatize for 3 days, and then the trial period was 14 days. Collected samples from the ileum and colon underwent 16S rRNA gene sequencing and metabolite analysis. Significant differences in microbial composition were observed in both the ileum and colon of the RAPA and CQ groups compared to the CON group (p < 0.05). In addition, the relative levels of abundance of Peptostreptococcus, Fusobacterium, Dialister, Selenomonas and Oceanobacillus in the ileum and Porphyromonas, Bacteroides, unidentified_Lachnospiraceae, Akkermansia, Sharpea, Peptococcus, Pseudoalteromonas, Peptoclostridium and unidentified_Acidobacteria in the colon were improved in piglets fed the RAPA diet, whereas the relative levels of abundance of Turicibacter, Rickettsiella and Sarcina in the ileum and Roseburia and Kroppenstedtia in the colon were enhanced in the CQ group (p < 0.05). Meanwhile, metabolomic analysis showed that there were significant differences in metabolites among all groups (p < 0.05), and KEGG enrichment analysis revealed that differential metabolites were mainly enriched in the ABC transporters and biosynthesis of amino acids pathways. Furthermore, these metabolites were closely related to differential microorganisms (p < 0.05). Overall, autophagy inhibition regulates the composition of intestinal microorganisms and their metabolites, and these differential metabolites are significantly correlated with differential intestinal microorganisms, which may in turn affect the production performance of weaned piglets.
Collapse
Affiliation(s)
- Xueling Gu
- Key Laboratory of Hunan Province for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.G.); (S.L.); (J.W.)
- Yuelushan Laboratory, Changsha 410128, China;
| | - Simeng Liao
- Key Laboratory of Hunan Province for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.G.); (S.L.); (J.W.)
- Yuelushan Laboratory, Changsha 410128, China;
| | - Meng Li
- Yuelushan Laboratory, Changsha 410128, China;
| | - Jing Wang
- Key Laboratory of Hunan Province for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.G.); (S.L.); (J.W.)
- Yuelushan Laboratory, Changsha 410128, China;
| | - Bie Tan
- Key Laboratory of Hunan Province for the Products Quality Regulation of Livestock and Poultry, College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China; (X.G.); (S.L.); (J.W.)
- Yuelushan Laboratory, Changsha 410128, China;
| |
Collapse
|
44
|
Wan F, He X, Xie W. Canagliflozin Inhibits Palmitic Acid-Induced Vascular Cell Aging In Vitro through ROS/ERK and Ferroptosis Pathways. Antioxidants (Basel) 2024; 13:831. [PMID: 39061899 PMCID: PMC11273734 DOI: 10.3390/antiox13070831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
Vascular aging is one of the reasons for the high incidence of cardiovascular diseases nowadays, as vascular cells age due to various internal and external factors. Among them, high fat is an important inducer. Canagliflozin (CAN) is one of the SGLT2 inhibitors that has been shown to have cardiovascular protective effects in addition to lowering blood sugar, but the specific mechanism is not clear. This study first established a vascular aging model using palmitic acid (PA), then tested the effect of CAN on PA-induced vascular aging, and finally examined the mechanism of CAN's anti-vascular aging via ROS/ERK and ferroptosis pathways. We found that CAN alleviates PA-induced vascular cell aging by inhibiting the activation of ROS/ERK and ferroptosis signaling pathways. This study reveals new mechanisms of lipid-induced vascular aging and CAN inhibition of vascular aging from the perspectives of ROS/ERK and ferroptosis pathways, which is expected to provide new ideas for the development of related drugs in the future.
Collapse
Affiliation(s)
- Fang Wan
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (F.W.); (X.H.)
- Shenzhen Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical and Health, Tsinghua University, Shenzhen 518055, China
| | - Xin He
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (F.W.); (X.H.)
- Shenzhen Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical and Health, Tsinghua University, Shenzhen 518055, China
- Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Weidong Xie
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; (F.W.); (X.H.)
- Shenzhen Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical and Health, Tsinghua University, Shenzhen 518055, China
- Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
45
|
Mehra P, Kumar A. Emerging importance of stool preservation methods in OMICS studies with special focus on cancer biology. Cell Biochem Funct 2024; 42:e4063. [PMID: 38961596 DOI: 10.1002/cbf.4063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/12/2024] [Accepted: 05/18/2024] [Indexed: 07/05/2024]
Abstract
The intricate consortium of microorganisms in the human gut plays a crucial role in different physiological functions. The complex known-unknown elements of the gut microbiome are perplexing and the absence of standardized procedures for collecting and preserving samples has hindered continuous research in comprehending it. The technological bias produced because of lack of standard protocols has affected the reproducibility of results. The complex nature of diseases like colorectal cancer, gastric cancer, hepatocellular carcinoma and breast cancer require a thorough understanding of its etiology for an efficient and timely diagnosis. The designated protocols for collection and preservation of stool specimens have great variance, hence generate inconsistencies in OMICS studies. Due to the complications associated to the nature of sample, it is important to preserve the sample to be studied later in a laboratory or to be used in the future research purpose. Stool preservation is gaining importance due to the increased use of treatment options like fecal microbiota transplantation to cure conditions like recurrent Clostridium difficile infections and for OMICS studies including metagenomics, metabolomics and culturomics. This review provides an insight into the importance of omics studies for the identification and development of novel biomarkers for quick and noninvasive diagnosis of various diseases.
Collapse
Affiliation(s)
- Parul Mehra
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, India
| | - Anil Kumar
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, India
| |
Collapse
|
46
|
Song Y, Hu J, Li C, Lian J. Association between gut microbiota and malignant cardiac tumors: A two-sample Mendelian randomization study. Cancer Med 2024; 13:e7455. [PMID: 38953300 PMCID: PMC11217809 DOI: 10.1002/cam4.7455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 03/05/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Recent studies provide compelling evidence linking the gut microbiota to most cancers. Nevertheless, further research is required to establish a definitive causal relationship between the gut microbiota and malignant cardiac tumors. METHODS The genome-wide association studies (GWAS) data on the human gut Microbiota, included in the IEU Open GWAS project, was initially collected by the MiBioGen consortium. It encompasses 14,306 individuals and comprises a total of 5,665,279 SNPs. Similarly, the GWAS data on malignant cardiac tumors, also sourced from the IEU Open GWAS project, was initially stored in the finnGen database, including 16,380,303 SNPs observed within a cohort of 174,108 individuals within the European population. Utilizing a two-sample Mendelian randomization (MR) methodology, we examined whether there exists a causal association between the gut microbiota and cardiac tumors. Additionally, to bolster the credibility and robustness of the identified causal relationships, we conducted an extensive array of sensitivity analyses, encompassing Cochran's Q test, MR-PRESSO tests, MR-Egger interpret test, directionality test and leave-one-out analysis. RESULTS Our analysis unveiled seven distinct causal associations between genetic susceptibility in the gut microbiota and the incidence of malignant cardiac tumors. Among these, the Family Rikenellaceae, genus Eubacterium brachy group, and genus Ruminococcaceae UCG009 exhibited an elevated risk of cardiac tumors, while the phylum Verrucomicrobia, genus Lactobacillus, genus Ruminiclostridium5, and an unknown genus id.1868 were genetically linked to a reduced risk of cardiac tumors. The causal relationship between these two bacteria, belonging to the phylum Verrucomicrobia (OR = 0.178, 95% CI: 0.052-0.614, p = 0.006) and the genus Ruminococcaceae UCG009 (OR = 3.071, 95% CI: 1.236-7.627, p = 0.016), and cardiac tumors was further validated through sensitivity analyses, reinforcing the robustness and reliability of the observed associations. CONCLUSION Our MR analysis confirms that the phylum Verrucomicrobia displays significant protection against cardiac tumor, and the genus Ruminococcaceae UCG009 leads to an increasing risk of cardiac tumor.
Collapse
Affiliation(s)
- Yongfei Song
- Ningbo Institute of Innovation for Combined Medicine and EngineeringNingbo Medical Center Lihuili Hospital, Ningbo UniversityZhejiangChina
- Department of CardiologyNingbo Medical Center Lihuili Hospital, Ningbo UniversityZhejiangChina
| | - Jiale Hu
- Department of CardiologyNingbo Medical Center Lihuili Hospital, Ningbo UniversityZhejiangChina
| | - Chongrong Li
- Department of CardiologyNingbo Medical Center Lihuili Hospital, Ningbo UniversityZhejiangChina
| | - Jiangfang Lian
- Ningbo Institute of Innovation for Combined Medicine and EngineeringNingbo Medical Center Lihuili Hospital, Ningbo UniversityZhejiangChina
- Department of CardiologyNingbo Medical Center Lihuili Hospital, Ningbo UniversityZhejiangChina
| |
Collapse
|
47
|
Magrassi L, Pinton G, Luzzi S, Comincini S, Scravaglieri A, Gigliotti V, Bernardoni BL, D’Agostino I, Juretich F, La Motta C, Garavaglia S. A New Vista of Aldehyde Dehydrogenase 1A3 (ALDH1A3): New Specific Inhibitors and Activity-Based Probes Targeting ALDH1A3 Dependent Pathways in Glioblastoma, Mesothelioma and Other Cancers. Cancers (Basel) 2024; 16:2397. [PMID: 39001459 PMCID: PMC11240489 DOI: 10.3390/cancers16132397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Aldehyde dehydrogenases of the subfamily 1A (ALDH1A) are enzymes necessary for the oxidation of all-trans or 9-cis retinal to retinoic acid (RA). Retinoic acid and its derivatives are important for normal development and maintenance of epithelia, reproduction, memory, and immune function in adults. Moreover, in recent years, it has been demonstrated that ALDH1A members are also expressed and functional in several human cancers where their role is not limited to the synthesis of RA. Here, we review the current knowledge about ALDH1A3, one of the 1A isoforms, in cancers with an emphasis on two of the deadliest tumors that affect humans: glioblastoma multiforme and mesothelioma. In both tumors, ALDH1A3 is considered a negative prognostic factor, and its level correlates with excessive proliferation, chemoresistance, and invasiveness. We also review the recent attempts to develop both ALDH1A3-selective inhibitors for cancer therapy and ALDH1A3-specific fluorescent substrates for fluorescence-guided tumor resection.
Collapse
Affiliation(s)
- Lorenzo Magrassi
- Neurosurgery, Dipartimento di Scienze Clinico-Chirurgiche e Pediatriche, Università degli Studi di Pavia, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (S.L.); (A.S.)
- Istituto di Genetica Molecolare—CNR, 27100 Pavia, Italy
| | - Giulia Pinton
- Department of Scienze del Farmaco, University of Piemonte Orientale, Via Bovio 6, 28100 Novara, Italy; (G.P.); (V.G.); (S.G.)
| | - Sabino Luzzi
- Neurosurgery, Dipartimento di Scienze Clinico-Chirurgiche e Pediatriche, Università degli Studi di Pavia, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (S.L.); (A.S.)
| | - Sergio Comincini
- Dipartimento di Biologia e Biotecnologie, Università di Pavia, 27100 Pavia, Italy;
| | - Andrea Scravaglieri
- Neurosurgery, Dipartimento di Scienze Clinico-Chirurgiche e Pediatriche, Università degli Studi di Pavia, Fondazione IRCCS Policlinico S. Matteo, 27100 Pavia, Italy; (S.L.); (A.S.)
| | - Valentina Gigliotti
- Department of Scienze del Farmaco, University of Piemonte Orientale, Via Bovio 6, 28100 Novara, Italy; (G.P.); (V.G.); (S.G.)
| | - Bianca Laura Bernardoni
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (B.L.B.); (I.D.); (C.L.M.)
| | - Ilaria D’Agostino
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (B.L.B.); (I.D.); (C.L.M.)
| | - Francesca Juretich
- Department of Scienze del Farmaco, University of Piemonte Orientale, Via Bovio 6, 28100 Novara, Italy; (G.P.); (V.G.); (S.G.)
| | - Concettina La Motta
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (B.L.B.); (I.D.); (C.L.M.)
| | - Silvia Garavaglia
- Department of Scienze del Farmaco, University of Piemonte Orientale, Via Bovio 6, 28100 Novara, Italy; (G.P.); (V.G.); (S.G.)
| |
Collapse
|
48
|
Chen F, Kang R, Tang D, Liu J. Ferroptosis: principles and significance in health and disease. J Hematol Oncol 2024; 17:41. [PMID: 38844964 PMCID: PMC11157757 DOI: 10.1186/s13045-024-01564-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/02/2024] [Indexed: 06/09/2024] Open
Abstract
Ferroptosis, an iron-dependent form of cell death characterized by uncontrolled lipid peroxidation, is governed by molecular networks involving diverse molecules and organelles. Since its recognition as a non-apoptotic cell death pathway in 2012, ferroptosis has emerged as a crucial mechanism in numerous physiological and pathological contexts, leading to significant therapeutic advancements across a wide range of diseases. This review summarizes the fundamental molecular mechanisms and regulatory pathways underlying ferroptosis, including both GPX4-dependent and -independent antioxidant mechanisms. Additionally, we examine the involvement of ferroptosis in various pathological conditions, including cancer, neurodegenerative diseases, sepsis, ischemia-reperfusion injury, autoimmune disorders, and metabolic disorders. Specifically, we explore the role of ferroptosis in response to chemotherapy, radiotherapy, immunotherapy, nanotherapy, and targeted therapy. Furthermore, we discuss pharmacological strategies for modulating ferroptosis and potential biomarkers for monitoring this process. Lastly, we elucidate the interplay between ferroptosis and other forms of regulated cell death. Such insights hold promise for advancing our understanding of ferroptosis in the context of human health and disease.
Collapse
Affiliation(s)
- Fangquan Chen
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, 75390, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, Texas, 75390, USA.
| | - Jiao Liu
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, Guangdong, China.
| |
Collapse
|
49
|
Mao ZH, Gao ZX, Pan SK, Liu DW, Liu ZS, Wu P. Ferroptosis: a potential bridge linking gut microbiota and chronic kidney disease. Cell Death Discov 2024; 10:234. [PMID: 38750055 PMCID: PMC11096411 DOI: 10.1038/s41420-024-02000-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/18/2024] Open
Abstract
Ferroptosis is a novel form of lipid peroxidation-driven, iron-dependent programmed cell death. Various metabolic pathways, including those involved in lipid and iron metabolism, contribute to ferroptosis regulation. The gut microbiota not only supplies nutrients and energy to the host, but also plays a crucial role in immune modulation and metabolic balance. In this review, we explore the metabolic pathways associated with ferroptosis and the impact of the gut microbiota on host metabolism. We subsequently summarize recent studies on the influence and regulation of ferroptosis by the gut microbiota and discuss potential mechanisms through which the gut microbiota affects ferroptosis. Additionally, we conduct a bibliometric analysis of the relationship between the gut microbiota and ferroptosis in the context of chronic kidney disease. This analysis can provide new insights into the current research status and future of ferroptosis and the gut microbiota.
Collapse
Affiliation(s)
- Zi-Hui Mao
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, PR China
- Henan Province Research Center for Kidney Disease, Zhengzhou, PR China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, PR China
| | - Zhong-Xiuzi Gao
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, PR China
- Henan Province Research Center for Kidney Disease, Zhengzhou, PR China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, PR China
| | - Shao-Kang Pan
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, PR China
- Henan Province Research Center for Kidney Disease, Zhengzhou, PR China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, PR China
| | - Dong-Wei Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
- Institute of Nephrology, Zhengzhou University, Zhengzhou, PR China
- Henan Province Research Center for Kidney Disease, Zhengzhou, PR China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, PR China
| | - Zhang-Suo Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China.
- Institute of Nephrology, Zhengzhou University, Zhengzhou, PR China.
- Henan Province Research Center for Kidney Disease, Zhengzhou, PR China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, PR China.
| | - Peng Wu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China.
- Institute of Nephrology, Zhengzhou University, Zhengzhou, PR China.
- Henan Province Research Center for Kidney Disease, Zhengzhou, PR China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, PR China.
| |
Collapse
|
50
|
Li X, Kurahara LH, Zhao Z, Zhao F, Ishikawa R, Ohmichi K, Li G, Yamashita T, Hashimoto T, Hirano M, Sun Z, Hirano K. Therapeutic Effect of Proteinase-Activated Receptor-1 Antagonist on Colitis-Associated Carcinogenesis. Cell Mol Gastroenterol Hepatol 2024; 18:105-131. [PMID: 38614455 PMCID: PMC11127032 DOI: 10.1016/j.jcmgh.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND & AIMS Inflammatory bowel disease is associated with carcinogenesis, which limits the prognosis of the patients. The local expression of proteinases and proteinase-activated receptor 1 (PAR1) increases in inflammatory bowel disease. The present study investigated the therapeutic effects of PAR1 antagonism on colitis-associated carcinogenesis. METHODS A colitis-associated carcinogenesis model was prepared in mice by treatment with azoxymethane (AOM) and dextran sulfate sodium (DSS). PAR1 antagonist E5555 was administered in long- and short-term protocol, starting on the day of AOM injection and 1 week after completing AOM/DSS treatment, respectively. The fecal samples were collected for metagenome analysis of gut microbiota. The intestinal myofibroblasts of the Crohn's disease patients were used to elucidate underlying cellular mechanisms. Caco-2 cells were used to investigate a possible source of PAR1 agonist proteinases. RESULTS AOM/DSS model showed weight loss, diarrhea, tumor development, inflammation, fibrosis, and increased production of inflammatory cytokines. The β-diversity, but not α-diversity, of microbiota significantly differed between AOM/DSS and control mice. E5555 alleviated these pathological changes and altered the microbiota β-diversity in AOM/DSS mice. The thrombin expression was up-regulated in tumor and non-tumor areas, whereas PAR1 mRNA expression was higher in tumor areas compared with non-tumor areas. E5555 inhibited thrombin-triggered elevation of cytosolic Ca2+ concentration and ERK1/2 phosphorylation, as well as IL6-induced signal transducer and activator of transcription 3 (STAT3) phosphorylation in intestinal myofibroblasts. Caco-2 cell-conditioned medium contained immunoreactive thrombin, which cleaved the recombinant protein containing the extracellular domain of PAR1 at the thrombin cleavage site. CONCLUSIONS PAR1 antagonism is proposed to be a novel therapeutic strategy for treatment of inflammatory bowel disease and its associated carcinogenesis.
Collapse
Affiliation(s)
- Xiaodong Li
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Lin-Hai Kurahara
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, Kagawa, Japan.
| | - Zhixin Zhao
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs; Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Feiyan Zhao
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs; Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Ryo Ishikawa
- Department of Diagnostic Pathology, Kagawa University Hospital, Kagawa University, Kagawa, Japan
| | - Kiyomi Ohmichi
- Department of Diagnostic Pathology, Kagawa University Hospital, Kagawa University, Kagawa, Japan
| | - Gaopeng Li
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Tetsuo Yamashita
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Takeshi Hashimoto
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Mayumi Hirano
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Zhihong Sun
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering; Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs; Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Katsuya Hirano
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| |
Collapse
|