1
|
Reddin CJ, Landwehrs JP, Mathes GH, Ullmann CV, Feulner G, Aberhan M. Marine species and assemblage change foreshadowed by their thermal bias over Early Jurassic warming. Nat Commun 2025; 16:1370. [PMID: 39910097 PMCID: PMC11799210 DOI: 10.1038/s41467-025-56589-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 01/23/2025] [Indexed: 02/07/2025] Open
Abstract
A mismatch of species' thermal preferences to their environment may indicate how they will respond to future climate change. Averaging this mismatch across species may forewarn that some assemblages will undergo greater reorganization, extirpation, and possibly extinction, than others. Here, we examine how regional warming determines species occupancy and assemblage composition of marine bivalves, brachiopods, and gastropods over one-million-year time steps during the Early Jurassic. Thermal bias, the difference between modelled regional temperatures and species' long-term thermal optima, predicts a gradient of species occupancy response to warming. Species that become extirpated or extinct tend to have cooler temperature preferences than immigrating species, while regionally persisting species fell midway. Larger regional changes in summer seawater temperatures (up to +10 °C) strengthen the relationship between species thermal bias and the response gradient, which is also stronger for brachiopods than for bivalves, while the relationship collapses during severe seawater deoxygenation. At +3 °C regional seawater warming, around 5 % of pre-existing benthic species in a regional assemblage are extirpated, and immigrating species comprise around one-fourth of the new assemblage. Our results validate thermal bias as an indicator of immigration, persistence, extirpation, and extinction of marine benthic species and assemblages under modern-like magnitudes of climate change.
Collapse
Affiliation(s)
- Carl J Reddin
- Museum für Naturkunde Berlin - Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany.
- GeoZentrum Nordbayern, Universität Erlangen-Nürnberg, Erlangen, Germany.
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany.
| | - Jan P Landwehrs
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, Germany
| | - Gregor H Mathes
- GeoZentrum Nordbayern, Universität Erlangen-Nürnberg, Erlangen, Germany
- University of Bayreuth, Bayreuth, Germany
| | | | - Georg Feulner
- Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Potsdam, Germany
| | - Martin Aberhan
- Museum für Naturkunde Berlin - Leibniz Institute for Evolution and Biodiversity Science, Berlin, Germany
| |
Collapse
|
2
|
Tian SY, Yasuhara M, Condamine FL, Huang HHM, Fernando AGS, Aguilar YM, Pandita H, Irizuki T, Iwatani H, Shin CP, Renema W, Kase T. Cenozoic history of the tropical marine biodiversity hotspot. Nature 2024; 632:343-349. [PMID: 38926582 PMCID: PMC11306107 DOI: 10.1038/s41586-024-07617-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 05/28/2024] [Indexed: 06/28/2024]
Abstract
The region with the highest marine biodiversity on our planet is known as the Coral Triangle or Indo-Australian Archipelago (IAA)1,2. Its enormous biodiversity has long attracted the interest of biologists; however, the detailed evolutionary history of the IAA biodiversity hotspot remains poorly understood3. Here we present a high-resolution reconstruction of the Cenozoic diversity history of the IAA by inferring speciation-extinction dynamics using a comprehensive fossil dataset. We found that the IAA has exhibited a unidirectional diversification trend since about 25 million years ago, following a roughly logistic increase until a diversity plateau beginning about 2.6 million years ago. The growth of diversity was primarily controlled by diversity dependency and habitat size, and also facilitated by the alleviation of thermal stress after 13.9 million years ago. Distinct net diversification peaks were recorded at about 25, 20, 16, 12 and 5 million years ago, which were probably related to major tectonic events in addition to climate transitions. Key biogeographic processes had far-reaching effects on the IAA diversity as shown by the long-term waning of the Tethyan descendants versus the waxing of cosmopolitan and IAA taxa. Finally, it seems that the absence of major extinctions and the Cenozoic cooling have been essential in making the IAA the richest marine biodiversity hotspot on Earth.
Collapse
Affiliation(s)
- Skye Yunshu Tian
- School of Biological Sciences, Area of Ecology and Biodiversity, The University of Hong Kong, Hong Kong, Hong Kong SAR.
- Swire Institute of Marine Science, The University of Hong Kong, Hong Kong, Hong Kong SAR.
- Institute for Climate and Carbon Neutrality, The University of Hong Kong, Hong Kong, Hong Kong SAR.
- Musketeers Foundation Institute of Data Science, The University of Hong Kong, Hong Kong, Hong Kong SAR.
- Bonner Institut für Organismische Biologie, Paläontologie, Universität Bonn, Bonn, Germany.
| | - Moriaki Yasuhara
- School of Biological Sciences, Area of Ecology and Biodiversity, The University of Hong Kong, Hong Kong, Hong Kong SAR.
- Swire Institute of Marine Science, The University of Hong Kong, Hong Kong, Hong Kong SAR.
- Institute for Climate and Carbon Neutrality, The University of Hong Kong, Hong Kong, Hong Kong SAR.
- Musketeers Foundation Institute of Data Science, The University of Hong Kong, Hong Kong, Hong Kong SAR.
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, Hong Kong SAR.
| | - Fabien L Condamine
- CNRS, Institut des Sciences de l'Evolution de Montpellier, Université de Montpellier, Montpellier, France
| | | | - Allan Gil S Fernando
- National Institute of Geological Sciences, University of the Philippines, Diliman, Quezon City, The Philippines
| | - Yolanda M Aguilar
- Marine Geological Survey, Mines and Geosciences Bureau, Quezon City, The Philippines
| | - Hita Pandita
- Department of Geological Engineering, Faculty of Mineral Technology, Institute Teknologi Nasional Yogyakarta, Yogyakarta, Indonesia
| | - Toshiaki Irizuki
- Department of Geoscience, Interdisciplinary Graduate School of Science and Engineering, Shimane University, Matsue, Japan
| | - Hokuto Iwatani
- Division of Earth Science, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Caren P Shin
- Paleontological Research Institution, Ithaca, NY, USA
- Department of Earth and Atmospheric Sciences, Cornell University, New York, NY, USA
| | - Willem Renema
- Naturalis Biodiversity Center, Leiden, The Netherlands
- IBED, University of Amsterdam, Amsterdam, The Netherlands
| | - Tomoki Kase
- National Museum of Nature and Science, Department of Geology and Paleontology, Tsukuba, Japan
| |
Collapse
|
3
|
Janssens L, Asselman J, De Troch M. Effects of ocean warming on the fatty acid and epigenetic profile of Acartia tonsa: A multigenerational approach. MARINE POLLUTION BULLETIN 2024; 201:116265. [PMID: 38493676 DOI: 10.1016/j.marpolbul.2024.116265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
The effects of climate change are becoming more prevalent, and it is important to know how copepods, the most abundant class in zooplankton, will react to changing temperatures as they are the main food source for secondary consumers. They act as key transferers of nutrients from primary producers to organisms higher up the food chain. Little is known about the effects of temperature changes on copepods on the long term, i.e., over several generations. Especially the epigenetic domain seems to be understudied and the question remains whether the nutritional value of copepods will permanently change with rising water temperatures. In this research, the effects of temperature on the fatty acid and epigenetic profiles of the abundant planktonic copepod Acartia tonsa were investigated, since we expect to see a link between these two. Indeed, changing methylation patterns helped copepods to deal with higher temperatures, which is in line with the relative abundance of the most important fatty acids, e.g., DHA. However, this pattern was only observed when temperature increased slowly. A sudden increase in temperature showed the opposite effect; Acartia tonsa did not show deviant methylation patterns and the relative abundance of DHA and other important fatty acids dropped significantly after several generations. These results suggest that local fluctuations in temperature have a greater effect on Acartia tonsa than an elevation of the global mean.
Collapse
Affiliation(s)
- Lotte Janssens
- Marine Biology Research Group, Ghent University, Campus Sterre S8, Krijgslaan 281, B-9000 Ghent, Belgium; Blue Growth Research Lab, Ghent University, Bluebridge, Wetenschapspark 1, 8400, Ostend, Belgium.
| | - Jana Asselman
- Blue Growth Research Lab, Ghent University, Bluebridge, Wetenschapspark 1, 8400, Ostend, Belgium
| | - Marleen De Troch
- Marine Biology Research Group, Ghent University, Campus Sterre S8, Krijgslaan 281, B-9000 Ghent, Belgium
| |
Collapse
|
4
|
Finnegan S, Harnik PG, Lockwood R, Lotze HK, McClenachan L, Kahanamoku SS. Using the Fossil Record to Understand Extinction Risk and Inform Marine Conservation in a Changing World. ANNUAL REVIEW OF MARINE SCIENCE 2024; 16:307-333. [PMID: 37683272 DOI: 10.1146/annurev-marine-021723-095235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
Understanding the long-term effects of ongoing global environmental change on marine ecosystems requires a cross-disciplinary approach. Deep-time and recent fossil records can contribute by identifying traits and environmental conditions associated with elevated extinction risk during analogous events in the geologic past and by providing baseline data that can be used to assess historical change and set management and restoration targets and benchmarks. Here, we review the ecological and environmental information available in the marine fossil record and discuss how these archives can be used to inform current extinction risk assessments as well as marine conservation strategies and decision-making at global to local scales. As we consider future research directions in deep-time and conservationpaleobiology, we emphasize the need for coproduced research that unites researchers, conservation practitioners, and policymakers with the communities for whom the impacts of climate and global change are most imminent.
Collapse
Affiliation(s)
- Seth Finnegan
- Department of Integrative Biology, University of California, Berkeley, California, USA; ,
| | - Paul G Harnik
- Department of Earth and Environmental Geosciences, Colgate University, Hamilton, New York, USA;
| | - Rowan Lockwood
- Department of Geology, William & Mary, Williamsburg, Virginia, USA;
| | - Heike K Lotze
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada;
| | - Loren McClenachan
- Department of History and School of Environmental Studies, University of Victoria, Victoria, British Columbia, Canada;
| | - Sara S Kahanamoku
- Department of Integrative Biology, University of California, Berkeley, California, USA; ,
- Hawai'i Sea Grant College Program, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
| |
Collapse
|
5
|
Dillon EM, Dunne EM, Womack TM, Kouvari M, Larina E, Claytor JR, Ivkić A, Juhn M, Carmona PSM, Robson SV, Saha A, Villafaña JA, Zill ME. Challenges and directions in analytical paleobiology. PALEOBIOLOGY 2023; 49:377-393. [PMID: 37809321 PMCID: PMC7615171 DOI: 10.1017/pab.2023.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Over the last 50 years, access to new data and analytical tools has expanded the study of analytical paleobiology, contributing to innovative analyses of biodiversity dynamics over Earth's history. Despite-or even spurred by-this growing availability of resources, analytical paleobiology faces deep-rooted obstacles that stem from the need for more equitable access to data and best practices to guide analyses of the fossil record. Recent progress has been accelerated by a collective push toward more collaborative, interdisciplinary, and open science, especially by early-career researchers. Here, we survey four challenges facing analytical paleobiology from an early-career perspective: (1) accounting for biases when interpreting the fossil record; (2) integrating fossil and modern biodiversity data; (3) building data science skills; and (4) increasing data accessibility and equity. We discuss recent efforts to address each challenge, highlight persisting barriers, and identify tools that have advanced analytical work. Given the inherent linkages between these challenges, we encourage discourse across disciplines to find common solutions. We also affirm the need for systemic changes that reevaluate how we conduct and share paleobiological research.
Collapse
Affiliation(s)
- Erin M. Dillon
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, California 93106, U.S.A.; Smithsonian Tropical Research Institute, Balboa, Republic of Panama
| | - Emma M. Dunne
- GeoZentrum Nordbayern, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Tom M. Womack
- School of Geography, Environment and Earth Sciences, Victoria University of Wellington, P.O. Box 600, Wellington, New Zealand
| | - Miranta Kouvari
- Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, United Kingdom; Life Sciences Department, Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom
| | - Ekaterina Larina
- Jackson School of Geosciences, University of Texas, Austin, Texas 78712, U.S.A
| | - Jordan Ray Claytor
- Department of Biology, University of Washington, Seattle, Washington 98195, U.S.A; Burke Museum of Natural History and Culture, Seattle, Washington 98195, U.S.A
| | - Angelina Ivkić
- Department of Palaeontology, University of Vienna, Josef-Holaubek-Platz 2,1090 Vienna, Austria
| | - Mark Juhn
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, California 90095, U.S.A
| | - Pablo S. Milla Carmona
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Ciencias Geológicas, Buenos Aires C1428EGA, Argentina; Instituto de Estudios Andinos “Don Pablo Groeber” (IDEAN, UBA-CONICET), Buenos Aires C1428EGA, Argentina
| | - Selina Viktor Robson
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Anwesha Saha
- Institute of Palaeobiology, Polish Academy of Sciences, ul. Twarda 51/55, 00-818 Warsaw, Poland; Laboratory of Paleogenetics and Conservation Genetics, Centre of New Technologies (CeNT), University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland
| | - Jaime A. Villafaña
- Department of Palaeontology, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria; Centro de Investigación en Recursos Naturales y Sustentabilidad, Universidad Bernardo O ‘Higgins, Santiago 8370993, Chile
| | - Michelle E. Zill
- Department of Earth and Planetary Sciences, University of California Riverside, Riverside, California 92521, U.S.A
| |
Collapse
|
6
|
Life rather than climate influences diversity at scales greater than 40 million years. Nature 2022; 607:307-312. [PMID: 35732740 DOI: 10.1038/s41586-022-04867-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 05/12/2022] [Indexed: 11/08/2022]
Abstract
The diversity of life on Earth is controlled by hierarchical processes that interact over wide ranges of timescales1. Here, we consider the megaclimate regime2 at scales ≥1 million years (Myr). We focus on determining the domains of 'wandering' stochastic Earth system processes ('Court Jester'3) and stabilizing biotic interactions that induce diversity dependence of fluctuations in macroevolutionary rates ('Red Queen'4). Using state-of-the-art multiscale Haar and cross-Haar fluctuation analyses, we analysed the global genus-level Phanerozoic marine animal Paleobiology Database record of extinction rates (E), origination rates (O) and diversity (D) as well as sea water palaeotemperatures (T). Over the entire observed range from several million years to several hundred million years, we found that the fluctuations of T, E and O showed time-scaling behaviour. The megaclimate was characterized by positive scaling exponents-it is therefore apparently unstable. E and O are also scaling but with negative exponents-stable behaviour that is biotically mediated. For D, there were two regimes with a crossover at critical timescale [Formula: see text] ≈ 40 Myr. For shorter timescales, D exhibited nearly the same positive scaling as the megaclimate palaeotemperatures, whereas for longer timescales it tracks the scaling of macroevolutionary rates. At scales of at least [Formula: see text] there is onset of diversity dependence of E and O, probably enabled by mixing and synchronization (globalization) of the biota by geodispersal ('Geo-Red Queen').
Collapse
|
7
|
Habitat suitability evaluation for giant panda in Liziping National Nature Reserve, Sichuan Province. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
8
|
Deep-time climate legacies affect origination rates of marine genera. Proc Natl Acad Sci U S A 2021; 118:2105769118. [PMID: 34475215 DOI: 10.1073/pnas.2105769118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 08/04/2021] [Indexed: 11/18/2022] Open
Abstract
Biodiversity dynamics are shaped by a complex interplay between current conditions and historic legacy. The interaction of short- and long-term climate change may mask the true relationship of evolutionary responses to climate change if not specifically accounted for. These paleoclimate interactions have been demonstrated for extinction risk and biodiversity change, but their importance for origination dynamics remains untested. Here, we show that origination probability in marine fossil genera is strongly affected by paleoclimate interactions. Overall, origination probability increases by 27.8% [95% CI (27.4%, 28.3%)] when a short-term cooling adds to a long-term cooling trend. This large effect is consistent through time and all studied groups. The mechanisms of the detected effect might be manifold but are likely connected to increased allopatric speciation with eustatic sea level drop caused by sustained global cooling. We tested this potential mechanism through which paleoclimate interactions can act on origination rates by additionally examining a proxy for habitat fragmentation. This proxy, continental fragmentation, has a similar effect on origination rates as paleoclimate interactions, supporting the importance of allopatric speciation through habitat fragmentation in the deep-time fossil record. The identified complex nature of paleoclimate interactions might explain contradictory conclusions on the relationship between temperature and origination in the previous literature. Our results highlight the need to account for complex interactions in evolutionary studies both between and among biotic and abiotic factors.
Collapse
|
9
|
Antell GT, Fenton IS, Valdes PJ, Saupe EE. Thermal niches of planktonic foraminifera are static throughout glacial-interglacial climate change. Proc Natl Acad Sci U S A 2021; 118:e2017105118. [PMID: 33903233 PMCID: PMC8106293 DOI: 10.1073/pnas.2017105118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Abiotic niche lability reduces extinction risk by allowing species to adapt to changing environmental conditions in situ. In contrast, species with static niches must keep pace with the velocity of climate change as they track suitable habitat. The rate and frequency of niche lability have been studied on human timescales (months to decades) and geological timescales (millions of years), but lability on intermediate timescales (millennia) remains largely uninvestigated. Here, we quantified abiotic niche lability at 8-ka resolution across the last 700 ka of glacial-interglacial climate fluctuations, using the exceptionally well-known fossil record of planktonic foraminifera coupled with Atmosphere-Ocean Global Climate Model reconstructions of paleoclimate. We tracked foraminiferal niches through time along the univariate axis of mean annual temperature, measured both at the sea surface and at species' depth habitats. Species' temperature preferences were uncoupled from the global temperature regime, undermining a hypothesis of local adaptation to changing environmental conditions. Furthermore, intraspecific niches were equally similar through time, regardless of climate change magnitude on short timescales (8 ka) and across contrasts of glacial and interglacial extremes. Evolutionary trait models fitted to time series of occupied temperature values supported widespread niche stasis above randomly wandering or directional change. Ecotype explained little variation in species-level differences in niche lability after accounting for evolutionary relatedness. Together, these results suggest that warming and ocean acidification over the next hundreds to thousands of years could redistribute and reduce populations of foraminifera and other calcifying plankton, which are primary components of marine food webs and biogeochemical cycles.
Collapse
Affiliation(s)
- Gawain T Antell
- Department of Earth Sciences, University of Oxford, OX1 3AN Oxford, United Kingdom,
| | - Isabel S Fenton
- Department of Earth Sciences, University of Oxford, OX1 3AN Oxford, United Kingdom
| | - Paul J Valdes
- School of Geographical Sciences, University of Bristol, BS8 1SS Bristol, United Kingdom
| | - Erin E Saupe
- Department of Earth Sciences, University of Oxford, OX1 3AN Oxford, United Kingdom,
| |
Collapse
|