1
|
Zhu Z, Xu H, Zhang T, Meng J, Tong Y, Wang K, Zhang B, Yang B. Probing ultraviolet-induced dissociation of hydrogen bond networks in tyrosine by terahertz spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 335:126004. [PMID: 40068319 DOI: 10.1016/j.saa.2025.126004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/09/2025] [Accepted: 03/04/2025] [Indexed: 03/24/2025]
Abstract
Tyrosine (Tyr) has gained significant attention as one of the most sensitive amino acids. Its oxidation is accompanied by changes in hydrogen bonds, so the oxidation process of Tyr is monitored and the dissociation sequence of different hydrogen bond network is elucidated based on the sensitivity of terahertz (THz) waves to intermolecular interactions. We find that the peak height of Tyr at 0.97 THz and 2.08 THz decreases with time, but the change behavior of the two is different. Combined with density functional theory (DFT), this phenomenon is attributed to the difference of factors that dominate THz vibration. The weakening of the peak height of Tyr at 0.97 THz is due to the ordered dissociation of hydrogen bonds with different intensities, while the peak at 2.08 THz mainly involves the lattice itself. This means that the peak at 0.97 THz is a more accurate parameter for characterizing the oxidation process. Our study reveals the hydrogen bond changes of Tyr when its structure is destroyed, and provides a spectral technique for monitoring and preventing harmful oxidation reactions using hydrogen bond network evolution.
Collapse
Affiliation(s)
- Zhenqi Zhu
- Huzhou Key Laboratory of Green Energy Materials and Battery Cascade Utilization, School of Intelligent Manufacturing, Huzhou College, Huzhou 313000, PR China.
| | - Hui Xu
- Huzhou Key Laboratory of Green Energy Materials and Battery Cascade Utilization, School of Intelligent Manufacturing, Huzhou College, Huzhou 313000, PR China
| | - Ting Zhang
- National Engineering Laboratory of Textile Fiber Materials and Processing Technology, College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Jiafeng Meng
- Huzhou Key Laboratory of Green Energy Materials and Battery Cascade Utilization, School of Intelligent Manufacturing, Huzhou College, Huzhou 313000, PR China
| | - Yanwei Tong
- Huzhou Key Laboratory of Green Energy Materials and Battery Cascade Utilization, School of Intelligent Manufacturing, Huzhou College, Huzhou 313000, PR China
| | - Kun Wang
- Huzhou Key Laboratory of Green Energy Materials and Battery Cascade Utilization, School of Intelligent Manufacturing, Huzhou College, Huzhou 313000, PR China
| | - Bing Zhang
- Huzhou Key Laboratory of Green Energy Materials and Battery Cascade Utilization, School of Intelligent Manufacturing, Huzhou College, Huzhou 313000, PR China
| | - Bin Yang
- National Engineering Laboratory of Textile Fiber Materials and Processing Technology, College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| |
Collapse
|
2
|
Becker MR, Netz RR, Loche P, Bonthuis DJ, Mouhanna D, Berthoumieux H. Dielectric Properties of Aqueous Electrolytes at the Nanoscale. PHYSICAL REVIEW LETTERS 2025; 134:158001. [PMID: 40315517 DOI: 10.1103/physrevlett.134.158001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 10/31/2024] [Accepted: 03/08/2025] [Indexed: 05/04/2025]
Abstract
Despite the ubiquity of aqueous electrolytes, the effect of salt on water organization remains controversial. We introduce a nonlocal and nonlinear field theory for the nanoscale polarization of ions and water and derive the electrolyte dielectric response as a function of salt concentration to first order in a loop expansion. By comparison with molecular dynamics simulations, we show that rising salt concentration induces a dielectric permittivity decrement and Debye screening in the longitudinal susceptibility but leaves the water structure remarkably unchanged.
Collapse
Affiliation(s)
- Maximilian R Becker
- Freie Universität Berlin, Fachbereich Physik, Arnimallee 14, Berlin, 14195, Germany
| | - Roland R Netz
- Freie Universität Berlin, Fachbereich Physik, Arnimallee 14, Berlin, 14195, Germany
| | - Philip Loche
- Freie Universität Berlin, École Polytechnique Fédérale de Lausanne, Laboratory of Computational Science and Modeling, IMX, 1015 Lausanne, Switzerland and Fachbereich Physik, Arnimallee 14, Berlin, 14195, Germany
| | - Douwe Jan Bonthuis
- Graz University of Technology, Institute of Theoretical and Computational Physics, Graz, Austria
| | - Dominique Mouhanna
- Laboratoire de Physique Théorique de la Matière Condensée, CNRS, Sorbonne Université, (LPTMC, UMR 7600), F-75005 Paris, France
| | - Hélène Berthoumieux
- Paris Sciences et Lettres Research University, École Supérieure de Physique et Chimie Industrielles de Paris, Gulliver, CNRS, Paris 75005, France
| |
Collapse
|
3
|
Ashraf H, Kalhor P, Liu JC, Yu ZW. Tuning Low-Density Liquid Water with MgCl 2. J Phys Chem B 2025; 129:3237-3243. [PMID: 39932062 DOI: 10.1021/acs.jpcb.4c08266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Perceiving a suitably tuned aqueous solution to unravel water's liquid-liquid critical point (LLCP) has become challenging. In this work, we investigated the structures of light and heavy water in the presence of MgCl2 using excess infrared spectroscopy and density functional theory calculations. The excess spectroscopy enabled us to differentiate the low-density liquid (LDL) water from the other liquid domains of pure water and reveal the new interaction modes between water and the ions. The addition of salt decreases and then increases the population of LDL in aqueous solutions. At the concentrations of 0.4 M in H2O and 0.6 M in D2O, the LDL structures undergo the most significant disruption under ambient conditions in the bulk phase. Furthermore, threshold concentrations of 1 and 1.3 M for light and heavy water, respectively, were found to induce higher LDL populations. The current investigation sheds light on the intriguing liquid-liquid phase transition (LLPT) and the LLCP of water.
Collapse
Affiliation(s)
- Hamad Ashraf
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, PR China
| | - Payam Kalhor
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, PR China
| | - Jin-Cheng Liu
- MOE Key Laboratory of Organic Optoelectronics and Molecular Engineering, Tsinghua University, Beijing 100084, PR China
| | - Zhi-Wu Yu
- MOE Key Laboratory of Bioorganic Phosphorous Chemistry and Chemical Biology, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
4
|
Gao Y, He J, Kang J, Peng J, Bian H. Molecular Insights into Anion-Specific Freezing Point Depression in Lithium Salt Solutions. J Phys Chem B 2025; 129:2730-2738. [PMID: 40011199 DOI: 10.1021/acs.jpcb.5c00078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
The depression of freezing points in electrolyte aqueous solutions, a well-known colligative property, is traditionally attributed to entropy increases arising from ion-induced disruption of the hydrogen-bonding networks. However, the microscopic mechanisms governing this phenomenon remain poorly understood, particularly at concentrated salt concentrations where ion-specific effects emerge. In this study, we combined Raman spectroscopy, molecular dynamics (MD) simulations, and density functional theory (DFT) calculations to investigate the hydrogen-bonding structures of water in lithium salt solutions containing typical anions. MD simulations reveal that diffusion barriers of water are influenced by the anion identity, while DFT calculations indicate that anions with lower surface electrostatic potentials weaken the disruption of the hydrogen-bonding network caused by the cation. By systematically evaluating five lithium salts─LiClO4, LiNO3, LiBF4, LiCl, and LiTFSI─we show that freezing point depression in lithium salt solutions arises from a complex interplay of anion-water, cation-anion, and cation-water interactions. Notably, the freezing point trends deviate from the Hofmeister series, suggesting the critical role of ion-pairing and aggregate formation in determining solution behavior. Our results further indicate that rather than the intrinsic structure─disrupting ability of Hofmeister anions, the mobility of water molecules within the ions' hydration shells is a primary determinant of freezing behavior, challenging the conventional view and revealing the critical influence of local water dynamics on solid/liquid transitions. These findings provide molecular-level insights into the ion-specific effects governing freezing point depression in electrolyte solutions, with implications for lithium-ion battery electrolytes and other concentrated ionic systems.
Collapse
Affiliation(s)
- Yuting Gao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Institute of New Concept Sensors and Molecular Materials, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Jiman He
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Institute of New Concept Sensors and Molecular Materials, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Jiajia Kang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Institute of New Concept Sensors and Molecular Materials, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Jiahui Peng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Institute of New Concept Sensors and Molecular Materials, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Hongtao Bian
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Institute of New Concept Sensors and Molecular Materials, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
5
|
Rudani BA, Briels WJ, Wiegand S. Analyzing the concentration-dependent Soret coefficient minimum in salt solutions: an overview. Phys Chem Chem Phys 2025; 27:4746-4755. [PMID: 39946123 DOI: 10.1039/d4cp04477k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Temperature gradients often cause the separation of the components in liquid mixtures by a process called thermodiffusion and quantified by the Soret coefficient. In recent years, the existence of minima in the Soret coefficient as a function of concentration has been investigated by experiments and simulations for various aqueous salt solutions. In this paper, we analyze the data of ten 1 : 1 electrolytes (lithium, sodium and potassium chloride, lithium, sodium and potassium iodide, potassium acetate, sodium and potassium thiocyanate and guanidinium chloride) in water, together with those of newly measured Soret coefficients for aqueous cesium iodide solutions. The latter were measured in the temperature range between 15 °C and 45 °C and concentrations between 0.5 and 3 moles per kg of the solvent using thermal diffusion forced Rayleigh scattering. We analyze the data by expressing the Soret coefficients as products of two factors, one purely thermodynamic factor and one being the ratio of two Onsager coefficients. It turns out that the ratio of Onsager coefficients is the main factor responsible for the non-monotonic behavior of the Soret coefficients, contrary to recent findings using computer simulations of binary Lennard-Jones mixtures. Moreover, for salts with the same anion, we find that the thermodynamic factors increase with increasing Pauling radii of the cations, while the Onsager ratios increase monotonically with the radii of the hydrated cations.
Collapse
Affiliation(s)
- Binny A Rudani
- IBI-4: Biomacromolecular Systems and Processes, Forschungszentrum Jülich GmbH, D-52428 Jülich, Germany.
| | - W J Briels
- IBI-4: Biomacromolecular Systems and Processes, Forschungszentrum Jülich GmbH, D-52428 Jülich, Germany.
- University of Twente, Computational Chemical Physics, Postbus 217, 7500 AE Enschede, The Netherlands.
| | - Simone Wiegand
- IBI-4: Biomacromolecular Systems and Processes, Forschungszentrum Jülich GmbH, D-52428 Jülich, Germany.
- Chemistry Department - Physical Chemistry, University Cologne, D-50939 Cologne, Germany
| |
Collapse
|
6
|
Shukla S, Shalit A, Hamm P. 2D Raman-THz spectroscopy of imidazolium-based ionic liquids. J Chem Phys 2025; 162:034502. [PMID: 39812262 DOI: 10.1063/5.0246152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/03/2024] [Indexed: 01/16/2025] Open
Abstract
An investigation of the low-frequency (i.e., less than 5 THz), inter-molecular dynamics of three imidazolium-based ionic liquids-1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C4mim][NTf2]), 1-butyl-3-methylimidazolium dicyanamide ([C4mim][DCA]), and 1-ethyl-3-methylimidazolium dicyanamide ([C2mim][DCA])-is presented using two-dimensional (2D) Raman-THz spectroscopy combined with molecular dynamics (MD) simulations. By observing an echo in the 2D Raman-THz response, the experimental results indicate that the substitution of a small [DCA]- anion with a larger [NTf2]- one leads to a substantial increase in the structural inhomogeneity of the low-frequency modes of the system. These findings are corroborated by MD simulations, comparing the experimentally observed echo decay times to those of a computed velocity echo. The comparison suggests that the echo decay time reflects the instantaneous amount of structural order related to the charge alternation network, which is enhanced for the ionic liquid with the larger anion.
Collapse
Affiliation(s)
- Saurabh Shukla
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Andrey Shalit
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Peter Hamm
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
7
|
Jindal A, Schienbein P, Gupta PK, Marx D. Ion Effects on Terahertz Spectra of Microsolvated Clusters. J Phys Chem Lett 2024; 15:12387-12392. [PMID: 39656154 DOI: 10.1021/acs.jpclett.4c02906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Water clusters containing Na+ and Cl- ions play a key role in the atmospheric chemistry of sea salt aerosols. While Na+ is clearly buried deep inside, Cl- appears to be a chameleon since evidence for both surface-localized and interior solvation states are reported. Thus, disclosing the preferred location of Cl- within clusters remains challenging. Here, we investigate whether THz spectroscopy, a powerful tool for directly probing hydrogen bonds in water, provides insights into the location of Cl- ions in water clusters. We performed ab initio molecular dynamics simulations on water clusters containing a single Cl- ion and up to 64 water molecules to compute the THz spectra with reference to Na+ and bulk. The THz spectrum of the 64-water Cl- cluster closely agrees with that of the bulk solution. Surprisingly, this match is not caused by bulk-like solvation of Cl- as suggested by phenomenological line shape analyses. Instead, the similarity stems from Cl- being mostly located at the cluster surface, thus leaving the water-water interactions largely unperturbed.
Collapse
Affiliation(s)
- Aman Jindal
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Philipp Schienbein
- Lehrstuhl für Theoretische Chemie II, Ruhr-Universität Bochum, 44780 Bochum, Germany
- Research Center Chemical Sciences and Sustainability, Research Alliance Ruhr, 44780 Bochum, Germany
| | - Prashant Kumar Gupta
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|
8
|
Qiu M, Sun P, Liang Y, Chen J, Wang ZL, Mai W. Tailoring tetrahedral and pair-correlation entropies of glass-forming liquids for energy storage applications at ultralow temperatures. Nat Commun 2024; 15:10420. [PMID: 39613740 DOI: 10.1038/s41467-024-54449-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 11/04/2024] [Indexed: 12/01/2024] Open
Abstract
Aqueous solution experiences either crystallization or vitrification as being cooled, yet the mechanism of this bifurcation is confused. Since the glass-transition temperature Tg is much lower than the melting temperature, we herein propose an entropy-driven glass-forming liquid (EDGFL) as an attractive concept to develop anti-freezing electrolytes. The Tg is delicately modulated via regulating local structural orders to avoid the energy-driven ice crystallization and enter an entropy-driven glass transition, which can be theoretically explained by the competitive effect between tetrahedral entropy of water and pair correlation entropy related to ions. The constructive EDGFL with a low Tg of -128 °C and a high boiling point of +145 °C enables stable energy storage over an ultra-wide temperature range of -95~+120 °C, realizes superior AC linear filtering function at -95 °C, and helps improve the performance of aqueous Zn-ion batteries at ultralow temperatures. This special electrolyte will provide both theoretical and practical directions for developing anti-freezing energy storage systems adapting to frigid environment.
Collapse
Affiliation(s)
- Meijia Qiu
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Department of Physics, College of Physics & Optoelectronic Engineering, Jinan University, Guangdong, People's Republic of China
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Peng Sun
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Department of Physics, College of Physics & Optoelectronic Engineering, Jinan University, Guangdong, People's Republic of China
| | - Yuxuan Liang
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Department of Physics, College of Physics & Optoelectronic Engineering, Jinan University, Guangdong, People's Republic of China
| | - Jian Chen
- Instrumental Analysis and Research Center, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Zhong Lin Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, People's Republic of China.
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Wenjie Mai
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Department of Physics, College of Physics & Optoelectronic Engineering, Jinan University, Guangdong, People's Republic of China.
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, People's Republic of China.
| |
Collapse
|
9
|
Alasadi E, Baiz CR. Ion effects on minimally hydrated polymers: hydrogen bond populations and dynamics. SOFT MATTER 2024; 20:8291-8302. [PMID: 39387354 DOI: 10.1039/d4sm00830h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Compared to bulk water, the effect of ions in confined environments or heterogeneous aqueous solutions is less understood. In this study, we characterize the influence of ions on hydrogen bond populations and dynamics within minimally hydrated polyethylene glycol diacrylate (PEGDA) solutions using Fourier-transform infrared (FTIR) and two-dimensional infrared (2D IR) spectroscopies. We demonstrate that hydrogen bond populations and lifetimes are directly related to ion size and hydration levels within the polymer matrix. Specifically, larger monovalent cation sizes (Li+, Na+, K+) as well as anion sizes (F-, Cl-, Br-) increase hydrogen bond populations and accelerate hydrogen bond dynamics, with anions having more pronounced effects compared to cations. These effects can be attributed to the complex interplay between ion hydration shells and the polymer matrix, where larger ions with diffuse charge distributions are less efficiently solvated, leading to a more pronounced disruption of the local hydrogen bonding network. Additionally, increased overall water content results in a significant slowdown of dynamics. Increased water content enhances the hydrogen bonding network, yet simultaneously provides greater ionic mobility, resulting in a delicate balance between stabilization and dynamic restructuring of hydrogen bonds. These results contribute to the understanding of ion-specific effects in complex partially-hydrated polymer systems, highlighting the complex interplay between ion concentration, water structuring, and polymer hydration state. The study provides a framework for designing polymer membrane compositions with ion-specific properties.
Collapse
Affiliation(s)
- Eman Alasadi
- Department of Chemistry, University of Texas at Austin, 105 E 24th St. A5300, Austin, TX 78712, USA.
| | - Carlos R Baiz
- Department of Chemistry, University of Texas at Austin, 105 E 24th St. A5300, Austin, TX 78712, USA.
| |
Collapse
|
10
|
Yang G, Xiao H, Gao H, Zhang B, Hu W, Chen C, Qiao Q, Zhang G, Feng S, Liu D, Wang Y, Jiang J, Luo Y. Repairing Noise-Contaminated Low-Frequency Vibrational Spectra with an Attention U-Net. J Am Chem Soc 2024. [PMID: 39367839 DOI: 10.1021/jacs.4c10893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
Low-frequency vibrational modes in infrared (IR) and Raman spectra, often termed molecular fingerprints, are sensitive probes of subtle structural changes and chemical interactions. However, their inherent weakness and susceptibility to environmental interference make them challenging to detect and analyze. To tackle this issue, we developed a deep learning denoising protocol based on an attention-enhanced U-net architecture. This model leverages the inherent correlations between high- and low-frequency vibrational modes within a molecule, effectively reconstructing low-frequency spectral features from their high-frequency counterparts. We demonstrate the effectiveness of this method by recovering low-frequency signals of trans-1,2-bis(4-pyridyl)ethylene (BPE) adsorbed on an Ag surface, a representative system for surface enhancement Raman spectroscopy (SERS). Notably, the trained model exhibits promising transferability to SERS spectra acquired under different surface and external field conditions. Furthermore, we applied this method to experimental IR and Raman spectra of BPE, achieving high-quality, low-frequency spectral recovery.
Collapse
Affiliation(s)
- Guokun Yang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Hengyu Xiao
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Hao Gao
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Baicheng Zhang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Wei Hu
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan, Shandong 250353, P. R. China
| | - Cheng Chen
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Qinyu Qiao
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Guozhen Zhang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Shuo Feng
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Daobin Liu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yang Wang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jun Jiang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yi Luo
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
11
|
Musiał M, Riccardi D, Suiter CL, Sontarp EJ, Miller SL, Lirette RL, Rehmeier KC, Mahata A, Muzny CD, Stelson AC, Schwarz KA, Widegren JA. NMR Spectroscopy and Multiscale Modeling Shed Light on Ion-Solvent Interactions and Ion Pairing in Aqueous NaF Solutions. J Phys Chem B 2024; 128:8974-8983. [PMID: 39253766 DOI: 10.1021/acs.jpcb.4c03521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The balance between ion solvation and ion pairing in aqueous solutions modulates chemical and physical processes from catalysis to protein folding. Yet, despite more than a century of investigation, experimental determination of the distribution of ion-solvation and ion-pairing states remains elusive, even for archetypal systems like aqueous alkali halides. Here, we combine nuclear magnetic resonance (NMR) spectroscopy and multiscale modeling to disentangle ion-solvent interactions from ion pairing in aqueous sodium fluoride solutions. We have developed a high-accuracy method to collect experimental NMR resonance frequencies for both ions as functions of temperature and concentration. Comparison of these data with resonance frequencies for nonassociating salts allows us to differentiate the influence of solvation and ion pairing on NMR spectra. These high-quality experimental NMR data are used to validate our modeling framework comprising polarizable force field molecular dynamics (MD) simulations and quantum chemical calculations of NMR resonance frequencies. Our experimental and theoretical resonance frequency shifts agree over a wide range of temperatures and concentrations. Structural analysis reveals how both trends are dominated by interactions with water molecules. For the more sensitive 19F nucleus, the NMR resonance frequency decreases as hydrogen bonds between fluoride and water molecules are reduced in number with increased temperature and molality. Through a detailed analysis of the theoretical NMR resonance frequencies for both ions, we show that NMR spectroscopy can distinguish both contact ion pairs and single-solvent-separated ion pairs from free ions. This quantitative framework can be applied directly to other systems.
Collapse
Affiliation(s)
- Małgorzata Musiał
- Department of Physics, University of Colorado, Boulder, Colorado 80309, United States
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, Colorado 80305, United States
| | - Demian Riccardi
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, Colorado 80305, United States
| | - Christopher L Suiter
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, Colorado 80305, United States
| | - Ethan J Sontarp
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, Colorado 80305, United States
- Department of Geosciences, Princeton University, Princeton, New Jersey 08544, United States
| | - Samantha L Miller
- Department of Physics, University of Colorado, Boulder, Colorado 80309, United States
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, Colorado 80305, United States
| | - Robert L Lirette
- Department of Physics, University of Colorado, Boulder, Colorado 80309, United States
- RF Technology Division, National Institute of Standards and Technology, Boulder, Colorado 80305, United States
| | - Kyle Covington Rehmeier
- Department of Physics, University of Colorado, Boulder, Colorado 80309, United States
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, Colorado 80305, United States
| | - Avik Mahata
- School of Engineering, Brown University, Providence, Rhode Island 02912, United States
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Chris D Muzny
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, Colorado 80305, United States
| | - Angela C Stelson
- RF Technology Division, National Institute of Standards and Technology, Boulder, Colorado 80305, United States
| | - Kathleen A Schwarz
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Jason A Widegren
- Applied Chemicals and Materials Division, National Institute of Standards and Technology, Boulder, Colorado 80305, United States
| |
Collapse
|
12
|
Elliott GR, Wanless EJ, Webber GB, Andersson GG, Craig VSJ, Page AJ. Dynamic Ion Correlations and Ion-Pair Lifetimes in Aqueous Alkali Metal Chloride Electrolytes. J Phys Chem B 2024; 128:7438-7444. [PMID: 39037039 DOI: 10.1021/acs.jpcb.4c01992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Electrolytes are central to many technological applications, as well as life itself. The behavior and properties of electrolytes are often described in terms of ion pairs, whereby ions associate as either contact ion pairs (in which ions are "touching") solvent-separated ion pairs (in which ions' solvent shells overlap) or solvent-solvent-separated ion pairs (in which ions' solvent shells are distinct). However, this paradigm is generally restricted to statistically averaged descriptions of solution structure and ignores temporal behavior. Here we elucidate the time-resolved dynamics of these ion-ion interactions in aqueous metal chloride electrolytes using the partial van Hove correlation function, based on polarizable molecular dynamics simulations. Our results show that the existence and persistence of ion pairs in aqueous metal chloride electrolytes should not be assumed a priori, but in fact are ion specific features of the solution with lifetimes on subpicosecond time scales.
Collapse
Affiliation(s)
- Gareth R Elliott
- Discipline of Chemistry, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Erica J Wanless
- Discipline of Chemistry, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Grant B Webber
- Discipline of Chemical Engineering, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Gunther G Andersson
- Flinders Institute of Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, South Australia 5042, Australia
| | - Vincent S J Craig
- Department of Material Physics, Research School of Physics, Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | - Alister J Page
- Discipline of Chemistry, The University of Newcastle, Callaghan, New South Wales 2308, Australia
| |
Collapse
|
13
|
Lalwani S, Hellikson K, Batys P, Lutkenhaus JL. Counter Anion Type Influences the Glass Transition Temperature of Polyelectrolyte Complexes. Macromolecules 2024; 57:4695-4705. [PMID: 38827958 PMCID: PMC11140738 DOI: 10.1021/acs.macromol.3c02200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 06/05/2024]
Abstract
Salt acts as a plasticizer in polyelectrolyte complexes (PECs), which impacts the physical, thermal, and mechanical properties, thus having implications in applications, such as drug delivery, energy storage, and smart coatings. Added salt disrupts polycation-polyanion intrinsic ion pairs, lowering a hydrated PEC's glass transition temperature (Tg). However, the relative influence of counterion type on the PEC's Tg is not well understood. Here, the effect of anion type (NaCl, NaBr, NaNO3, and NaI) on the Tg of solid-like, hydrated PECs composed of poly(diallydimethylammonium) (PDADMA)-poly(styrenesulfonate) (PSS) is investigated. With increasing the chaotropic nature of the salt anion, the Tg decreases. The relative differences are attributed to the doping level, the amount of bound water, the mobility of water molecules within the PECs, and the strength of interactions between the PEs. For all studied salt concentrations and salt types, the Tg followed the scaling of -1/Tg ≈ ln([IP]/[H2O]), in which [IP]/[H2O] is the ratio of intrinsic pairs to water. The scaling estimates that about 7 to 17% of the intrinsic ion pairs should be weakened for the PEC to partake in a glass transition. Put together, this study highlights that the Tg in PECs is impacted by the salt anion, but the mechanism of the glass transition remains unchanged.
Collapse
Affiliation(s)
- Suvesh
Manoj Lalwani
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Kayla Hellikson
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Piotr Batys
- Jerzy
Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, Krakow PL-30239, Poland
| | - Jodie L. Lutkenhaus
- Artie
McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843, United States
- Department
of Materials Science and Engineering, Texas
A&M University, College Station, Texas 77840, United States
| |
Collapse
|
14
|
Zhang M, Li S, Yang H, Song G, Wu C, Li Z. Structure and Ultrafast X-ray Diffraction of the Hydrated Metaphosphate. J Phys Chem A 2024; 128:3086-3094. [PMID: 38605669 DOI: 10.1021/acs.jpca.4c00346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
We study the pathway of metaphosphate hydration when a metaphosphate anion is dissolved in liquid water with an explicit water model. For this purpose, we propose a sequential Monte Carlo algorithm incorporated with the ab initio quantum mechanics/molecular mechanics (QM/MM) method, which can reduce the amount of ab initio QM/MM sampling while retaining the accuracy of the simulation. We demonstrate the numerical calculation of the standard enthalpy change for the successive addition reaction PO3-·2H2O + H2O ⇌ PO3-·3H2O in the liquid phase, which helps to clarify the hydration pathway of the metaphosphate. With the obtained hydrated structure of the metaphosphate anion, we perform ab initio calculations for its relaxation dynamics upon vibrational excitation and characterize the energy transfer process in solution with simulated ultrafast X-ray diffraction signals, which can be experimentally implemented with X-ray free-electron lasers.
Collapse
Affiliation(s)
- Ming Zhang
- State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Sizhe Li
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hanwei Yang
- State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Gaoxing Song
- State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Chengyin Wu
- State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
| | - Zheng Li
- State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
| |
Collapse
|
15
|
Novelli F. Terahertz spectroscopy of thick and diluted water solutions. OPTICS EXPRESS 2024; 32:11041-11056. [PMID: 38570962 DOI: 10.1364/oe.510393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/16/2024] [Indexed: 04/05/2024]
Abstract
While bright terahertz sources are used to perform nonlinear experiments, they can be advantageous for high-precision linear measurements of opaque samples. By placing the sample away from the focus, nonlinearities can be suppressed, and sizeable amounts of transmitted radiation detected. Here, this approach is demonstrated for a 0.5 mm thick layer of liquid water in a static sample holder. Variations of the index of refraction as small as (7 ± 2) · 10-4 were detected at 0.58 THz for an aqueous salt solution containing ten millimoles of sodium chloride. To my knowledge, this precision is unprecedented in time-domain spectroscopy studies of diluted aqueous systems or other optically thick and opaque materials.
Collapse
|
16
|
Jindal A, Schienbein P, Marx D. Revealing the Molecular Origin of Anisotropy around Chloride Ions in Bulk Water. J Phys Chem Lett 2024; 15:3037-3042. [PMID: 38466241 DOI: 10.1021/acs.jpclett.3c03585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
A clear picture of the local solvation structure around halide anions in liquid water remains elusive. This discussion has been stimulated by pioneering simulation results that proposed a "hydrophobic cavity" around anions in the bulk, which is analogous to air at the air-water interface. However, there is also sound experimental and theoretical evidence that halide ions are rather symmetrically solvated in the bulk, leading to a different viewpoint. Using extensive ab initio molecular dynamics simulations of an aqueous Cl- solution, we indeed find an anisotropic arrangement of H-bonded versus interstitial water molecules. The latter are not H-bonded to the anions and thus do not couple much electronically to Cl-. The resulting purely electronic anisotropy of the local solvation environment correlates with that structural anisotropy, which however should not be understood as an empty cavity─as it would be at the air-water interface─but rather contains interstitial water molecules.
Collapse
Affiliation(s)
- Aman Jindal
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Philipp Schienbein
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|
17
|
Fan K, Zhou S, Xie L, Jia S, Zhao L, Liu X, Liang K, Jiang L, Kong B. Interfacial Assembly of 2D Graphene-Derived Ion Channels for Water-Based Green Energy Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307849. [PMID: 37873917 DOI: 10.1002/adma.202307849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/12/2023] [Indexed: 10/25/2023]
Abstract
The utilization of sustained and green energy is believed to alleviate increasing menace of global environmental concerns and energy dilemma. Interfacial assembly of 2D graphene-derived ion channels (2D-GDICs) with tunable ion/fluid transport behavior enables efficient harvesting of renewable green energy from ubiquitous water, especially for osmotic energy harvesting. In this review, various interfacial assembly strategies for fabricating diverse 2D-GDICs are summarized and their ion transport properties are discussed. This review analyzes how particular structure and charge density/distribution of 2D-GDIC can be modulated to minimize internal resistance of ion/fluid transport and enhance energy conversion efficiency, and highlights stimuli-responsive functions and stability of 2D-GDIC and further examines the possibility of integrating 2D-GDIC with other energy conversion systems. Notably, the presented preparation and applications of 2D-GDIC also inspire and guide other 2D materials to fabricate sophisticated ion channels for targeted applications. Finally, potential challenges in this field is analyzed and a prospect to future developments toward high-performance or large-scale real-word applications is offered.
Collapse
Affiliation(s)
- Kun Fan
- College of Electrical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Shan Zhou
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Lei Xie
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Shenli Jia
- College of Electrical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Lihua Zhao
- College of Electrical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Xiangyang Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Kang Liang
- School of Chemical Engineering and Graduate School of Biomedical Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Lei Jiang
- Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Biao Kong
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, P. R. China
- Shandong Research Institute, Fudan University, Shandong, 250103, China
| |
Collapse
|
18
|
Kacenauskaite L, Van Wyck SJ, Moncada Cohen M, Fayer MD. Water-in-Salt: Fast Dynamics, Structure, Thermodynamics, and Bulk Properties. J Phys Chem B 2024; 128:291-302. [PMID: 38118403 DOI: 10.1021/acs.jpcb.3c07711] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
We present concentration-dependent dynamics of highly concentrated LiBr solutions and LiCl temperature-dependent dynamics for two high concentrations and compare the results to those of prior LiCl concentration-dependent data. The dynamical data are obtained using ultrafast optical heterodyne-detected optical Kerr effect (OHD-OKE). The OHD-OKE decays are composed of two pairs of biexponentials, i.e., tetra-exponentials. The fastest decay (t1) is the same as pure water's at all concentrations within error, while the second component (t2) slows slightly with concentration. The slower components (t3 and t4), not present in pure water, slow substantially, and their contributions to the decays increase significantly with increasing concentration, similar to LiCl solutions. Simulations of LiCl solutions from the literature show that the slow components arise from large ion/water clusters, while the fast components are from ion/water structures that are not part of large clusters. Temperature-dependent studies (15-95 °C) of two high LiCl concentrations show that decreasing the temperature is equivalent to increasing the room temperature concentration. The LiBr and LiCl concentration dependences and the two LiCl concentrations' temperature dependences all have bulk viscosities that are linearly dependent on τcslow, the correlation time of the slow dynamics (weighted averages of t3 and t4). Remarkably, all four viscosity vs 1/τCslow plots fall on the same line. Application of transition state theory to the temperature-dependent data yields the activation enthalpies and entropies for the dynamics of the large ion/water clusters, which underpin the bulk viscosity.
Collapse
Affiliation(s)
- Laura Kacenauskaite
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Nano-Science Center and Department of Chemistry, University of Copenhagen, Copenhagen 2100, Denmark
| | - Stephen J Van Wyck
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Max Moncada Cohen
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Michael D Fayer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
19
|
Chialvo AA. On the Elusive Links between Solution Microstructure, Dynamics, and Solvation Thermodynamics: Demystifying the Path through a Bridge over Troubled Conjectures and Misinterpretations. J Phys Chem B 2023; 127:10792-10813. [PMID: 38060479 DOI: 10.1021/acs.jpcb.3c04707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
We build a fundamentally based bridge between the solute-induced microstructural perturbation of the species environment and the dynamic as well as thermodynamic responses of the fluid system, regardless of the state conditions, composition, nature of the solvent, and either the magnitude or the type of solute-solvent intermolecular-interaction asymmetries. For that purpose, we advance a fluctuation-based solvation formalism of fluid mixtures to provide meaningful descriptors of solvation phenomena, the microstructural signatures of their solute-solvent intermolecular interaction asymmetry, and the thermodynamic manifestations linked to the solution nonideality. The rigorous foundations afford us to address some crucial issues frequently invoked in the literature including the microstructural perturbation domain, its proper identification and molecular-based meaning toward the interpretation of the solvation process, and the potential impact of the local differential behavior between anions and cations on the actual salt-induced perturbation of the solvent microstructure. Indeed, we link the precisely characterized species solvation behavior to fundamental thermodynamic residual-property relations, and the dynamics associated with either the viscous flow or diffusive behavior of the solvent, to finally illustrate their outcome with experimental data of aqueous electrolyte solutions from the available literature. Ultimately, this effort provides a highly desirable unambiguous identification of the cause-effect connections between the microstructurally perturbed domains and the experimentally measured macroscopic solvation properties, including their effect on the dynamics of the solvent environment. More importantly, it lends a well-established solvation framework to bridge rigorously the microstructural details of the mixture, its dynamics, and its solvation thermodynamics to enhance our understanding of well-defined ranked Hofmeister series, i.e., by avoiding ad hoc conjectures and unsupported microscopic interpretations of solvation phenomena.
Collapse
Affiliation(s)
- Ariel A Chialvo
- Retired Scientist, Knoxville, Tennessee 37922-3108, United States
| |
Collapse
|
20
|
You X, Zhang D, Zhang XG, Li X, Tian JH, Wang YH, Li JF. Exploring the Cation Regulation Mechanism for Interfacial Water Involved in the Hydrogen Evolution Reaction by In Situ Raman Spectroscopy. NANO-MICRO LETTERS 2023; 16:53. [PMID: 38108934 PMCID: PMC10728385 DOI: 10.1007/s40820-023-01285-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/09/2023] [Indexed: 12/19/2023]
Abstract
Interfacial water molecules are the most important participants in the hydrogen evolution reaction (HER). Hence, understanding the behavior and role that interfacial water plays will ultimately reveal the HER mechanism. Unfortunately, investigating interfacial water is extremely challenging owing to the interference caused by bulk water molecules and complexity of the interfacial environment. Here, the behaviors of interfacial water in different cationic electrolytes on Pd surfaces were investigated by the electrochemistry, in situ core-shell nanostructure enhanced Raman spectroscopy and theoretical simulation techniques. Direct spectral evidence reveals a red shift in the frequency and a decrease in the intensity of interfacial water as the potential is shifted in the positively direction. When comparing the different cation electrolyte systems at a given potential, the frequency of the interfacial water peak increases in the specified order: Li+ < Na+ < K+ < Ca2+ < Sr2+. The structure of interfacial water was optimized by adjusting the radius, valence, and concentration of cation to form the two-H down structure. This unique interfacial water structure will improve the charge transfer efficiency between the water and electrode further enhancing the HER performance. Therefore, local cation tuning strategies can be used to improve the HER performance by optimizing the interfacial water structure.
Collapse
Affiliation(s)
- Xueqiu You
- School of Ocean Information Engineering, Fujian Provincial Key Laboratory of Oceanic Information Perception and Intelligent Processing, Jimei University, Xiamen, 361021, People's Republic of China
| | - Dongao Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, iChEM, College of Chemistry and Chemical Engineering, College of Materials, College of Energy, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Xia-Guang Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Xiangyu Li
- School of Ocean Information Engineering, Fujian Provincial Key Laboratory of Oceanic Information Perception and Intelligent Processing, Jimei University, Xiamen, 361021, People's Republic of China
| | - Jing-Hua Tian
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, People's Republic of China
| | - Yao-Hui Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, iChEM, College of Chemistry and Chemical Engineering, College of Materials, College of Energy, Xiamen University, Xiamen, 361005, People's Republic of China.
| | - Jian-Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, iChEM, College of Chemistry and Chemical Engineering, College of Materials, College of Energy, Xiamen University, Xiamen, 361005, People's Republic of China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, People's Republic of China.
| |
Collapse
|
21
|
Zhu J, Zhao Z, Li X, Wei Y. Structural and dynamical properties of concentrated alkali- and alkaline-earth metal chloride aqueous solutions. J Chem Phys 2023; 159:214503. [PMID: 38054516 DOI: 10.1063/5.0178123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/12/2023] [Indexed: 12/07/2023] Open
Abstract
Concentrated ionic aqueous electrolytes possess a diverse array of applications across various fields, particularly in the field of energy storage. Despite extensive examination, the intricate relationships and numerous physical mechanisms underpinning diverse phenomena remain incompletely understood. Molecular dynamics simulations are employed to probe the attributes of aqueous solutions containing LiCl, NaCl, KCl, MgCl2, and CaCl2, spanning various solute fractions. The primary emphasis of the simulations is on unraveling the intricate interplay between these attributes and the underlying physical mechanisms. The configurations of cation-Cl- and Cl--Cl- pairs within these solutions are disclosed. As the solute fraction increases, consistent trends manifest regardless of solute type: (i) the number of hydrogen bonds formed by the hydration water surrounding ions decreases, primarily attributed to the growing presence of counter ions in proximity to the hydration water; (ii) the hydration number of ions exhibits varying trends influenced by multiple factor; and (iii) the diffusion of ions slows down, attributed to the enhanced confinement and rebound of cations and Cl- ions from the surrounding atoms, concurrently coupled with the changes in ion vibration modes. In our analysis, we have, for the first time, clarified the reasons behind the slowing down of the diffusion of the ions with increasing solute fraction. Our research contributes to a better understanding and manipulation of the attributes of ionic aqueous solutions and may help designing high-performance electrolytes.
Collapse
Affiliation(s)
- Jianzhuo Zhu
- Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Zhuodan Zhao
- Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Xingyuan Li
- Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Yong Wei
- School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
22
|
Li X, Yang G, Zhang Q, Liu Z, Peng F. Alkali Metal Cation-Sulfate Anion Ion Pairs Promoted the Cleavage of C-C Bond During Ethanol Electrooxidation. J Phys Chem Lett 2023:11177-11182. [PMID: 38055448 DOI: 10.1021/acs.jpclett.3c02569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Direct ethanol fuel cells show great promise as a means of converting biomass ethanol derived from biomass into electricity. However, the efficiency of complete conversion is hindered by the low selectivity in breaking the C-C bond. This selectivity is determined by factors such as the material structure and reaction conditions, including the nature of the supporting electrolyte. Cations serve not only as facilitators of electricity conduction through ion migration but also as influencers of the reaction pathways. In this study, we utilized differential electrochemical mass spectrometry to track the in situ generation of CO2 during potential scanning. The presence of alkali cations led to an enhancement in the CO2 selectivity. In addition, in situ Raman spectroscopy provided evidence of the formation of alkali metal cation-sulfate anion ion pairs. The catalytic activity and CO2 selectivity were found to be directly correlated to the ionic strength of these ion pairs.
Collapse
Affiliation(s)
- Xiang Li
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Guangxing Yang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Qiao Zhang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Zhiting Liu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| | - Feng Peng
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
23
|
Li S, Wu L, Liu Q, Zhu M, Li Z, Wang C, Jiang X, Li J. Uncovering the Dominant Role of an Extended Asymmetric Four-Coordinated Water Network in the Hydrogen Evolution Reaction. J Am Chem Soc 2023. [PMID: 38031299 DOI: 10.1021/jacs.3c08333] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
In situ and accurate measurement of the structure and dynamics of interfacial water in the hydrogen evolution reaction (HER) is a well-known challenge because of the coupling of water among varied structures and its dual role as reactants and solvents. Further, the interference of bulk water and intricate interfacial interactions always hinders the probing of interfacial water. Surface-enhanced infrared absorption spectroscopy is extremely sensitive for the measurement of interfacial water; herein, we develop a nanoconfinement strategy by introducing nonaqueous ionic liquids to decouple and tailor the water structure in the electric double layer and further combined with molecular dynamics simulations, successfully gaining the correlation between isolated water, water clusters, and the water network with HER activity. Our results clearly disclosed that the potential-dependent asymmetric four-coordinated water network, whose connectivity could be regulated by hydrophilic and hydrophobic cations, was positively correlated with HER activity, which provided a pioneering guidance framework for revealing the function of water in catalysis, energy, and surface science.
Collapse
Affiliation(s)
- Shanshan Li
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
- University of Science and Technology of China, Hefei 230026, Anhui, China
- School of Physics, Changchun Normal University, Changchun 130032, Jilin, China
| | - Lie Wu
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
| | - Qixin Liu
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
- University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Manyu Zhu
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
- University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Zihao Li
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
- University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Chen Wang
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
- University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Xiue Jiang
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
- University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Jinghong Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
24
|
Wei W. Hofmeister Effects Shine in Nanoscience. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302057. [PMID: 37211703 PMCID: PMC10401134 DOI: 10.1002/advs.202302057] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/11/2023] [Indexed: 05/23/2023]
Abstract
Hofmeister effects play a crucial role in nanoscience by affecting the physicochemical and biochemical processes. Thus far, numerous wonderful applications from various aspects of nanoscience have been developed based on the mechanism of Hofmeister effects, such as hydrogel/aerogel engineering, battery design, nanosynthesis, nanomotors, ion sensors, supramolecular chemistry, colloid and interface science, nanomedicine, and transport behaviors, etc. In this review, for the first time, the progress of applying Hofmeister effects is systematically introduced and summarized in nanoscience. It is aimed to provide a comprehensive guideline for future researchers to design more useful Hofmeister effects-based nanosystems.
Collapse
Affiliation(s)
- Weichen Wei
- Department of NanoengineeringUniversity of California San DiegoLa JollaSan DiegoCA92093USA
| |
Collapse
|
25
|
Ge H, Sun Z, Jiang Y, Wu X, Jia Z, Cui G, Zhang Y. Recent Advances in THz Detection of Water. Int J Mol Sci 2023; 24:10936. [PMID: 37446112 DOI: 10.3390/ijms241310936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
The frequency range of terahertz waves (THz waves) is between 0.1 and 10 THz and they have properties such as low energy, penetration, transients, and spectral fingerprints, which are especially sensitive to water. Terahertz, as a frontier technology, have great potential in interpreting the structure of water molecules and detecting biological water conditions, and the use of terahertz technology for water detection is currently frontier research, which is of great significance. Firstly, this paper introduces the theory of terahertz technology and summarizes the current terahertz systems used for water detection. Secondly, an overview of theoretical approaches, such as the relaxation model and effective medium theory related to water detection, the relationship between water molecular networks and terahertz spectra, and the research progress of the terahertz detection of water content and water distribution visualization, are elaborated. Finally, the challenge and outlook of applications related to the terahertz wave detection of water are discussed. The purpose of this paper is to explore the research domains on water and its related applications using terahertz technology, as well as provide a reference for innovative applications of terahertz technology in moisture detection.
Collapse
Affiliation(s)
- Hongyi Ge
- Key Laboratory of Grain Information Processing & Control, Ministry of Education, Henan University of Technology, Zhengzhou 450001, China
- Henan Provincial Key Laboratory of Grain Photoelectric Detection and Control, Zhengzhou 450001, China
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Zhenyu Sun
- Key Laboratory of Grain Information Processing & Control, Ministry of Education, Henan University of Technology, Zhengzhou 450001, China
- Henan Provincial Key Laboratory of Grain Photoelectric Detection and Control, Zhengzhou 450001, China
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yuying Jiang
- Key Laboratory of Grain Information Processing & Control, Ministry of Education, Henan University of Technology, Zhengzhou 450001, China
- Henan Provincial Key Laboratory of Grain Photoelectric Detection and Control, Zhengzhou 450001, China
- School of Artificial Intelligence and Big Data, Henan University of Technology, Zhengzhou 450001, China
| | - Xuyang Wu
- Key Laboratory of Grain Information Processing & Control, Ministry of Education, Henan University of Technology, Zhengzhou 450001, China
- Henan Provincial Key Laboratory of Grain Photoelectric Detection and Control, Zhengzhou 450001, China
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Zhiyuan Jia
- Key Laboratory of Grain Information Processing & Control, Ministry of Education, Henan University of Technology, Zhengzhou 450001, China
- Henan Provincial Key Laboratory of Grain Photoelectric Detection and Control, Zhengzhou 450001, China
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Guangyuan Cui
- Key Laboratory of Grain Information Processing & Control, Ministry of Education, Henan University of Technology, Zhengzhou 450001, China
- Henan Provincial Key Laboratory of Grain Photoelectric Detection and Control, Zhengzhou 450001, China
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yuan Zhang
- Key Laboratory of Grain Information Processing & Control, Ministry of Education, Henan University of Technology, Zhengzhou 450001, China
- Henan Provincial Key Laboratory of Grain Photoelectric Detection and Control, Zhengzhou 450001, China
- College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
26
|
Ferguson CA, Santangelo C, Marramiero L, Farina M, Pietrangelo T, Cheng X. Broadband Electrical Spectroscopy to Distinguish Single-Cell Ca 2+ Changes Due to Ionomycin Treatment in a Skeletal Muscle Cell Line. SENSORS (BASEL, SWITZERLAND) 2023; 23:4358. [PMID: 37177559 PMCID: PMC10181519 DOI: 10.3390/s23094358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/22/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023]
Abstract
Many skeletal muscle diseases such as muscular dystrophy, myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), and sarcopenia share the dysregulation of calcium (Ca2+) as a key mechanism of disease at a cellular level. Cytosolic concentrations of Ca2+ can signal dysregulation in organelles including the mitochondria, nucleus, and sarcoplasmic reticulum in skeletal muscle. In this work, a treatment is applied to mimic the Ca2+ increase associated with these atrophy-related disease states, and broadband impedance measurements are taken for single cells with and without this treatment using a microfluidic device. The resulting impedance measurements are fitted using a single-shell circuit simulation to show calculated electrical dielectric property contributions based on these Ca2+ changes. From this, similar distributions were seen in the Ca2+ from fluorescence measurements and the distribution of the S-parameter at a single frequency, identifying Ca2+ as the main contributor to the electrical differences being identified. Extracted dielectric parameters also showed different distribution patterns between the untreated and ionomycin-treated groups; however, the overall electrical parameters suggest the impact of Ca2+-induced changes at a wider range of frequencies.
Collapse
Affiliation(s)
- Caroline A. Ferguson
- Department of Bioengineering, P.C. Rossin College of Engineering and Applied Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Carmen Santangelo
- Department of Neuroscience, Imaging and Clinical Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Lorenzo Marramiero
- Department of Neuroscience, Imaging and Clinical Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Marco Farina
- Department of Engineering of Information, University Politecnica delle Marche, 60131 Ancona, Italy
| | - Tiziana Pietrangelo
- Department of Neuroscience, Imaging and Clinical Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy
| | - Xuanhong Cheng
- Department of Bioengineering, P.C. Rossin College of Engineering and Applied Sciences, Lehigh University, Bethlehem, PA 18015, USA
- Department of Materials Science and Engineering, P.C. Rossin College of Engineering and Applied Sciences, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
27
|
Fresch E, Collini E. The Role of H-Bonds in the Excited-State Properties of Multichromophoric Systems: Static and Dynamic Aspects. Molecules 2023; 28:molecules28083553. [PMID: 37110786 PMCID: PMC10141795 DOI: 10.3390/molecules28083553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Given their importance, hydrogen bonds (H-bonds) have been the subject of intense investigation since their discovery. Indeed, H-bonds play a fundamental role in determining the structure, the electronic properties, and the dynamics of complex systems, including biologically relevant materials such as DNA and proteins. While H-bonds have been largely investigated for systems in their electronic ground state, fewer studies have focused on how the presence of H-bonds could affect the static and dynamic properties of electronic excited states. This review presents an overview of the more relevant progress in studying the role of H-bond interactions in modulating excited-state features in multichromophoric biomimetic complex systems. The most promising spectroscopic techniques that can be used for investigating the H-bond effects in excited states and for characterizing the ultrafast processes associated with their dynamics are briefly summarized. Then, experimental insights into the modulation of the electronic properties resulting from the presence of H-bond interactions are provided, and the role of the H-bond in tuning the excited-state dynamics and the related photophysical processes is discussed.
Collapse
Affiliation(s)
- Elisa Fresch
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Elisabetta Collini
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
28
|
Balos V, Wolf M, Kovalev S, Sajadi M. Optical rectification and electro-optic sampling in quartz. OPTICS EXPRESS 2023; 31:13317-13327. [PMID: 37157471 DOI: 10.1364/oe.480339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
We report the electro-optic sampling (EOS) response and the terahertz (THz) optical rectification (OR) of the z-cut α-quartz. Due to its small effective second-order nonlinearity, large transparency window and hardness, freestanding thin quartz plates can faithfully measure the waveform of intense THz pulses with MV/cm electric-field strength. We show that both its OR and EOS responses are broad with extension up to ∼8 THz. Strikingly, the latter responses are independent of the crystal thickness, a plausible indication of dominant surface contribution to the total second-order nonlinear susceptibility of quartz at THz frequencies. Our study introduces the crystalline quartz as a reliable THz electro-optic medium for high field THz detection, and characterize its emission as a common substrate.
Collapse
|
29
|
Panagiotopoulos AZ, Yue S. Dynamics of Aqueous Electrolyte Solutions: Challenges for Simulations. J Phys Chem B 2023; 127:430-437. [PMID: 36607836 DOI: 10.1021/acs.jpcb.2c07477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This Perspective article focuses on recent simulation work on the dynamics of aqueous electrolytes. It is well-established that full-charge, nonpolarizable models for water and ions generally predict solution dynamics that are too slow in comparison to experiments. Models with reduced (scaled) charges do better for solution diffusivities and viscosities but encounter issues describing other dynamic phenomena such as nucleation rates of crystals from solution. Polarizable models show promise, especially when appropriately parametrized, but may still miss important physical effects such as charge transfer. First-principles calculations are starting to emerge for these properties that are in principle able to capture polarization, charge transfer, and chemical transformations in solution. While direct ab initio simulations are still too slow for simulations of large systems over long time scales, machine-learning models trained on appropriate first-principles data show significant promise for accurate and transferable modeling of electrolyte solution dynamics.
Collapse
Affiliation(s)
| | - Shuwen Yue
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
30
|
Shaoqing M, Zhiwei L, Shixiang G, Chengbiao L, Xiaoli L, Yingwei L. The laws and effects of terahertz wave interactions with neurons. Front Bioeng Biotechnol 2023; 11:1147684. [PMID: 37180041 PMCID: PMC10170412 DOI: 10.3389/fbioe.2023.1147684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/03/2023] [Indexed: 05/15/2023] Open
Abstract
Introduction: Terahertz waves lie within the energy range of hydrogen bonding and van der Waals forces. They can couple directly with proteins to excite non-linear resonance effects in proteins, and thus affect the structure of neurons. However, it remains unclear which terahertz radiation protocols modulate the structure of neurons. Furthermore, guidelines and methods for selecting terahertz radiation parameters are lacking. Methods: In this study, the propagation and thermal effects of 0.3-3 THz wave interactions with neurons were modelled, and the field strength and temperature variations were used as evaluation criteria. On this basis, we experimentally investigated the effects of cumulative radiation from terahertz waves on neuron structure. Results: The results show that the frequency and power of terahertz waves are the main factors influencing field strength and temperature in neurons, and that there is a positive correlation between them. Appropriate reductions in radiation power can mitigate the rise in temperature in the neurons, and can also be used in the form of pulsed waves, limiting the duration of a single radiation to the millisecond level. Short bursts of cumulative radiation can also be used. Broadband trace terahertz (0.1-2 THz, maximum radiated power 100 μW) with short duration cumulative radiation (3 min/day, 3 days) does not cause neuronal death. This radiation protocol can also promote the growth of neuronal cytosomes and protrusions. Discussion: This paper provides guidelines and methods for terahertz radiation parameter selection in the study of terahertz neurobiological effects. Additionally, it verifies that the short-duration cumulative radiation can modulate the structure of neurons.
Collapse
Affiliation(s)
- Ma Shaoqing
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, China
- Hebei Key Laboratory of Information Transmission and Signal Processing, Qinhuangdao, China
| | - Li Zhiwei
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao, China
| | - Gong Shixiang
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, China
- Hebei Key Laboratory of Information Transmission and Signal Processing, Qinhuangdao, China
| | - Lu Chengbiao
- Henan International Key Laboratory for Noninvasive Neuromodulation, Xinxiang Medical University, Xinxiang, China
- *Correspondence: Lu Chengbiao, ; Li Xiaoli, ; Li Yingwei,
| | - Li Xiaoli
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
- *Correspondence: Lu Chengbiao, ; Li Xiaoli, ; Li Yingwei,
| | - Li Yingwei
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, China
- Hebei Key Laboratory of Information Transmission and Signal Processing, Qinhuangdao, China
- *Correspondence: Lu Chengbiao, ; Li Xiaoli, ; Li Yingwei,
| |
Collapse
|