1
|
Tan DH, Das A, Huang V, Schoch TD, Mohammed AL, Lipshultz JM. Pyridoxal-Inspired Photo-Decarboxylase Catalysis: Photochemical Decarboxylation of Unprotected Amino Acids. Angew Chem Int Ed Engl 2025; 64:e202424843. [PMID: 39954015 PMCID: PMC12009495 DOI: 10.1002/anie.202424843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/30/2025] [Accepted: 02/14/2025] [Indexed: 02/17/2025]
Abstract
A photochemical organocatalytic method for the protodecarboxylation of unprotected amino acids is reported. Inspired by pyridoxal 5'-phosphate-dependent decarboxylase enzymes, the catalytic activation of amino acid substrates by 3-hydroxyisonicotinaldehyde enables a photochemical decarboxylation event, which can be leveraged in combination with a thiol co-catalyst. The necessary and sufficient structural features of the pyridoxal-like framework for photoactivity are determined using ultraviolet-visible absorption spectroscopy. A broad scope of unprotected amino acids can be decarboxylated in this system, with selectivity between multiple carboxylates realized on the possible basis of hyperconjugation. The ability to engage simple amino acids in decarboxylative functionalization at ambient conditions using a pyridoxal-mimicking organocatalyst enables new possibilities for the translation of biogenic amino acids into medicinally valuable amines.
Collapse
Affiliation(s)
- Dong-Hang Tan
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA
| | - Agniva Das
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA
| | - Vincent Huang
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA
| | - Timothy D Schoch
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA
| | - Abubakar Lawal Mohammed
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA
| | - Jeffrey M Lipshultz
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA
| |
Collapse
|
2
|
Tao S, Yang Y, Chen L, Xu J, Fu H, Chen H, Jiang W, Li R, Xue W, Zheng X. Electrochemical Synergistic Ni/Co-Catalyzed Carbonylative Cross-Electrophile Coupling of Aryl and Alkyl Halides with CO. JACS AU 2025; 5:1413-1420. [PMID: 40151257 PMCID: PMC11937974 DOI: 10.1021/jacsau.5c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/29/2025]
Abstract
Accessing unsymmetric ketones and achieving their carbon isotope labeling are crucial yet challenging tasks in both synthetic and medicinal chemistry. We report here an efficient electrochemical nickel-/cobalt-catalyzed carbonylative cross-electrophile coupling reaction. This method allows for the modular synthesis of a library of unsymmetric ketones from simple building blocks, including aryl halides, alkyl halides, and gaseous CO. The simultaneous use of nickel and cobalt salts as concerted catalysts ensures the high efficiency of this three-component carbonylative coupling. Furthermore, electrochemical reduction avoids the use of stoichiometric reductants, making this protocol more sustainable and attractive. The broad substrate scope and late-stage 13C isotope labeling of complex molecules derived from biologically active compounds highlight the practicality of this method.
Collapse
Affiliation(s)
- Shaokun Tao
- Key
Laboratory of Green Chemistry & Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Yun Yang
- Key
Laboratory of Green Chemistry & Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Li Chen
- Key
Laboratory of Green Chemistry & Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Jiaqi Xu
- Key
Laboratory of Green Chemistry & Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Haiyan Fu
- Key
Laboratory of Green Chemistry & Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Hua Chen
- Key
Laboratory of Green Chemistry & Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Weidong Jiang
- School
of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong, Sichuan 643000, P. R. China
| | - Ruixiang Li
- Key
Laboratory of Green Chemistry & Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Weichao Xue
- Key
Laboratory of Green Chemistry & Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| | - Xueli Zheng
- Key
Laboratory of Green Chemistry & Technology, Ministry of Education,
College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, P. R. China
| |
Collapse
|
3
|
Liu X, Cao S, Zhang C, Jiang Y, Kong D. Integrating Umpolung and CO 2 Shuttling Strategies for the Synthesis of 12C- and 13C-α-Ketoacids from Aldehydes. Org Lett 2024; 26:8967-8972. [PMID: 39382378 DOI: 10.1021/acs.orglett.4c03508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
The direct carboxylation of aldehydes with CO2 is rare due to the polarity mismatch between these two electrophilic substrates. To address this challenge, we propose a sequential approach for synthesizing α-ketoacids from commercially available aldehydes by integrating umpolung and CO2 shuttling strategies. This transition metal-free shuttle carboxylation method enables the transfer of CO2 from triphenylacetic acid potassium salt to thioacetal, eliminating the need for handling pressurized CO2 gas or using specialized equipment, while also enhancing the reaction's functional group tolerance. Furthermore, the use of stoichiometric or slightly excess amounts of triphenylacetic acid potassium salt as a formal CO2 donor makes it suitable for complete 13C labeling of α-ketoacids.
Collapse
Affiliation(s)
- Xia Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shilong Cao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chenchen Zhang
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Yuqin Jiang
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Duanyang Kong
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
4
|
Xiao G, Sun H, Jiang G, Liu Y, Song G, Kong D. Binary Catalytic Hydrogen/Deuterium Exchange of Free α-Amino Acids and Derivatives. Chemistry 2024; 30:e202402045. [PMID: 39042826 DOI: 10.1002/chem.202402045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 07/25/2024]
Abstract
The increasing demand for deuterium-labeled amino acids and derivatives has heightened interest in direct hydrogen/deuterium exchange reactions of free amino acids. Existing methods, including biocatalysis and metal catalysis, typically require expensive deuterium sources or excessive use of deuterium reagents and often struggle with site selectivity. In contrast, this binary catalysis system, employing benzaldehyde and Cs2CO3 in the presence of inexpensive D2O with minimal stoichiometric quantities, facilitates efficient hydrogen/deuterium exchange at the α-position of amino acids without the need for protecting groups in the polar aprotic solvent DMSO. The process is highly compatible with most natural and non-natural α-amino acids and derivatives, even those with potentially reactive functionalities. This advancement not only addresses the cost and efficiency concerns of existing methods but also significantly broadens the applicability and precision of deuterium labeling in biochemical research.
Collapse
Affiliation(s)
- Guorong Xiao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Hong Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Gege Jiang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ying Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Gaohan Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Duanyang Kong
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
5
|
Ning J, Du B, Cao S, Liu X, Kong D. Combining Umpolung and Carbon Isotope Exchange Strategies for Accessing Isotopically Labeled α-Keto Acids. Org Lett 2024; 26:5966-5971. [PMID: 38958587 DOI: 10.1021/acs.orglett.4c01979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The integration of umpolung and carbon isotope exchange for accessing isotopically labeled α-keto acids through photoredox catalysis is elucidated. This process involves the carbonyl umpolung of C(sp2)-α-keto acids to yield C(sp3)-α-thioketal acids, followed by the carbon isotope exchange of C(sp3)-α-thioketal acids, and ultimately, deprotection to generate carbon-labeled α-keto acids.
Collapse
Affiliation(s)
- Jingran Ning
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Baoyang Du
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shilong Cao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xia Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Duanyang Kong
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
6
|
Doyle MGJ, Bsharat O, Sib A, Derdau V, Lundgren RJ. Enantioselective Carbon Isotope Exchange. J Am Chem Soc 2024; 146:18804-18810. [PMID: 38968381 DOI: 10.1021/jacs.4c03685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
The synthesis of isotopically labeled organic molecules is vital for drug and agrochemical discovery and development. Carbon isotope exchange is emerging as a leading method to generate carbon-labeled targets, which are sought over hydrogen-based labels due to their enhanced stability in biological systems. While many bioactive small molecules bear carbon-containing stereocenters, direct enantioselective carbon isotope exchange reactions have not been established. We describe the first example of an enantioselective carbon isotope exchange reaction, where (radio)labeled α-amino acids can be generated from their unlabeled precursors using a stoichiometric chiral aldehyde receptor with isotopically labeled CO2 followed by imine hydrolysis. Many proteinogenic and non-natural derivatives undergo enantioselective labeling, including the late-stage radiolabeling of complex drug targets.
Collapse
Affiliation(s)
- Michael G J Doyle
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
- Integrated Drug Discovery, Isotope Chemistry, R&D, Sanofi Germany, Industriepark Höchst, 65926 Frankfurt, Germany
| | - Odey Bsharat
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Anna Sib
- Integrated Drug Discovery, Isotope Chemistry, R&D, Sanofi Germany, Industriepark Höchst, 65926 Frankfurt, Germany
| | - Volker Derdau
- Integrated Drug Discovery, Isotope Chemistry, R&D, Sanofi Germany, Industriepark Höchst, 65926 Frankfurt, Germany
| | - Rylan J Lundgren
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
7
|
Zhou L, Li L, Zhang S, Kuang XK, Zhou YY, Tang Y. Catalytic Regio- and Enantioselective Remote Hydrocarboxylation of Unactivated Alkenes with CO 2. J Am Chem Soc 2024; 146:18823-18830. [PMID: 38950377 DOI: 10.1021/jacs.4c05217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The catalytic regio- and enantioselective hydrocarboxylation of alkenes with carbon dioxide is a straightforward strategy to construct enantioenriched α-chiral carboxylic acids but remains a big challenge. Herein we report the first example of catalytic highly enantio- and site-selective remote hydrocarboxylation of a wide range of readily available unactivated alkenes with abundant and renewable CO2 under mild conditions enabled by the SaBOX/Ni catalyst. The key to this success is utilizing the chiral SaBOX ligand, which combines with nickel to simultaneously control both chain-walking and the enantioselectivity of carboxylation. This process directly furnishes a range of different alkyl-chain-substituted or benzo-fused α-chiral carboxylic acids bearing various functional groups in high yields and regio- and enantioselectivities. Furthermore, the synthetic utility of this methodology was demonstrated by the concise synthesis of the antiplatelet aggregation drug (R)-indobufen from commercial starting materials.
Collapse
Affiliation(s)
- Li Zhou
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| | - Liping Li
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Sudong Zhang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Xiao-Kang Kuang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - You-Yun Zhou
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Yong Tang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| |
Collapse
|
8
|
Doyle MGJ, Mair BA, Sib A, Bsharat O, Munch M, Derdau V, Rotstein BH, Lundgren RJ. A practical guide for the preparation of C1-labeled α-amino acids using aldehyde catalysis with isotopically labeled CO 2. Nat Protoc 2024; 19:2147-2179. [PMID: 38548937 DOI: 10.1038/s41596-024-00974-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 01/09/2024] [Indexed: 07/10/2024]
Abstract
Isotopically carbon-labeled α-amino acids are valuable synthetic targets that are increasingly needed in pharmacology and medical imaging. Existing preparations rely on early stage introduction of the isotopic label, which leads to prohibitive synthetic costs and time-intensive preparations. Here we describe a protocol for the preparation of C1-labeled α-amino acids using simple aldehyde catalysts in conjunction with [*C]CO2 (* = 14, 13, 11). This late-stage labeling strategy is enabled by the one-pot carboxylate exchange of unprotected α-amino acids with [*C]CO2. The protocol consists of three separate procedures, describing the syntheses of (±)-[1-13C]phenylalanine, (±)-[1-11C]phenylalanine and (±)-[1-14C]phenylalanine from unlabeled phenylalanine. Although the delivery of [*C]CO2 is operationally distinct for each experiment, each procedure relies on the same fundamental chemistry and can be executed by heating the reaction components at 50-90 °C under basic conditions in dimethylsulfoxide. Performed on scales of up to 0.5 mmol, this methodology is amenable to C1-labeling of many proteinogenic α-amino acids and nonnatural derivatives, which is a breakthrough from existing methods. The synthesis of (±)-[1-13C]phenylalanine requires ~2 d, with product typically obtained in a 60-80% isolated yield (n = 3, μ = 71, σ = 8.3) with an isotopic incorporation of 70-88% (n = 18, μ = 72, σ = 9.0). Starting from the preformed imino acid (~3 h preparation time), rapid synthesis of (±)-[1-11C]phenylalanine can be completed in ~1 h with an isolated radiochemical yield of 13%. Finally, (±)-[1-14C]phenylalanine can be accessed in ~2 d with a 51% isolated yield and 11% radiochemical yield.
Collapse
Affiliation(s)
- Michael G J Doyle
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Braeden A Mair
- Department of Biochemistry, Microbiology and Immunology and Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Anna Sib
- Sanofi Germany, R&D, Integrated Drug Discovery, Isotope Chemistry, Industriepark Höchst, Frankfurt, Germany
| | - Odey Bsharat
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Maxime Munch
- Department of Biochemistry, Microbiology and Immunology and Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Volker Derdau
- Sanofi Germany, R&D, Integrated Drug Discovery, Isotope Chemistry, Industriepark Höchst, Frankfurt, Germany
| | - Benjamin H Rotstein
- Department of Biochemistry, Microbiology and Immunology and Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, Canada.
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada.
| | - Rylan J Lundgren
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
9
|
Kinney RG, Zgheib J, Lagueux-Tremblay PL, Zhou C, Yang H, Li J, Gauthier DR, Arndtsen BA. A metal-catalysed functional group metathesis approach to the carbon isotope labelling of carboxylic acids. Nat Chem 2024; 16:556-563. [PMID: 38374455 DOI: 10.1038/s41557-024-01447-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 01/11/2024] [Indexed: 02/21/2024]
Abstract
The distribution, metabolism and ultimate fate of molecules within the body is central to the activity of pharmaceuticals. However, the introduction of radioisotopes into the metabolically stable carbon sites on drugs to probe these features typically requires toxic, radioactive gases such as [14C]CO and [14C]CO2. Here we describe an approach to directly carbon-label carboxylic-acid-containing pharmaceuticals via a metal-catalysed functional group exchange reaction, forming 14C-labelled carboxylic-acid-containing drugs without radioactive gases, in one pot, using an easily available and handled carboxylic acid 14C source. To enable this process, a functional group metathesis of carbon-carbon covalent bonds in acid chloride functionalities is developed, exploiting the ability of nickel catalysts to both reversibly activate carbon-chloride bonds and exchange functionalities between organic molecules. The drug development applicability is illustrated by the direct incorporation of the 14C label or 13C label into an array of complex aryl, alkyl, vinyl and heterocyclic carboxylic acid drugs or drug candidates without gases or a special apparatus, at ambient conditions and without loss of the radiolabel.
Collapse
Affiliation(s)
- R Garrison Kinney
- Department of Chemistry, McGill University, Montreal, Quebec, Canada
| | - José Zgheib
- Department of Chemistry, McGill University, Montreal, Quebec, Canada
| | | | - Cuihan Zhou
- Department of Chemistry, McGill University, Montreal, Quebec, Canada
| | - Haifeng Yang
- Department of Process Research and Development, Merck & Co., Inc., Rahway, NJ, USA
| | - Jingwei Li
- Department of Process Research and Development, Merck & Co., Inc., Rahway, NJ, USA
| | - Donald R Gauthier
- Department of Process Research and Development, Merck & Co., Inc., Rahway, NJ, USA.
| | - Bruce A Arndtsen
- Department of Chemistry, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
10
|
Carbon isotope exchange for pharmaceutical radiolabelling through metal-catalysed functional group metathesis. Nat Chem 2024; 16:489-490. [PMID: 38378949 DOI: 10.1038/s41557-024-01449-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
|
11
|
Mouhsine B, Norlöff M, Ghouilem J, Sallustrau A, Taran F, Audisio D. Platform for Multiple Isotope Labeling via Carbon-Sulfur Bond Exchange. J Am Chem Soc 2024; 146:8343-8351. [PMID: 38498972 DOI: 10.1021/jacs.3c14106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
In this work, we explore a nickel-catalyzed reversible carbon-sulfur (C-S) bond activation strategy to achieve selective sulfur isotope exchange. Isotopes are at the foundation of applications in life science, such as nuclear imaging, and are essential tools for the determination of pharmacokinetic and dynamic profiles of new pharmaceuticals. However, the insertion of an isotope into an organic molecule remains challenging, and current technologies are element-specific. Despite the ubiquitous presence of sulfur in many biologically active molecules, sulfur isotope labeling is an underexplored field, and sulfur isotope exchange has been overlooked. This approach enables us to move beyond standardized element-specific procedures and was applied to multiple isotopes, including deuterium, carbon-13, sulfur-34, and radioactive carbon-14. These results provide a unique platform for multiple isotope labeling and are compatible with a wide range of substrates, including pharmaceuticals. In addition, this technology proved its potential as an isotopic encryption device for organic molecules.
Collapse
Affiliation(s)
- Bouchaib Mouhsine
- Université Paris-Saclay, CEA, Service de Chimie Bio-organique et Marquage, DMTS, F-91191 Gif-sur-Yvette, France
| | - Maylis Norlöff
- Université Paris-Saclay, CEA, Service de Chimie Bio-organique et Marquage, DMTS, F-91191 Gif-sur-Yvette, France
| | - Juba Ghouilem
- Université Paris-Saclay, CEA, Service de Chimie Bio-organique et Marquage, DMTS, F-91191 Gif-sur-Yvette, France
| | - Antoine Sallustrau
- Université Paris-Saclay, CEA, Service de Chimie Bio-organique et Marquage, DMTS, F-91191 Gif-sur-Yvette, France
| | - Frédéric Taran
- Université Paris-Saclay, CEA, Service de Chimie Bio-organique et Marquage, DMTS, F-91191 Gif-sur-Yvette, France
| | - Davide Audisio
- Université Paris-Saclay, CEA, Service de Chimie Bio-organique et Marquage, DMTS, F-91191 Gif-sur-Yvette, France
| |
Collapse
|
12
|
Zambri MA, Kluger R. Proton Transfer via π-Interactions from Pyridine Provides a Facilitated Route for Transfer of CO 2 in Its Complex with a Carbanion. J Am Chem Soc 2024; 146:1403-1409. [PMID: 38176895 DOI: 10.1021/jacs.3c10403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Aromatic π-interactions have been recognized as enhancing enzymatic catalytic processes, providing an efficient route to overcome entropic barriers. A nonenzymic analogue, a complex of protonated pyridine and a phenyl substituent in a thiamin conjugate, facilitates the departure of CO2 by protonation of a vicinal carbanion in a reactive complex. To evaluate the efficiency of the catalytic pathway from the π-associated proton donor, a system was assessed that produced measurable competition through the rates of formation of alternative products resulting from the same thiamin-derived carbanion. The barriers to competing pathways from the decarboxylation of p-(bromomethyl)-mandelylthiamin in the presence and absence of protonated pyridine were determined, establishing the efficiency of the vicinal proton transfer between π-associated species. The formation of the complex of CO2 and the co-formed carbanion also addresses the mechanism of the uncatalyzed exchange of 13CO2 into carboxyl groups discovered by Lundgren. Finally, microscopic reversibility implicates pyridine as a vicinal Brønsted base in thiamin-aldehyde adducts, producing carbanions that could incorporate dissolved CO2 into carboxyl groups.
Collapse
Affiliation(s)
- Marc Alexander Zambri
- Davenport Chemistry Laboratories, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Ronald Kluger
- Davenport Chemistry Laboratories, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
13
|
Derdau V, Elmore CS, Hartung T, McKillican B, Mejuch T, Rosenbaum C, Wiebe C. The Future of (Radio)-Labeled Compounds in Research and Development within the Life Science Industry. Angew Chem Int Ed Engl 2023; 62:e202306019. [PMID: 37610759 DOI: 10.1002/anie.202306019] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 08/24/2023]
Abstract
In this review the applications of isotopically labeled compounds are discussed and put into the context of their future impact in the life sciences. Especially discussing their use in the pharma and crop science industries to follow their fate in the environment, in vivo or in complex matrices to understand the potential harm of new chemical structures and to increase the safety of human society.
Collapse
Affiliation(s)
- Volker Derdau
- Sanofi-Aventis Deutschland GmbH, Research & Development, Integrated Drug Discovery, Isotope Chemistry, Industriepark Höchst, G876, 65926, Frankfurt am Main, Germany
| | - Charles S Elmore
- Early Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca, Mölndal, Sweden
| | - Thomas Hartung
- Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Bruce McKillican
- Syngenta Crop Protection, LLC, North America Product Safety (retired), USA
| | - Tom Mejuch
- BASF SE, Agricultural Solutions, Ludwigshafen, Germany
| | | | | |
Collapse
|
14
|
Bloux H, Khouya AA, Sopkova-de Oliveira Santos J, Fabis F, Dubost E, Cailly T. Gold(I)-Mediated Radioiododecarboxylation of Arenes. Org Lett 2023; 25:8100-8104. [PMID: 37933839 DOI: 10.1021/acs.orglett.3c03191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
A novel radioiodination method is developed using carboxylic acids as radiolabeling precursors. This method involves decarboxylation and organogold(I) intermediate formation, enabling efficient radioiodination of (hetero)arenes and cinnamic and phenylpropiolic acids. Additionally, we demonstrated the prolonged stability of crude gold(I) organometallic compounds, showcasing their enduring radiolabeling capabilities.
Collapse
Affiliation(s)
- Hugo Bloux
- Centre d'Etudes et de Recherche sur le Medicament de Normandie, Normandie Université, Caen 14000, France
| | - Ahmed Ait Khouya
- Centre d'Etudes et de Recherche sur le Medicament de Normandie, Normandie Université, Caen 14000, France
| | | | - Frédéric Fabis
- Centre d'Etudes et de Recherche sur le Medicament de Normandie, Normandie Université, Caen 14000, France
| | - Emmanuelle Dubost
- Centre d'Etudes et de Recherche sur le Medicament de Normandie, Normandie Université, Caen 14000, France
- Institut Blood and Brain @ Caen Normandie (BB@C), Caen 14000, France
- Normandie Univ, UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), Caen 14000, France
| | - Thomas Cailly
- Centre d'Etudes et de Recherche sur le Medicament de Normandie, Normandie Université, Caen 14000, France
- Institut Blood and Brain @ Caen Normandie (BB@C), Caen 14000, France
- IMOGERE, Normandie Université, Caen 14000, France
- Department of Nuclear Medicine, CHU Cote de Nacre, Caen 14000, France
| |
Collapse
|
15
|
Abstract
Stable isotopes such as 2H, 13C, and 15N have important applications in chemistry and drug discovery. Late-stage incorporation of uncommon isotopes via isotopic exchange allows for the direct conversion of complex molecules into their valuable isotopologues without requiring a de novo synthesis. While synthetic methods exist for the conversion of hydrogen and carbon atoms into their less abundant isotopes, a corresponding method for accessing 15N-primary amines from their naturally occurring 14N-analogues has not yet been disclosed. We report an approach to access 15N-labeled primary amines via late-stage isotopic exchange using a simple benzophenone imine as the 15N source. By activating α-1 and α-2° amines to Katritzky pyridinium salts and α-3° amines to redox-active imines, we can engage primary alkyl amines in a deaminative amination. The redox-active imines proceed via a radical-polar crossover mechanism, whereas the Katritzky salts are engaged in copper catalysis via an electron donor-acceptor complex. The method is general for a variety of amines, including multiple drug compounds, and results in complete and selective isotopic labeling.
Collapse
Affiliation(s)
- Julia R Dorsheimer
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
16
|
Zhou X, Huang Q, Guo J, Dai L, Lu Y. Molecular Editing of Pyrroles via a Skeletal Recasting Strategy. ACS CENTRAL SCIENCE 2023; 9:1758-1767. [PMID: 37780359 PMCID: PMC10540293 DOI: 10.1021/acscentsci.3c00812] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Indexed: 10/03/2023]
Abstract
Heterocyclic scaffolds are commonly found in numerous biologically active molecules, therapeutic agents, and agrochemicals. To probe chemical space around heterocycles, many powerful molecular editing strategies have been devised. Versatile C-H functionalization strategies allow for peripheral modifications of heterocyclic motifs, often being specific and taking place at multiple sites. The past few years have seen the quick emergence of exciting "single-atom skeletal editing" strategies, through one-atom deletion or addition, enabling ring contraction/expansion and structural diversification, as well as scaffold hopping. The construction of heterocycles via deconstruction of simple heterocycles is unknown. Herein, we disclose a new molecular editing method which we name the skeletal recasting strategy. Specifically, by tapping on the 1,3-dipolar property of azoalkenes, we recast simple pyrroles to fully substituted pyrroles, through a simple phosphoric acid-promoted one-pot reaction consisting of dearomative deconstruction and rearomative reconstruction steps. The reaction allows for easy access to synthetically challenging tetra-substituted pyrroles which are otherwise difficult to synthesize. Furthermore, we construct N-N axial chirality on our pyrrole products, as well as accomplish a facile synthesis of the anticancer drug, Sutent. The potential application of this method to other heterocycles has also been demonstrated.
Collapse
Affiliation(s)
- Xueting Zhou
- Joint
School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, Fujian 350207, China
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Qingqin Huang
- Joint
School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, Fujian 350207, China
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Jiami Guo
- Joint
School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, Fujian 350207, China
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Lei Dai
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Yixin Lu
- Joint
School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, Fujian 350207, China
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| |
Collapse
|
17
|
Labiche A, Malandain A, Molins M, Taran F, Audisio D. Modern Strategies for Carbon Isotope Exchange. Angew Chem Int Ed Engl 2023; 62:e202303535. [PMID: 37074841 DOI: 10.1002/anie.202303535] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 04/20/2023]
Abstract
In contrast to stable and natural abundant carbon-12, the synthesis of organic molecules with carbon (radio)isotopes must be conceived and optimized in order to navigate through the hurdles of radiochemical requirements, such as high costs of the starting materials, harsh conditions and radioactive waste generation. In addition, it must initiate from the small cohort of available C-labeled building blocks. For long time, multi-step approaches have represented the sole available patterns. On the other side, the development of chemical reactions based on the reversible cleavage of C-C bonds might offer new opportunities and reshape retrosynthetic analysis in radiosynthesis. This review aims to provide a short survey on the recently emerged carbon isotope exchange technologies that provide effective opportunity for late-stage labeling. At present, such strategies have relied on the use of primary and easily accessible radiolabeled C1-building blocks, such as carbon dioxide, carbon monoxide and cyanides, while the activation principles have been based on thermal, photocatalytic, metal-catalyzed and biocatalytic processes.
Collapse
Affiliation(s)
- Alexandre Labiche
- Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé, SCBM, 91191, Gif-sur-Yvette, France
| | - Augustin Malandain
- Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé, SCBM, 91191, Gif-sur-Yvette, France
| | - Maxime Molins
- Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé, SCBM, 91191, Gif-sur-Yvette, France
| | - Frédéric Taran
- Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé, SCBM, 91191, Gif-sur-Yvette, France
| | - Davide Audisio
- Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé, SCBM, 91191, Gif-sur-Yvette, France
| |
Collapse
|
18
|
Malandain A, Molins M, Hauwelle A, Talbot A, Loreau O, D'Anfray T, Goutal S, Tournier N, Taran F, Caillé F, Audisio D. Carbon Dioxide Radical Anion by Photoinduced Equilibration between Formate Salts and [ 11C, 13C, 14C]CO 2: Application to Carbon Isotope Radiolabeling. J Am Chem Soc 2023. [PMID: 37486080 DOI: 10.1021/jacs.3c04679] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
The need for carbon-labeled radiotracers is increasingly higher in drug discovery and development (carbon-14, β-, t1/2 = 5730 years) as well as in positron emission tomography (PET) for in vivo molecular imaging applications (carbon-11, β+, t1/2 = 20.4 min). However, the structural diversity of radiotracers is still systematically driven by the narrow available labeled sources and methodologies. In this context, the emergence of carbon dioxide radical anion chemistry might set forth potential unexplored opportunities. Based on a dynamic isotopic equilibration between formate salts and [13C, 14C, 11C]CO2, C-labeled radical anion CO2•- could be accessed under extremely mild conditions within seconds. This methodology was successfully applied to hydrocarboxylation and dicarboxylation reactions in late-stage carbon isotope labeling of pharmaceutically relevant compounds. The relevance of the method in applied radiochemistry was showcased by the whole-body PET biodistribution profile of [11C]oxaprozin in mice.
Collapse
Affiliation(s)
- Augustin Malandain
- Service de Chimie Bio-organique et Marquage, DMTS, Université Paris-Saclay, CEA, F-91191 Gif-sur-Yvette, France
| | - Maxime Molins
- Service de Chimie Bio-organique et Marquage, DMTS, Université Paris-Saclay, CEA, F-91191 Gif-sur-Yvette, France
| | - Alexandre Hauwelle
- Service de Chimie Bio-organique et Marquage, DMTS, Université Paris-Saclay, CEA, F-91191 Gif-sur-Yvette, France
- Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay (BioMaps), Université Paris-Saclay, Inserm, CNRS, CEA, F-91401 Orsay, France
| | - Alex Talbot
- Service de Chimie Bio-organique et Marquage, DMTS, Université Paris-Saclay, CEA, F-91191 Gif-sur-Yvette, France
| | - Olivier Loreau
- Service de Chimie Bio-organique et Marquage, DMTS, Université Paris-Saclay, CEA, F-91191 Gif-sur-Yvette, France
| | - Timothée D'Anfray
- Service de Chimie Bio-organique et Marquage, DMTS, Université Paris-Saclay, CEA, F-91191 Gif-sur-Yvette, France
| | - Sébastien Goutal
- Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay (BioMaps), Université Paris-Saclay, Inserm, CNRS, CEA, F-91401 Orsay, France
| | - Nicolas Tournier
- Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay (BioMaps), Université Paris-Saclay, Inserm, CNRS, CEA, F-91401 Orsay, France
| | - Frédéric Taran
- Service de Chimie Bio-organique et Marquage, DMTS, Université Paris-Saclay, CEA, F-91191 Gif-sur-Yvette, France
| | - Fabien Caillé
- Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay (BioMaps), Université Paris-Saclay, Inserm, CNRS, CEA, F-91401 Orsay, France
| | - Davide Audisio
- Service de Chimie Bio-organique et Marquage, DMTS, Université Paris-Saclay, CEA, F-91191 Gif-sur-Yvette, France
| |
Collapse
|
19
|
Wang S, Larrosa I, Yorimitsu H, Perry GJP. Carboxylic Acid Salts as Dual-Function Reagents for Carboxylation and Carbon Isotope Labeling. Angew Chem Int Ed Engl 2023; 62:e202218371. [PMID: 36746757 DOI: 10.1002/anie.202218371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/08/2023]
Abstract
The potassium salts of carboxylic acids are developed as efficient carboxylating agents through CO2 exchange. We describe these carboxylates as dual-function reagents because they function as a combined source of CO2 and base/metalating agent. By using the salt of a commercially available carboxylic acid, this protocol overcomes difficulties when using CO2 gas or organometallic reagents, such as pressurized containers or strictly inert conditions. The reaction proceeds under mild conditions, does not require transition metals or other additives, and shows broad substrate scope. Through the preparation of several biologically important molecules, we show how this strategy provides an opportunity for isotope labeling with low equivalents of labeled CO2 .
Collapse
Affiliation(s)
- Shuo Wang
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Igor Larrosa
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Hideki Yorimitsu
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Gregory J P Perry
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan.,Future correspondence: School of Chemistry, University of Southampton, Southampton, SO17 1BJ, UK
| |
Collapse
|
20
|
Kiss OC, Scott PJH, Behe M, Penuelas I, Passchier J, Rey A, Patt M, Aime S, Jalilian A, Laverman P, Cheng Z, Chauvet AF, Engle J, Cleeren F, Zhu H, Vercouillie J, van Dam M, Zhang MR, Perk L, Guillet B, Alves F. Highlight selection of radiochemistry and radiopharmacy developments by editorial board. EJNMMI Radiopharm Chem 2023; 8:6. [PMID: 36952073 PMCID: PMC10036721 DOI: 10.1186/s41181-023-00192-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/15/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND The Editorial Board of EJNMMI Radiopharmacy and Chemistry releases a biannual highlight commentary to update the readership on trends in the field of radiopharmaceutical development. MAIN BODY This selection of highlights provides commentary on 21 different topics selected by each coauthoring Editorial Board member addressing a variety of aspects ranging from novel radiochemistry to first-in-human application of novel radiopharmaceuticals. CONCLUSION Trends in radiochemistry and radiopharmacy are highlighted. Hot topics cover the entire scope of EJNMMI Radiopharmacy and Chemistry, demonstrating the progress in the research field, and include new PET-labelling methods for 11C and 18F, the importance of choosing the proper chelator for a given radioactive metal ion, implications of total body PET on use of radiopharmaceuticals, legislation issues and radionuclide therapy including the emerging role of 161Tb.
Collapse
Affiliation(s)
- Oliver C Kiss
- Helmholtz Zentrum Dresden Rossendorf, Dresden, Germany.
| | | | - Martin Behe
- Paul Scherrer Institute, Villigen, Switzerland
| | | | | | - Ana Rey
- Universidad de la Rebublica, Montevideo, Uruguay
| | | | | | | | - Peter Laverman
- Radboud University Medical Center, Nijmegen, The Netherlands
| | - Zhen Cheng
- Shanghai Institute of Materia Medica, Shanghai, China
| | | | | | | | - Hua Zhu
- Peking University Cancer Hospital, Beijing, China
| | | | | | | | - Lars Perk
- Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | |
Collapse
|
21
|
Pees A, Chassé M, Lindberg A, Vasdev N. Recent Developments in Carbon-11 Chemistry and Applications for First-In-Human PET Studies. Molecules 2023; 28:931. [PMID: 36770596 PMCID: PMC9920299 DOI: 10.3390/molecules28030931] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
Positron emission tomography (PET) is a molecular imaging technique that makes use of radiolabelled molecules for in vivo evaluation. Carbon-11 is a frequently used radionuclide for the labelling of small molecule PET tracers and can be incorporated into organic molecules without changing their physicochemical properties. While the short half-life of carbon-11 (11C; t½ = 20.4 min) offers other advantages for imaging including multiple PET scans in the same subject on the same day, its use is limited to facilities that have an on-site cyclotron, and the radiochemical transformations are consequently more restrictive. Many researchers have embraced this challenge by discovering novel carbon-11 radiolabelling methodologies to broaden the synthetic versatility of this radionuclide. This review presents new carbon-11 building blocks and radiochemical transformations as well as PET tracers that have advanced to first-in-human studies over the past five years.
Collapse
Affiliation(s)
- Anna Pees
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada
| | - Melissa Chassé
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Anton Lindberg
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada
| | - Neil Vasdev
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
| |
Collapse
|
22
|
Neumann KT, Skrydstrup T. Enriched amino acids. Nat Chem 2022; 14:1339-1340. [PMID: 36344819 DOI: 10.1038/s41557-022-01089-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Karoline T Neumann
- Department of Chemistry and Interdisciplinary Nanoscience Center at Aarhus University, Aarhus C, Denmark.
| | - Troels Skrydstrup
- Department of Chemistry and Interdisciplinary Nanoscience Center at Aarhus University, Aarhus C, Denmark
| |
Collapse
|