1
|
Li D, Xiang J, Wang Y, Xiang Y, Yuan R. Target-initiated autocatalytic and concatenated DNAzyme/CHA amplification cascades for highly sensitive fluorescent detection of TET1 dioxygenase. Talanta 2025; 293:128114. [PMID: 40233537 DOI: 10.1016/j.talanta.2025.128114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/06/2025] [Accepted: 04/07/2025] [Indexed: 04/17/2025]
Abstract
The sensitive detection of the dysregulated expression of ten-eleven translocation 1 (TET1) dioxygenase, a key DNA 5-methylcytosine (5 mC) oxidation regulator in the expression of developmental genes, is of significant importance for the diagnosis of various genetic diseases and cancers. This study describes the establishment of a highly sensitive fluorescent TET1 bioassay based on the 5 mC-modified/Zn2+-dependent DNAzyme-containing hairpin probe and the autocatalytic and concatenated DNAzyme/catalytic hairpin assembly (CHA) signal amplification cascades. TET1 target molecules specifically recognize and cut the 5 mC sites in the hairpin probes to release active DNAzyme sequences, which bind and cleave the double-stem-loop substrate strands to trigger multiple concatenated signal amplification recycling cycles with the presence of the fuel strands and two fluorescently quenched signal hairpins. These DNA reaction cascades thus result in the unfolding of lots of signal hairpins to substantially recover fluorescence for highly sensitive TET1 assay with a calculated detection limit of 6.9 fM. Additionally, such bioassay shows high selectivity toward TET1 and its real applicability has been successfully demonstrated for cancer cell lysate and human serum samples.
Collapse
Affiliation(s)
- Daxiu Li
- College of Pharmacy and Biological Engineering, Chongqing University of Technology, Chongqing, 400054, PR China.
| | - Jie Xiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Yanni Wang
- College of Pharmacy and Biological Engineering, Chongqing University of Technology, Chongqing, 400054, PR China
| | - Yun Xiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| |
Collapse
|
2
|
Yang Y, Yang C, Deng K, Xiao Y, Liu X, Du Z. Nucleic Acid Drugs in Radiotherapy. Chembiochem 2025; 26:e202400854. [PMID: 39903093 DOI: 10.1002/cbic.202400854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 02/01/2025] [Accepted: 02/03/2025] [Indexed: 02/06/2025]
Abstract
Radiotherapy remains a cornerstone of cancer treatment, using high-energy radiation to induce DNA damage in tumor cells, leading to cell death. However, its efficacy is often hindered by challenges such as radiation resistance and side effects. As a powerful class of functional molecules, nucleic acid drugs (NADs) present a promising solution to these limitations. Engineered to target key pathways like DNA repair and tumor hypoxia, NADs can enhance radiotherapy sensitivity. NADs can also serve as delivery vehicles for radiotherapy agents such as radionuclides, improving targeting accuracy and minimizing side effects. This review explores the role of NADs in optimizing radiotherapy, highlighting their mechanisms, clinical applications, and synergies with radiotherapy, ultimately offering a promising strategy for improving patient outcomes in cancer therapy.
Collapse
Affiliation(s)
- Yuying Yang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Cai Yang
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China
| | - Kai Deng
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Yating Xiao
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, Universities and Colleges Admissions Service (UCAS), Hangzhou, 310024, China
| | - Xiangsheng Liu
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Zhen Du
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| |
Collapse
|
3
|
Wang R, Huang Z, Wu Z, Li X, Jiang JH. Chemical Engineering of DNAzyme for Effective Biosensing and Gene Therapy. SMALL METHODS 2025:e2401514. [PMID: 39895229 DOI: 10.1002/smtd.202401514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 01/07/2025] [Indexed: 02/04/2025]
Abstract
RNA-cleaving DNAzymes are in vitro selected functional nucleic acids with inherent catalytic activities. Due to their unique properties, such as high specificity, substrate cleavage capability, and programmability, DNAzymes have emerged as powerful tools in the fields of analytical chemistry, chemical biology, and biomedicine. Nevertheless, the biological applications of DNAzymes are still impeded by several challenges, such as structural instability, compromised catalytic activity in biological environments and the lack of spatiotemporal control designs, which may result in false-positive signals, limited efficacy or non-specific activation associated with side effects. To address these challenges, various strategies have been explored to regulate DNAzyme activity through chemical modifications, enhancing their stability, selectivity, and functionality, thereby positioning them as ideal candidates for biological applications. In this review, a comprehensive overview of chemically modified DNAzymes is provided, discussing modification strategies and the effects of these modifications on DNAzymes. Specific examples of the use of chemically modified DNAzymes in biosensing and gene therapy are also presented and discussed. Finally, the current challenges in the field are addressed and offer perspectives on the potential direction for chemically modified DNAzymes.
Collapse
Affiliation(s)
- Rong Wang
- State Key Laboratory of Chem-/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Zhimei Huang
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Zhenkun Wu
- State Key Laboratory of Chem-/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Xin Li
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, The Third Hospital of Changsha (the Affiliated Changsha Hospital of Hunan University), Hunan University, Changsha, 410015, China
| | - Jian-Hui Jiang
- State Key Laboratory of Chem-/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
4
|
Gao J, Gunasekar S, Xia ZJ, Shalin K, Jiang C, Chen H, Lee D, Lee S, Pisal ND, Luo JN, Griciuc A, Karp JM, Tanzi R, Joshi N. Gene therapy for CNS disorders: modalities, delivery and translational challenges. Nat Rev Neurosci 2024; 25:553-572. [PMID: 38898231 DOI: 10.1038/s41583-024-00829-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
Gene therapy is emerging as a powerful tool to modulate abnormal gene expression, a hallmark of most CNS disorders. The transformative potentials of recently approved gene therapies for the treatment of spinal muscular atrophy (SMA), amyotrophic lateral sclerosis (ALS) and active cerebral adrenoleukodystrophy are encouraging further development of this approach. However, most attempts to translate gene therapy to the clinic have failed to make it to market. There is an urgent need not only to tailor the genes that are targeted to the pathology of interest but to also address delivery challenges and thereby maximize the utility of genetic tools. In this Review, we provide an overview of gene therapy modalities for CNS diseases, emphasizing the interconnectedness of different delivery strategies and routes of administration. Important gaps in understanding that could accelerate the clinical translatability of CNS genetic interventions are addressed, and we present lessons learned from failed clinical trials that may guide the future development of gene therapies for the treatment and management of CNS disorders.
Collapse
Affiliation(s)
- Jingjing Gao
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA.
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, USA.
| | - Swetharajan Gunasekar
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Ziting Judy Xia
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Kiruba Shalin
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA
| | - Christopher Jiang
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Hao Chen
- Marine College, Shandong University, Weihai, China
| | - Dongtak Lee
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Sohyung Lee
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Nishkal D Pisal
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, USA
| | - James N Luo
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Ana Griciuc
- Harvard Medical School, Boston, MA, USA.
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease and Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
| | - Jeffrey M Karp
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Harvard-MIT Program in Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Rudolph Tanzi
- Harvard Medical School, Boston, MA, USA.
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease and Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
| | - Nitin Joshi
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Zhu X, Xu J, Ling G, Zhang P. Tunable metal-organic frameworks assist in catalyzing DNAzymes with amplification platforms for biomedical applications. Chem Soc Rev 2023; 52:7549-7578. [PMID: 37817667 DOI: 10.1039/d3cs00386h] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Various binding modes of tunable metal organic frameworks (MOFs) and functional DNAzymes (Dzs) synergistically catalyze the emergence of abundant functional nanoplatforms. Given their serial variability in formation, structural designability, and functional controllability, Dzs@MOFs tend to be excellent building blocks for the precise "intelligent" manufacture of functional materials. To present a clear outline of this new field, this review systematically summarizes the progress of Dz integration into MOFs (MOFs@Dzs) through different methods, including various surface infiltration, pore encapsulation, covalent binding, and biomimetic mineralization methods. Atomic-level and time-resolved catalytic mechanisms for biosensing and imaging are made possible by the complex interplay of the distinct molecular structure of Dzs@MOF, conformational flexibility, and dynamic regulation of metal ions. Exploiting the precision of DNAzymes, MOFs@Dzs constructed a combined nanotherapy platform to guide intracellular drug synthesis, photodynamic therapy, catalytic therapy, and immunotherapy to enhance gene therapy in different ways, solving the problems of intracellular delivery inefficiency and insufficient supply of cofactors. MOFs@Dzs nanostructures have become excellent candidates for biosensing, bioimaging, amplification delivery, and targeted cancer gene therapy while emphasizing major advancements and seminal endeavors in the fields of biosensing (nucleic acid, protein, enzyme activity, small molecules, and cancer cells), biological imaging, and targeted cancer gene delivery and gene therapy. Overall, based on the results demonstrated to date, we discuss the challenges that the emerging MOFs@Dzs might encounter in practical future applications and briefly look forward to their bright prospects in other fields.
Collapse
Affiliation(s)
- Xiaoguang Zhu
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Jiaqi Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Guixia Ling
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Peng Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
6
|
Wang D, Yi H, Geng S, Jiang C, Liu J, Duan J, Zhang Z, Shi J, Song H, Guo Z, Zhang K. Photoactivated DNA Nanodrugs Damage Mitochondria to Improve Gene Therapy for Reversing Chemoresistance. ACS NANO 2023; 17:16923-16934. [PMID: 37606317 DOI: 10.1021/acsnano.3c04002] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Multidrug resistance (MDR) is a major cause of chemotherapy failure in oncology, and gene therapy is an excellent measure to reverse MDR. However, conventional gene therapy only modulates the expression of MDR-associated proteins but hardly affects their existing function, thus limiting the efficiency of tumor treatment. Herein, we designed a photoactivated DNA nanodrug (MCD@TMPyP4@DOX) to improve tumor chemosensitivity through the downregulation of MDR-related genes and mitochondria-targeted photodynamic therapy (PDT). The self-assembled DNA nanodrug encodes the mucin 1 (MUC1) aptamer and the cytochrome C (CytC) aptamer to facilitate its selective targeting to the mitochondria in tumor cells; the encoded P-gp DNAzyme can specifically cleave the substrate and silence MDR1 mRNA with the help of Mg2+ cofactors. Under near-infrared (NIR) light irradiation, PDT generates reactive oxygen species (ROS) that precisely damage the mitochondria of tumor cells and break single-stranded DNA (ssDNA) to activate MCD@TMPyP4@DOX self-disassembly for release of DOX and DNAzyme. We have demonstrated that this multifunctional DNA nanodrug has high drug delivery capacity and biosafety. It enables downregulation of P-gp expression while reducing the ATP on which P-gp pumps out drugs, improving the latency of gene therapy and synergistically reducing DOX efflux to sensitize tumor chemotherapy. We envision that this gene-modulating DNA nanodrug based on damaging mitochondria is expected to provide an important perspective for sensitizing tumor chemotherapy.
Collapse
Affiliation(s)
- Danyu Wang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Hua Yi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Shizhen Geng
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Chuanmei Jiang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jingwen Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jie Duan
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, Henan Province 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou 450001, China
| | - Jinjin Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, Henan Province 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China
| | - Haiwei Song
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore 138673, Singapore
| | - Zhenzhen Guo
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, Henan Province 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, Henan Province 450001, China
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou 450001, China
| |
Collapse
|
7
|
Chen M, Li M, Ren X, Zhou F, Li Y, Tan L, Luo Z, Cai K, Hu Y. DNAzyme Nanoconstruct-Integrated Autonomously-Adaptive Coatings Enhance Titanium-Implant Osteointegration by Cooperative Angiogenesis and Vessel Remodeling. ACS NANO 2023; 17:15942-15961. [PMID: 37566558 DOI: 10.1021/acsnano.3c04049] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
Orthopedic implants have a high failure rate due to insufficient interfacial osseointegration, especially under osteoporotic conditions. Type H vessels are CD31+EMCN+ capillaries with crucial roles in mediating new bone formation, but their abundance in osteoporotic fracture site is highly limited. Herein, we report a nanoengineered composite coating to improve the in situ osseointegration of a Ti implant for osteoporotic fracture repair, which is realized through inhibiting the stimulator of interferon genes (STING) in endothelial cells (ECs) to stimulate type H vessel formation. Autonomously catalytic DNAzyme-ZnO nanoflowers (DNFzns) were prepared through rolling circle amplification (RCA) of STING mRNA-degrading DNAzymes, which were then integrated on the Ti surface and further sequentially complexed with thioketal-bridged polydopamine and naringenin (Ti/DNFzn/PDA-Nar). ECs and mesenchymal stem cells (MSCs) can be recruited to the implant surface by galvanotaxis, accounting for the negative charges of DNFzn/PDA-Nar, subsequently released Nar under reactive oxygen species (ROS) stimulation to upregulate endothelial nitric oxide synthase (eNOS) in recruited ECs, leading to enhanced local angiogenesis. Meanwhile, the coordinately released DNFzns would abolish STING expression in ECs to transform the newly formed vessels into Type H vessels, thus substantially promoting the osseointegration of Ti implants. This study provides application prospects for improving implant osteointegration for osteoporotic fracture treatment.
Collapse
Affiliation(s)
- Maohua Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Menghuan Li
- School of Life Science, Chongqing University, Chongqing 400044, China
| | - Xijiao Ren
- School of Life Science, Chongqing University, Chongqing 400044, China
| | - Fei Zhou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yanan Li
- School of Life Science, Chongqing University, Chongqing 400044, China
| | - Lu Tan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Zhong Luo
- School of Life Science, Chongqing University, Chongqing 400044, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yan Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
8
|
Song J, Li S, Jie Z, Qiao Y, Yang XJ, Chen HY, Xu JJ. Triple signal amplification strategy for ultrasensitive in situ imaging of intracellular telomerase RNA. Anal Chim Acta 2023; 1256:341145. [PMID: 37037628 DOI: 10.1016/j.aca.2023.341145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/01/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023]
Abstract
Abnormal upregulation of telomerase RNA (TR) is a hallmark event at various stages of tumor progression, providing a universal marker for early diagnosis of cancer. Here, we have developed a triple signal amplification strategy for in situ visualization of TR in living cells, which sequentially incorporated the target-initiated strand displacement circuit, multidirectional rolling circle amplification (RCA), and Mg2+ DNAzyme-mediated amplification. All oligonucleotide probes and cofactors were transfected into cells in one go, and then escaped from lysosomes successfully. Owing to the specific base pairing, the amplification cascades could only be triggered by TR and performed as programmed, resulting in a satisfactory signal-to-background ratio. Especially, the netlike DNA structure generated by RCA encapsulated high concentrations of DNAzyme and substrates (FQS) in a local region, thereby improving the reaction efficiency and kinetics of the third amplification cycle. Under optimal conditions, the proposed method exhibited ultrasensitive detection of TR mimic with a detection limit at pM level. Most importantly, after transfection with the proposed sensing platform, tumor cells can be easily distinguished from normal cells based on TR abundance-related fluorescence signal, providing a new insight into initial cancer screening.
Collapse
|
9
|
Zhang C, Tang Y, Wang Q, He Y, Wang X, Beyer S, Guo J. Near infrared light-induced dynamic modulation of enzymatic activity through polyphenol-functionalized liquid metal nanodroplets. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
On gene silencing by the X10-23 DNAzyme. Nat Chem 2022; 14:855-858. [DOI: 10.1038/s41557-022-00990-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 04/21/2022] [Indexed: 11/08/2022]
|