1
|
Zheng F, Gao J, Tang M, Zhou T, Zhu D, Yang X, Chen B. Urbanization reduces the stability of soil microbial community by reshaping the diversity and network complexity. CHEMOSPHERE 2024; 364:143177. [PMID: 39182733 DOI: 10.1016/j.chemosphere.2024.143177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/12/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Rapid urbanization considerably alters soil environment, biodiversity, and stability of terrestrial ecosystems. Soil microbial community, a key component of global biodiversity, plays a pivotal role in ecosystem stability and is highly vulnerable to urbanization. However, effects of urbanization on the diversity, stability, and network structure of soil microbial community remain poorly understood. Herein, we investigated the diversity and stability of soil microbial communities, including bacteria, fungi, and protists, across three regions with different levels of urbanization-urban, suburb, and ecoregion-using high-throughput sequencing techniques. Our results revealed that urbanization led to a notable decrease in the alpha diversity of soil microbial community, causing a significant reduction in soil stability, as assessed by the average variation degree (AVD). The loss of stability was linked to the diminished alpha diversity of the soil fungal and protistan communities, along with weakened interactions among bacteria, fungi, and protists. Notably, the majority of keystone species identified through network analysis were classified as bacteria (Proteobacteria) and displayed a strong positive correlation with the environmental factors influencing AVD. This highlights that the variability of bacteria and the immutability of fungi and protists are important to sustain soil microbial stability. Furthermore, structural equation models indicated that protistan diversity primarily drove soil microbial stability across all regions studied. In the suburban and ecoregion areas, soil microbial stability was directly influenced by the soil properties, bacterial diversity, and keystone species, as well as indirectly affected by heavy metals. These results underscore how urbanization can reduce the stability of soil microbial community via declined diversity and network complexity, whereas the establishment of ecoregions maybe contribute to preserve the diversity and stability of soil microbial community.
Collapse
Affiliation(s)
- Fei Zheng
- College of Life Sciences, Hebei University, Baoding, 071002, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Jingwei Gao
- College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Mingyang Tang
- College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Tao Zhou
- College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Xiaoru Yang
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Bing Chen
- College of Life Sciences, Hebei University, Baoding, 071002, China.
| |
Collapse
|