1
|
Puckett EE. Phylogeography of introgression: Spatial and temporal analyses identify two introgression events between brown and American black bears. Heredity (Edinb) 2025:10.1038/s41437-025-00762-0. [PMID: 40253500 DOI: 10.1038/s41437-025-00762-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 04/07/2025] [Indexed: 04/21/2025] Open
Abstract
Brown bears (Ursus arctos) colonized North America from Eurasia in two distinct and temporally separated waves. Once in North America they encountered endemic American black bears (U. americanus) during range expansions from eastern Beringia southwards into the interior of the continent. The establishment of sympatry between these species provided the opportunity for hybridization and introgression, which was previously identified at the species level using D-statistics. Both species have broad spatial ranges that should limit the extent of introgression, such that it is found primarily between sympatric populations. Here, we used range-wide sampling and whole genome sequencing of both bear species to test for spatial variability in introgression. We identified two pulses of introgression between brown and American black bears, and demonstrate the introgressed segments occur across spatially structured lineages in both species. The first pulse occurred 270-120 kya, near the initiation of intraspecific divergence, approximately 99-93 kya, within each species. This pulse occurred as sympatry was established in western North America. The second pulse occurred between western American black bears and North American brown bears and lasted to 9 kya. Introgression was bidirectional and sympatric lineages had more introgressed tracts and a larger proportion of the genome introgressed from the other species. This study advances our phylogeographic understanding of both iconic bear species through investigating the timing of divergence and gene flow as bears expanded and contracted their ranges across North America.
Collapse
Affiliation(s)
- Emily E Puckett
- Department of Biological Sciences, University of Memphis, Memphis, TN, 38152, USA.
| |
Collapse
|
2
|
Bjornson S, Verbruggen H, Upham NS, Steenwyk JL. Reticulate evolution: Detection and utility in the phylogenomics era. Mol Phylogenet Evol 2024; 201:108197. [PMID: 39270765 DOI: 10.1016/j.ympev.2024.108197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/13/2024] [Accepted: 09/08/2024] [Indexed: 09/15/2024]
Abstract
Phylogenomics has enriched our understanding that the Tree of Life can have network-like or reticulate structures among some taxa and genes. Two non-vertical modes of evolution - hybridization/introgression and horizontal gene transfer - deviate from a strictly bifurcating tree model, causing non-treelike patterns. However, these reticulate processes can produce similar patterns to incomplete lineage sorting or recombination, potentially leading to ambiguity. Here, we present a brief overview of a phylogenomic workflow for inferring organismal histories and compare methods for distinguishing modes of reticulate evolution. We discuss how the timing of coalescent events can help disentangle introgression from incomplete lineage sorting and how horizontal gene transfer events can help determine the relative timing of speciation events. In doing so, we identify pitfalls of certain methods and discuss how to extend their utility across the Tree of Life. Workflows, methods, and future directions discussed herein underscore the need to embrace reticulate evolutionary patterns for understanding the timing and rates of evolutionary events, providing a clearer view of life's history.
Collapse
Affiliation(s)
- Saelin Bjornson
- School of BioSciences, University of Melbourne, Victoria, Australia
| | - Heroen Verbruggen
- School of BioSciences, University of Melbourne, Victoria, Australia; CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
| | - Nathan S Upham
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| | - Jacob L Steenwyk
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
3
|
Leppälä K, da Silva Coelho FA, Richter M, Albert VA, Lindqvist C. Five-leaf Generalizations of the D-statistic Reveal the Directionality of Admixture. Mol Biol Evol 2024; 41:msae198. [PMID: 39302159 PMCID: PMC11708231 DOI: 10.1093/molbev/msae198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 08/31/2024] [Accepted: 09/08/2024] [Indexed: 09/22/2024] Open
Abstract
Over the past 15 years, the D-statistic, a four-taxon test for organismal admixture (hybridization, or introgression) which incorporates single nucleotide polymorphism data with allelic patterns ABBA and BABA, has seen considerable use. This statistic seeks to discern significant deviation from either a given species tree assumption, or from the balanced incomplete lineage sorting that could otherwise defy this species tree. However, while the D-statistic can successfully discriminate admixture from incomplete lineage sorting, it is not a simple matter to determine the directionality of admixture using only four-leaf tree models. As such, methods have been developed that use five leaves to evaluate admixture. Among these, the DFOIL method ("FOIL", a mnemonic for "First-Outer-Inner-Last"), which tests allelic patterns on the "symmetric" tree S=(((1,2),(3,4)),5), succeeds in finding admixture direction for many five-taxon examples. However, DFOIL does not make full use of all symmetry, nor can DFOIL function properly when ancient samples are included because of the reliance on singleton patterns (such as BAAAA and ABAAA). Here, we take inspiration from DFOIL to develop a new and completely general family of five-leaf admixture tests, dubbed Δ-statistics, that can either incorporate or exclude the singleton allelic patterns depending on individual taxon and age sampling choices. We describe two new shapes that are also fully testable, namely the "asymmetric" tree A=((((1,2),3),4),5) and the "quasisymmetric" tree Q=(((1,2),3),(4,5)), which can considerably supplement the "symmetric" S=(((1,2),(3,4)),5) model used by DFOIL. We demonstrate the consistency of Δ-statistics under various simulated scenarios, and provide empirical examples using data from black, brown and polar bears, the latter also including two ancient polar bear samples from previous studies. Recently, DFOIL and one of these ancient samples was used to argue for a dominant polar bear → brown bear introgression direction. However, we find, using both this ancient polar bear and our own, that by far the strongest signal using both DFOIL and Δ-statistics on tree S is actually bidirectional gene flow of indistinguishable direction. Further experiments on trees A and Q instead highlight what were likely two phases of admixture: one with stronger brown bear → polar bear introgression in ancient times, and a more recent phase with predominant polar bear → brown bear directionality.
Collapse
Affiliation(s)
- Kalle Leppälä
- Research Unit of Mathematical Sciences, University of Oulu, 90014 Oulu, Finland
- The Organismal and Evolutionary Biology Research Programme University of Helsinki, 00014 Helsinki, Finland
| | - Flavio Augusto da Silva Coelho
- Department of Biological Sciences, University at Buffalo, Buffalo, 14260 NY, USA
- Biology Department, Trent University, Peterborough, ON, Canada K9J 7B8
- Hakai Institute, Campbell River, BC, Canada V9W 8C6
| | - Michaela Richter
- Department of Biological Sciences, University at Buffalo, Buffalo, 14260 NY, USA
| | - Victor A Albert
- Department of Biological Sciences, University at Buffalo, Buffalo, 14260 NY, USA
| | - Charlotte Lindqvist
- Department of Biological Sciences, University at Buffalo, Buffalo, 14260 NY, USA
| |
Collapse
|
4
|
Sun Y, Lorenzen ED, Westbury MV. Late Pleistocene polar bear genomes reveal the timing of allele fixation in key genes associated with Arctic adaptation. BMC Genomics 2024; 25:826. [PMID: 39278943 PMCID: PMC11403954 DOI: 10.1186/s12864-024-10617-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 07/12/2024] [Indexed: 09/18/2024] Open
Abstract
The polar bear (Ursus maritimus) occupies a relatively narrow ecological niche, with many traits adapted for cold temperatures, movement across snow, ice and open water, and for consuming highly lipid-dense prey species. The divergence of polar bears from brown bears (Ursus arctos) and their adaptation to their Arctic lifestyle is a well-known example of rapid evolution. Previous research investigating whole genomes uncovered twelve key genes that are highly differentiated between polar and brown bears, show signatures of selection in the polar bear lineage, and are associated with polar bear adaptation to the Arctic environment. Further research suggested fixed derived alleles in these genes arose from selection on both standing variation and de novo mutations in the evolution of polar bears. Here, we reevaluate these findings based on a larger and geographically more representative dataset of 119 polar bears and 135 brown bears, and assess the timing of derived allele fixation in polar bears by incorporating the genomes of two Late Pleistocene individuals (aged 130-100,000 years old and 100-70,000 years old). In contrast with previous results, we found no evidence of derived alleles fixed in present-day polar bears within the key genes arising from de novo mutation. Most derived alleles fixed in present-day polar bears were also fixed in the Late Pleistocene polar bears, suggesting selection occurred prior to 70,000 years ago. However, some derived alleles fixed in present-day polar bears were not fixed in the two Late Pleistocene polar bears, including at sites within APOB, LYST, and TTN. These three genes are associated with cardiovascular function, metabolism, and pigmentation, suggesting selection may have acted on different loci at different times.
Collapse
Affiliation(s)
- Yulin Sun
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
- School of The Environment, The University of Queensland, Brisbane, QLD, Australia
| | | | | |
Collapse
|
5
|
Li G, Liu Y, Feng X, Diao S, Zhong Z, Li B, Teng J, Zhang W, Zeng H, Cai X, Gao Y, Liu X, Yuan X, Li J, Zhang Z. Integrating Multiple Database Resources to Elucidate the Gene Flow in Southeast Asian Pig Populations. Int J Mol Sci 2024; 25:5689. [PMID: 38891877 PMCID: PMC11171535 DOI: 10.3390/ijms25115689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
The domestic pig (Sus scrofa) and its subfamilies have experienced long-term and extensive gene flow, particularly in Southeast Asia. Here, we analyzed 236 pigs, focusing on Yunnan indigenous, European commercial, East Asian, and Southeast Asian breeds, using the Pig Genomics Reference Panel (PGRP v1) of Pig Genotype-Tissue Expression (PigGTEx) to investigate gene flow and associated complex traits by integrating multiple database resources. In this study, we discovered evidence of admixtures from European pigs into the genome of Yunnan indigenous pigs. Additionally, we hypothesized that a potential conceptual gene flow route that may have contributed to the genetic composition of the Diannan small-ear pig is a gene exchange from the Vietnamese pig. Based on the most stringent gene introgression scan using the fd statistic, we identified three specific loci on chromosome 8, ranging from 51.65 to 52.45 Mb, which exhibited strong signatures of selection and harbored the NAF1, NPY1R, and NPY5R genes. These genes are associated with complex traits, such as fat mass, immunity, and litter weight, in pigs, as supported by multiple bio-functionalization databases. We utilized multiple databases to explore the potential dynamics of genetic exchange in Southeast Asian pig populations and elucidated specific gene functionalities.
Collapse
Affiliation(s)
- Guangzhen Li
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (G.L.); (Y.L.); (X.F.); (S.D.); (Z.Z.); (B.L.); (J.T.); (W.Z.); (H.Z.); (X.C.); (Y.G.); (X.Y.)
| | - Yuqiang Liu
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (G.L.); (Y.L.); (X.F.); (S.D.); (Z.Z.); (B.L.); (J.T.); (W.Z.); (H.Z.); (X.C.); (Y.G.); (X.Y.)
| | - Xueyan Feng
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (G.L.); (Y.L.); (X.F.); (S.D.); (Z.Z.); (B.L.); (J.T.); (W.Z.); (H.Z.); (X.C.); (Y.G.); (X.Y.)
| | - Shuqi Diao
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (G.L.); (Y.L.); (X.F.); (S.D.); (Z.Z.); (B.L.); (J.T.); (W.Z.); (H.Z.); (X.C.); (Y.G.); (X.Y.)
| | - Zhanming Zhong
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (G.L.); (Y.L.); (X.F.); (S.D.); (Z.Z.); (B.L.); (J.T.); (W.Z.); (H.Z.); (X.C.); (Y.G.); (X.Y.)
| | - Bolang Li
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (G.L.); (Y.L.); (X.F.); (S.D.); (Z.Z.); (B.L.); (J.T.); (W.Z.); (H.Z.); (X.C.); (Y.G.); (X.Y.)
| | - Jinyan Teng
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (G.L.); (Y.L.); (X.F.); (S.D.); (Z.Z.); (B.L.); (J.T.); (W.Z.); (H.Z.); (X.C.); (Y.G.); (X.Y.)
| | - Wenjing Zhang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (G.L.); (Y.L.); (X.F.); (S.D.); (Z.Z.); (B.L.); (J.T.); (W.Z.); (H.Z.); (X.C.); (Y.G.); (X.Y.)
| | - Haonan Zeng
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (G.L.); (Y.L.); (X.F.); (S.D.); (Z.Z.); (B.L.); (J.T.); (W.Z.); (H.Z.); (X.C.); (Y.G.); (X.Y.)
| | - Xiaodian Cai
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (G.L.); (Y.L.); (X.F.); (S.D.); (Z.Z.); (B.L.); (J.T.); (W.Z.); (H.Z.); (X.C.); (Y.G.); (X.Y.)
| | - Yahui Gao
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (G.L.); (Y.L.); (X.F.); (S.D.); (Z.Z.); (B.L.); (J.T.); (W.Z.); (H.Z.); (X.C.); (Y.G.); (X.Y.)
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China;
| | - Xiaolong Yuan
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (G.L.); (Y.L.); (X.F.); (S.D.); (Z.Z.); (B.L.); (J.T.); (W.Z.); (H.Z.); (X.C.); (Y.G.); (X.Y.)
| | - Jiaqi Li
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (G.L.); (Y.L.); (X.F.); (S.D.); (Z.Z.); (B.L.); (J.T.); (W.Z.); (H.Z.); (X.C.); (Y.G.); (X.Y.)
| | - Zhe Zhang
- National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (G.L.); (Y.L.); (X.F.); (S.D.); (Z.Z.); (B.L.); (J.T.); (W.Z.); (H.Z.); (X.C.); (Y.G.); (X.Y.)
| |
Collapse
|
6
|
Xiao B, Rey-lglesia A, Yuan J, Hu J, Song S, Hou Y, Chen X, Germonpré M, Bao L, Wang S, Taogetongqimuge, Valentinovna LL, Lister AM, Lai X, Sheng G. Relationships of Late Pleistocene giant deer as revealed by Sinomegaceros mitogenomes from East Asia. iScience 2023; 26:108406. [PMID: 38047074 PMCID: PMC10690636 DOI: 10.1016/j.isci.2023.108406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/26/2023] [Accepted: 11/03/2023] [Indexed: 12/05/2023] Open
Abstract
The giant deer, widespread in northern Eurasia during the Late Pleistocene, have been classified as western Megaloceros and eastern Sinomegaceros through morphological studies. While Megaloceros's evolutionary history has been unveiled through mitogenomes, Sinomegaceros remains molecularly unexplored. Herein, we generated mitogenomes of giant deer from East Asia. We find that, in contrast to the morphological differences between Megaloceros and Sinomegaceros, they are mixed in the mitochondrial phylogeny, and Siberian specimens suggest a range contact or overlap between these two groups. Meanwhile, one deep divergent clade and another surviving until 20.1 thousand years ago (ka) were detected in northeastern China, the latter implying this area as a potential refugium during the Last Glacial Maximum (LGM). Moreover, stable isotope analyses indicate correlations between climate-introduced vegetation changes and giant deer extinction. Our study demonstrates the genetic relationship between eastern and western giant deer and explores the promoters of their extirpation in northern East Asia.
Collapse
Affiliation(s)
- Bo Xiao
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China
- School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Alba Rey-lglesia
- Globe Institute, University of Copenhagen, Copenhagen, 1350 Copenhagen K, Denmark
| | - Junxia Yuan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| | - Jiaming Hu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China
- School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Shiwen Song
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| | - Yamei Hou
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| | - Xi Chen
- Department of Cultural Heritage and Museology, Nanjing Normal University, Nanjing 210046, China
| | - Mietje Germonpré
- Royal Belgian Institute of Natural Sciences, 1000 Brussels, Belgium
| | - Lei Bao
- Ordos Institute of Cultural Relics and Archaeology, Ordos 017010, China
| | | | | | - Lbova Liudmila Valentinovna
- Graduate School of International Relations, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Grazhdansky Av., 28, Russia
| | | | - Xulong Lai
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China
- School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Guilian Sheng
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430078, China
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, China
| |
Collapse
|
7
|
Clark MS, Hoffman JI, Peck LS, Bargelloni L, Gande D, Havermans C, Meyer B, Patarnello T, Phillips T, Stoof-Leichsenring KR, Vendrami DLJ, Beck A, Collins G, Friedrich MW, Halanych KM, Masello JF, Nagel R, Norén K, Printzen C, Ruiz MB, Wohlrab S, Becker B, Dumack K, Ghaderiardakani F, Glaser K, Heesch S, Held C, John U, Karsten U, Kempf S, Lucassen M, Paijmans A, Schimani K, Wallberg A, Wunder LC, Mock T. Multi-omics for studying and understanding polar life. Nat Commun 2023; 14:7451. [PMID: 37978186 PMCID: PMC10656552 DOI: 10.1038/s41467-023-43209-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023] Open
Abstract
Polar ecosystems are experiencing amongst the most rapid rates of regional warming on Earth. Here, we discuss 'omics' approaches to investigate polar biodiversity, including the current state of the art, future perspectives and recommendations. We propose a community road map to generate and more fully exploit multi-omics data from polar organisms. These data are needed for the comprehensive evaluation of polar biodiversity and to reveal how life evolved and adapted to permanently cold environments with extreme seasonality. We argue that concerted action is required to mitigate the impact of warming on polar ecosystems via conservation efforts, to sustainably manage these unique habitats and their ecosystem services, and for the sustainable bioprospecting of novel genes and compounds for societal gain.
Collapse
Affiliation(s)
- M S Clark
- British Antarctic Survey, UKRI-NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK.
| | - J I Hoffman
- British Antarctic Survey, UKRI-NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK.
- Universität Bielefeld, VHF, Konsequenz 45, 33615, Bielefeld, Germany.
| | - L S Peck
- British Antarctic Survey, UKRI-NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK.
| | - L Bargelloni
- Department of Comparative Biomedicine and Food Science, Università degli Studi di Padova, Viale dell'Università 16, I-35020, Legnaro, Italy
| | - D Gande
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry & MARUM, University of Bremen, Leobener Straße 3, 28359, Bremen, Germany
| | - C Havermans
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - B Meyer
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570, Bremerhaven, Germany
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), 23129, Oldenburg, Germany
| | - T Patarnello
- Department of Comparative Biomedicine and Food Science, Università degli Studi di Padova, Viale dell'Università 16, I-35020, Legnaro, Italy
| | - T Phillips
- British Antarctic Survey, UKRI-NERC, High Cross, Madingley Road, Cambridge, CB3 0ET, UK
| | - K R Stoof-Leichsenring
- Alfred-Wegener-Institute Helmholtz Centre for Polar and Marine Research, 14473, Potsdam, Germany
| | - D L J Vendrami
- Universität Bielefeld, VHF, Konsequenz 45, 33615, Bielefeld, Germany
| | - A Beck
- Staatliche Naturwissenschaftliche Sammlungen Bayerns, Botanische Staatssammlung München (SNSB-BSM), Menzinger Str. 67, 80638, München, Germany
| | - G Collins
- Senckenberg Biodiversity and Climate Research Centre & Loewe-Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325, Frankfurt am Main, Germany
- Manaaki Whenua-Landcare Research, 231 Morrin Road St Johns, Auckland, 1072, New Zealand
| | - M W Friedrich
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry & MARUM, University of Bremen, Leobener Straße 3, 28359, Bremen, Germany
| | - K M Halanych
- Center for Marine Science, University of North Carolina, 5600 Marvin K. Moss Lane, Wilmington, NC, 28409, USA
| | - J F Masello
- Universität Bielefeld, VHF, Konsequenz 45, 33615, Bielefeld, Germany
- Justus-Liebig-Universität Gießen, Giessen, Germany
| | - R Nagel
- Universität Bielefeld, VHF, Konsequenz 45, 33615, Bielefeld, Germany
- School of Biology, University of St Andrews, St Andrews, Fife, KY16 9TH, UK
| | - K Norén
- Department of Zoology, Stockholm University, 106 91, Stockholm, Sweden
| | - C Printzen
- Senckenberg Biodiversity and Climate Research Centre & Loewe-Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325, Frankfurt am Main, Germany
- Natural History Museum Frankfurt, Senckenberganlage 25, 60325, Frankfurt am Main, Germany
| | - M B Ruiz
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570, Bremerhaven, Germany
- Universität Duisburg-Essen, Universitätstrasse 5, 45151, Essen, Germany
| | - S Wohlrab
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570, Bremerhaven, Germany
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), 23129, Oldenburg, Germany
| | - B Becker
- Universität zu Köln, Institut für Pflanzenwissenschaften, Zülpicher Str. 47b, 60674, Köln, Germany
| | - K Dumack
- Universität zu Köln, Terrestrische Ökologie, Zülpicher Str. 47b, 60674, Köln, Germany
| | - F Ghaderiardakani
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Lessingstraße 8, 07743, Jena, Germany
| | - K Glaser
- Institute of Biological Sciences, Applied Ecology and Phycology, University of Rostock, Albert-Einstein-Straße 3, 18059, Rostock, Germany
| | - S Heesch
- Institute of Biological Sciences, Applied Ecology and Phycology, University of Rostock, Albert-Einstein-Straße 3, 18059, Rostock, Germany
| | - C Held
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - U John
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - U Karsten
- Institute of Biological Sciences, Applied Ecology and Phycology, University of Rostock, Albert-Einstein-Straße 3, 18059, Rostock, Germany
| | - S Kempf
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - M Lucassen
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen 12, 27570, Bremerhaven, Germany
| | - A Paijmans
- Universität Bielefeld, VHF, Konsequenz 45, 33615, Bielefeld, Germany
| | - K Schimani
- Botanischer Garten und Botanisches Museum Berlin, Freie Universität Berlin, Königin-Luise-Straße 6-8, 14195, Berlin, Germany
| | - A Wallberg
- Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, 751 23, Uppsala, Sweden
| | - L C Wunder
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry & MARUM, University of Bremen, Leobener Straße 3, 28359, Bremen, Germany
| | - T Mock
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
| |
Collapse
|
8
|
Dalén L, Heintzman PD, Kapp JD, Shapiro B. Deep-time paleogenomics and the limits of DNA survival. Science 2023; 382:48-53. [PMID: 37797036 PMCID: PMC10586222 DOI: 10.1126/science.adh7943] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/05/2023] [Indexed: 10/07/2023]
Abstract
Although most ancient DNA studies have focused on the last 50,000 years, paleogenomic approaches can now reach into the early Pleistocene, an epoch of repeated environmental changes that shaped present-day biodiversity. Emerging deep-time genomic transects, including from DNA preserved in sediments, will enable inference of adaptive evolution, discovery of unrecognized species, and exploration of how glaciations, volcanism, and paleomagnetic reversals shaped demography and community composition. In this Review, we explore the state-of-the-art in paleogenomics and discuss key challenges, including technical limitations, evolutionary divergence and associated biases, and the need for more precise dating of remains and sediments. We conclude that with improvements in laboratory and computational methods, the emerging field of deep-time paleogenomics will expand the range of questions addressable using ancient DNA.
Collapse
Affiliation(s)
- Love Dalén
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, SE-10691 Stockholm, Sweden
- Department of Zoology, Stockholm University, SE-10691, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, SE- 10405 Stockholm, Sweden
| | - Peter D. Heintzman
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, SE-10691 Stockholm, Sweden
- Department of Geological Sciences, Stockholm University, SE-10691, Stockholm, Sweden
| | - Joshua D. Kapp
- Department of Biomolecular Engineering, University of California Santa Cruz; Santa Cruz, California, 95064, USA
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz; Santa Cruz, California, 95064, USA
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz; Santa Cruz, California, 95064, USA
- Howard Hughes Medical Institute, University of California Santa Cruz; Santa Cruz, California, 95064, USA
| |
Collapse
|
9
|
Louis M, Korlević P, Nykänen M, Archer F, Berrow S, Brownlow A, Lorenzen ED, O'Brien J, Post K, Racimo F, Rogan E, Rosel PE, Sinding MHS, van der Es H, Wales N, Fontaine MC, Gaggiotti OE, Foote AD. Ancient dolphin genomes reveal rapid repeated adaptation to coastal waters. Nat Commun 2023; 14:4020. [PMID: 37463880 DOI: 10.1038/s41467-023-39532-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 06/16/2023] [Indexed: 07/20/2023] Open
Abstract
Parallel evolution provides strong evidence of adaptation by natural selection due to local environmental variation. Yet, the chronology, and mode of the process of parallel evolution remains debated. Here, we harness the temporal resolution of paleogenomics to address these long-standing questions, by comparing genomes originating from the mid-Holocene (8610-5626 years before present, BP) to contemporary pairs of coastal-pelagic ecotypes of bottlenose dolphin. We find that the affinity of ancient samples to coastal populations increases as the age of the samples decreases. We assess the youngest genome (5626 years BP) at sites previously inferred to be under parallel selection to coastal habitats and find it contained coastal-associated genotypes. Thus, coastal-associated variants rose to detectable frequencies close to the emergence of coastal habitat. Admixture graph analyses reveal a reticulate evolutionary history between pelagic and coastal populations, sharing standing genetic variation that facilitated rapid adaptation to newly emerged coastal habitats.
Collapse
Affiliation(s)
- Marie Louis
- Centre for Biological Diversity, Sir Harold Mitchell Building and Dyers Brae, University of St Andrews, St Andrews, KY16 9TH, Scotland, UK.
- Globe Institute, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen K, Denmark.
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, PO Box 11103 CC, Groningen, The Netherlands.
- Greenland Institute of Natural Resources, Kivioq 2, Nuuk, 3900, Greenland.
| | - Petra Korlević
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103, Leipzig, Germany
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Milaja Nykänen
- Department of Environmental and Biological Sciences, PO Box 111, FI-80101, Joensuu, Finland
- School of Biological, Earth and Environmental Sciences, University College Cork, North Mall, Cork, Ireland
| | - Frederick Archer
- Marine Mammal and Turtle Division, Southwest Fisheries Science Center, NOAA, 8901 La Jolla Shores Drive, La Jolla, CA, 92037, USA
| | - Simon Berrow
- Irish Whale and Dolphin Group, Kilrush, Co Clare, Ireland
- Marine and Freshwater Research Centre, Department of Natural Sciences, School of Science and Computing, Atlantic Technological University, Dublin Road, H91 T8NW, Galway, Ireland
| | - Andrew Brownlow
- Scottish Marine Animal Stranding Scheme, Institute of Biodiversity, Animal Health & Comparative Medicine College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Eline D Lorenzen
- Globe Institute, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen K, Denmark
| | - Joanne O'Brien
- Irish Whale and Dolphin Group, Kilrush, Co Clare, Ireland
- Marine and Freshwater Research Centre, Department of Natural Sciences, School of Science and Computing, Atlantic Technological University, Dublin Road, H91 T8NW, Galway, Ireland
| | - Klaas Post
- Natural History Museum Rotterdam, Westzeedijk 345, 3015 AA, Rotterdam, Netherlands
| | - Fernando Racimo
- Globe Institute, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen K, Denmark
| | - Emer Rogan
- School of Biological, Earth and Environmental Sciences, University College Cork, North Mall, Cork, Ireland
| | - Patricia E Rosel
- Marine Mammal and Turtle Division, Southeast Fisheries Science Center, NOAA, 646 Cajundome Boulevard, Lafayette, LA, 70506, USA
| | - Mikkel-Holger S Sinding
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen, Denmark
| | - Henry van der Es
- Natural History Museum Rotterdam, Westzeedijk 345, 3015 AA, Rotterdam, Netherlands
| | - Nathan Wales
- University of York, BioArCh, Environment Building, Wentworth Way, Heslington, York, YO10 5DD, UK
| | - Michael C Fontaine
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, PO Box 11103 CC, Groningen, The Netherlands
- MIVEGEC (Université de Montpellier, CNRS 5290, IRD 229) Institut de Recherche pour le Développement (IRD), F-34394, Montpellier, France
| | - Oscar E Gaggiotti
- Centre for Biological Diversity, Sir Harold Mitchell Building and Dyers Brae, University of St Andrews, St Andrews, KY16 9TH, Scotland, UK
| | - Andrew D Foote
- Department of Natural History, Norwegian University of Science and Technology (NTNU), NO-7491, Trondheim, Norway.
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, 0316, Oslo, Norway.
| |
Collapse
|
10
|
Boulygina E, Sharko F, Cheprasov M, Gladysheva-Azgari M, Slobodova N, Tsygankova S, Rastorguev S, Grigorieva L, Kopp M, Fernandes JMO, Novgorodov G, Boeskorov G, Protopopov A, Hwang WS, Tikhonov A, Nedoluzhko A. Ancient DNA Reveals Maternal Philopatry of the Northeast Eurasian Brown Bear ( Ursus arctos) Population during the Holocene. Genes (Basel) 2022; 13:1961. [PMID: 36360198 PMCID: PMC9689912 DOI: 10.3390/genes13111961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/08/2022] [Accepted: 10/25/2022] [Indexed: 09/14/2023] Open
Abstract
Significant palaeoecological and paleoclimatic changes that took place during Late Pleistocene-Early Holocene transition are considered important factors that led to megafauna extinctions. Unlike many other species, the brown bear (Ursus arctos) has survived this geological time. Despite the fact that several mitochondrial DNA clades of brown bears became extinct at the end of the Pleistocene, this species is still widely distributed in Northeast Eurasia. Here, using the ancient DNA analysis of a brown bear individual that inhabited Northeast Asia in the Middle Holocene (3460 ± 40 years BP) and comparative phylogenetic analysis, we show a significant mitochondrial DNA similarity of the studied specimen with modern brown bears inhabiting Yakutia and Chukotka. In this study, we clearly demonstrate the maternal philopatry of the Northeastern Eurasian U. arctos population during the several thousand years of the Holocene.
Collapse
Affiliation(s)
- Eugenia Boulygina
- Kurchatov Center for Genomic Research, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
| | - Fedor Sharko
- Kurchatov Center for Genomic Research, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
- Limited Liability Company ELGENE, 109029 Moscow, Russia
- Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Maksim Cheprasov
- Laboratory of P.A. Lazarev Mammoth Museum of the Research Institute of Applied Ecology of the North, North-Eastern Federal University Named after M. K. Ammosov, 677000 Yakutsk, Russia
| | - Maria Gladysheva-Azgari
- Kurchatov Center for Genomic Research, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
| | - Natalia Slobodova
- Kurchatov Center for Genomic Research, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
| | - Svetlana Tsygankova
- Kurchatov Center for Genomic Research, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
| | - Sergey Rastorguev
- Kurchatov Center for Genomic Research, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
- Limited Liability Company ELGENE, 109029 Moscow, Russia
| | - Lena Grigorieva
- Laboratory of P.A. Lazarev Mammoth Museum of the Research Institute of Applied Ecology of the North, North-Eastern Federal University Named after M. K. Ammosov, 677000 Yakutsk, Russia
| | - Martina Kopp
- Genomics Division, Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway
| | - Jorge M. O. Fernandes
- Genomics Division, Faculty of Biosciences and Aquaculture, Nord University, 8049 Bodø, Norway
| | - Gavril Novgorodov
- Laboratory of P.A. Lazarev Mammoth Museum of the Research Institute of Applied Ecology of the North, North-Eastern Federal University Named after M. K. Ammosov, 677000 Yakutsk, Russia
| | - Gennady Boeskorov
- Institute of Diamond and Precious Metals Geology, Siberian Branch of Russian 5 Academy of Sciences, 677007 Yakutsk, Russia
| | - Albert Protopopov
- Laboratory of P.A. Lazarev Mammoth Museum of the Research Institute of Applied Ecology of the North, North-Eastern Federal University Named after M. K. Ammosov, 677000 Yakutsk, Russia
- Academy of Sciences of Sakha (Yakutia), 677007 Yakutsk, Russia
| | - Woo-Suk Hwang
- Laboratory of P.A. Lazarev Mammoth Museum of the Research Institute of Applied Ecology of the North, North-Eastern Federal University Named after M. K. Ammosov, 677000 Yakutsk, Russia
- UAE Biotech Research Center, Abu Dhabi 30310, United Arab Emirates
| | - Alexei Tikhonov
- Laboratory of P.A. Lazarev Mammoth Museum of the Research Institute of Applied Ecology of the North, North-Eastern Federal University Named after M. K. Ammosov, 677000 Yakutsk, Russia
- Zoological Institute Russian Academy of Sciences, 190121 Saint-Petersburg, Russia
| | - Artem Nedoluzhko
- Limited Liability Company ELGENE, 109029 Moscow, Russia
- Paleogenomics Laboratory, European University at Saint Petersburg, 191187 Saint-Petersburg, Russia
| |
Collapse
|
11
|
Functional genomics analysis reveals the evolutionary adaptation and demographic history of pygmy lorises. Proc Natl Acad Sci U S A 2022; 119:e2123030119. [PMID: 36161902 DOI: 10.1073/pnas.2123030119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lorises are a group of globally threatened strepsirrhine primates that exhibit many unusual physiological and behavioral features, including a low metabolic rate, slow movement, and hibernation. Here, we assembled a chromosome-level genome sequence of the pygmy loris (Xanthonycticebus pygmaeus) and resequenced whole genomes from 50 pygmy lorises and 6 Bengal slow lorises (Nycticebus bengalensis). We found that many gene families involved in detoxification have been specifically expanded in the pygmy loris, including the GSTA gene family, with many newly derived copies functioning specifically in the liver. We detected many genes displaying evolutionary convergence between pygmy loris and koala, including PITRM1. Significant decreases in PITRM1 enzymatic activity in these two species may have contributed to their characteristic low rate of metabolism. We also detected many evolutionarily convergent genes and positively selected genes in the pygmy loris that are involved in muscle development. Functional assays demonstrated the decreased ability of one positively selected gene, MYOF, to up-regulate the fast-type muscle fiber, consistent with the lower proportion of fast-twitch muscle fibers in the pygmy loris. The protein product of another positively selected gene in the pygmy loris, PER2, exhibited weaker binding to the key circadian core protein CRY, a finding that may be related to this species' unusual circadian rhythm. Finally, population genomics analysis revealed that these two extant loris species, which coexist in the same habitat, have exhibited an inverse relationship in terms of their demography over the past 1 million years, implying strong interspecies competition after speciation.
Collapse
|
12
|
Armstrong EE, Perry BW, Huang Y, Garimella KV, Jansen HT, Robbins CT, Tucker NR, Kelley JL. A beary good genome: Haplotype-resolved, chromosome-level assembly of the brown bear (Ursus arctos). Genome Biol Evol 2022; 14:6656105. [PMID: 35929770 PMCID: PMC9447482 DOI: 10.1093/gbe/evac125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2022] [Indexed: 11/30/2022] Open
Abstract
The brown bear (Ursus arctos) is the second largest and most widespread extant terrestrial carnivore on Earth and has recently emerged as a medical model for human metabolic diseases. Here, we report a fully phased chromosome-level assembly of a male North American brown bear built by combining Pacific Biosciences (PacBio) HiFi data and publicly available Hi-C data. The final genome size is 2.47 Gigabases (Gb) with a scaffold and contig N50 length of 70.08 and 43.94 Megabases (Mb), respectively. Benchmarking Universal Single-Copy Ortholog (BUSCO) analysis revealed that 94.5% of single copy orthologs from Mammalia were present in the genome (the highest of any ursid genome to date). Repetitive elements accounted for 44.48% of the genome and a total of 20,480 protein coding genes were identified. Based on whole genome alignment to the polar bear, the brown bear is highly syntenic with the polar bear, and our phylogenetic analysis of 7,246 single-copy orthologs supports the currently proposed species tree for Ursidae. This highly contiguous genome assembly will support future research on both the evolutionary history of the bear family and the physiological mechanisms behind hibernation, the latter of which has broad medical implications.
Collapse
Affiliation(s)
- Ellie E Armstrong
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Blair W Perry
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Yongqing Huang
- Data Sciences Platform, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kiran V Garimella
- Data Sciences Platform, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Heiko T Jansen
- Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, 99164, USA
| | - Charles T Robbins
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA.,School of the Environment, Washington State University, Pullman, WA, 99164, USA
| | - Nathan R Tucker
- Masonic Medical Research Institute, 2150 Bleecker St, Utica, NY, 13501, USA.,Cardiovascular Disease Initiative, The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Joanna L Kelley
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|