1
|
Xu C, Xu X, Peñuelas J, Sardans J, Reich P, Chen HYH, Luo Y, Zou X, Fan W, Ju C, Lin M, Cui J, Liu W, Chen X, Wang J. Soil pH-dependent nitrogen stimulation of plant biomass: magnesium and calcium as key constraints. THE NEW PHYTOLOGIST 2025; 246:936-946. [PMID: 40065489 DOI: 10.1111/nph.70058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/21/2025] [Indexed: 04/11/2025]
Abstract
Anthropogenic nitrogen (N) deposition can alleviate N limitation and stimulate plant growth in many terrestrial ecosystems. While theoretical models often emphasize phosphorus limitations as a constraint on this positive N effect, the impact of N-induced magnesium (Mg) and calcium (Ca) deficits due to soil acidification has been largely overlooked. Here, we synthesized data from 243 experiments across diverse terrestrial ecosystems to investigate the role of Mg and Ca in plant biomass responses to N addition. We found that the effect of N addition on aboveground biomass (AGB) shifted from neutral in low pH (≤ 4.5) to positive in medium (4.5-7.5) and high pH (> 7.5) soils. By contrast, belowground biomass (BGB) responses to N addition were independent of soil pH, leading to asymmetric increases in AGB and BGB. These variations in biomass accumulation across pH levels were primarily explained by changes in foliar Mg and Ca concentrations, which were negatively affected by N addition in low-pH soils but remained stable in medium and high-pH soils. Our findings underscore the critical role of Mg and Ca in modulating plant responses to N fertilization, providing new insights for improving Earth system models and better predicting climate-biosphere feedback.
Collapse
Affiliation(s)
- Chonghua Xu
- State Key Laboratory of Subtropical Silviculture & College of Environment and Resources, College of Carbon Neutrality, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Xia Xu
- State Key Laboratory of Subtropical Silviculture & College of Environment and Resources, College of Carbon Neutrality, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
- Co-Innovation Center for Sustainable Forestry in Southern China & Department of Ecology, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
- National Observation and Research Station of Fujian Wuyishan Forest Ecosystem, Wuyishan, Fujian, 354300, China
| | - Josep Peñuelas
- CREAF, Cerdanyola del Vallès, Catalonia, 08193, Spain
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Catalonia, 08193, Spain
| | - Jordi Sardans
- CREAF, Cerdanyola del Vallès, Catalonia, 08193, Spain
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Catalonia, 08193, Spain
| | - Peter Reich
- Department of Forest Resources, University of Minnesota, St Paul, MN, 55108, USA
- Institute for Global Change Biology and School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, 48104, USA
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2753, Australia
| | - Han Y H Chen
- Institute for Global Change Biology and School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, 48104, USA
- Faculty of Natural Resources Management, Lakehead University, Thunder Bay, ON, P7B 5E1, Canada
| | - Yiqi Luo
- School of Integrative Plant Science, Cornell University, Ithaca, NY, 14583, USA
| | - Xiaoming Zou
- Jiangsu Academy of Agricultural Sciences, Institute of Agricultural Resources and Environment, Nanjing, 210014, China
| | - Wei Fan
- Co-Innovation Center for Sustainable Forestry in Southern China & Department of Ecology, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Chenghui Ju
- Co-Innovation Center for Sustainable Forestry in Southern China & Department of Ecology, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Mingyan Lin
- Department of Neurobiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Jun Cui
- College of Life and Environmental Science, Huangshan University, Huangshan, 245061, China
| | - Wenfang Liu
- National Observation and Research Station of Fujian Wuyishan Forest Ecosystem, Wuyishan, Fujian, 354300, China
- Center for Scientific Research and Monitoring, Wuyishan National Park, Wuyishan, Fujian, 354300, China
| | - Xiaochou Chen
- Center for Scientific Research and Monitoring, Wuyishan National Park, Wuyishan, Fujian, 354300, China
- Fuzhou Botanical Garden, Fuzhou, Fujian, 350021, China
| | - Jingjing Wang
- Anhui Academy of Forestry, Hefei, Anhui, 230088, China
| |
Collapse
|
2
|
Tang X, Yue C, Liu B, Liu B, Liu J, Zhao H, Xu M, Wen W, Yang J, He J, Song X. Unraveling the drivers of optimal stomatal behavior in global C 3 plants: A carbon isotope perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178208. [PMID: 39740628 DOI: 10.1016/j.scitotenv.2024.178208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 10/31/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025]
Abstract
Understanding the drivers of stomatal behavior is critical for modeling terrestrial carbon cycle and water balance. The unified stomatal optimization (USO) model provides a mechanistic linkage between stomatal conductance (gs) and photosynthesis (A), with its slope parameter (g1) inversely related to intrinsic water use efficiency (iWUE), providing a key proxy to characterize the differences in iWUE and stomatal behavior. While many studies have identified multiple environmental factors influencing g1, the potential role of evolutionary history in shaping g1 remains incompletely understood. Leaf organic matter 13C discriminations (Δ13C) can be applied to estimate g1 over timescales from days to whole growing season. However, most applications assume that mesophyll conductance (gm)-a critical parameter in the Δ13C model-is infinite, due to limited information. Here, we incorporated new insight of gm to allow for more realistic parameterization of this variable, and subsequently to enable improved estimation of g1 based on a global bulk leaf Δ13C dataset comprising 2215 observations of 1521 species that span major biomes. Our analysis revealed a significant phylogenetic signal in g1 values, which differed among phylogenetic groups. Through a Bayesian phylogenetic linear mixed model, we found that species and phylogeny together explained 36.63 % of g1 variance, a contribution comparable to that of the environmental factors (44.59 %). Our findings uncovered for the first time that environmental factors, species-level and phylogenetic effects jointly shape g1 variability, thereby contributing to a more comprehensive understanding of optimal stomatal behavior in the context of global environmental change.
Collapse
Affiliation(s)
- Xianhui Tang
- The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China; College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Yue
- The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Binbin Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bo Liu
- CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Jinyue Liu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hongfei Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mengyang Xu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Wei Wen
- The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China; College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingjing Yang
- The Research Center of Soil and Water Conservation and Ecological Environment, Chinese Academy of Sciences and Ministry of Education, Yangling, Shaanxi 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junhao He
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xin Song
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
3
|
Dalling JW, Flores MR, Heineman KD. Wood nutrients: Underexplored traits with functional and biogeochemical consequences. THE NEW PHYTOLOGIST 2024; 244:1694-1708. [PMID: 39400942 DOI: 10.1111/nph.20193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024]
Abstract
Resource storage is a critical component of plant life history. While the storage of nonstructural carbohydrates in wood has been studied extensively, the multiple functions of mineral nutrient storage have received much less attention. Here, we highlight the size of wood nutrient pools, a primary determinant of whole-plant nutrient use efficiency, and a substantial fraction of ecosystem nutrient budgets, particularly tropical forests. Wood nutrient concentrations also show exceptional interspecific variation, even among co-occurring plant species, yet how they align with other plant functional traits and fit into existing trait economic spectra is unclear. We review the chemical forms and location of nutrient pools in bark and sapwood, and the evidence that nutrient remobilization from sapwood is associated with mast reproduction, seasonal leaf flush, and the capacity to resprout following damage. We also emphasize the role wood nutrients are likely to play in determining decomposition rates. Given the magnitude of wood nutrient stocks, and the importance of tissue stoichiometry to forest productivity, a key unresolved question is whether investment in wood nutrients is a relatively fixed trait, or conversely whether under global change plants will adjust nutrient allocation to wood depending on carbon gain and nutrient supply.
Collapse
Affiliation(s)
- James W Dalling
- Department of Plant Biology, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Panama
| | - Manuel R Flores
- Department of Plant Biology, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA
- The Forest School, Yale School of the Environment, Yale University, New Haven, CT, 06511, USA
- New York Botanical Garden, New York, NY, 10458, USA
| | - Katherine D Heineman
- Center for Plant Conservation, Escondido, CA, 92027, USA
- Conservation Science, San Diego Zoo Wildlife Alliance, Escondido, CA, 92027, USA
| |
Collapse
|
4
|
Manu R, Veldkamp E, Eryenyu D, Corre MD, van Straaten O. Nitrogen and potassium limit fine root growth in a humid Afrotropical forest. Sci Rep 2024; 14:13154. [PMID: 38849444 PMCID: PMC11161472 DOI: 10.1038/s41598-024-63684-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/31/2024] [Indexed: 06/09/2024] Open
Abstract
Nutrient limitations play a key regulatory role in plant growth, thereby affecting ecosystem productivity and carbon uptake. Experimental observations identifying the most limiting nutrients are lacking, particularly in Afrotropical forests. We conducted an ecosystem-scale, full factorial nitrogen (N)-phosphorus (P)-potassium (K) addition experiment consisting 32 40 × 40 m plots (eight treatments × four replicates) in Uganda to investigate which (if any) nutrient limits fine root growth. After two years of observations, added N rapidly decreased fine root biomass by up to 36% in the first and second years of the experiment. Added K decreased fine root biomass by 27% and fine root production by 30% in the second year. These rapid reductions in fine root growth highlight a scaled-back carbon investment in the costly maintenance of large fine root network as N and K limitations become alleviated. No fine root growth response to P addition was observed. Fine root turnover rate was not significantly affected by nutrient additions but tended to be higher in N added than non-N added treatments. These results suggest that N and K availability may restrict the ecosystem's capacity for CO2 assimilation, with implications for ecosystem productivity and resilience to climate change.
Collapse
Affiliation(s)
- Raphael Manu
- Department of Soil Science of Tropical and Subtropical Ecosystems, University of Göttingen, Göttingen, Germany.
| | - Edzo Veldkamp
- Department of Soil Science of Tropical and Subtropical Ecosystems, University of Göttingen, Göttingen, Germany
| | - David Eryenyu
- Budongo Conservation Field Station, Masindi, Uganda
- Department of Green Chemistry and Technology, Ghent University, Ghent, Belgium
- Royal Zoological Society of Scotland (Edinburgh Zoo), Edinburgh, Scotland
| | - Marife D Corre
- Department of Soil Science of Tropical and Subtropical Ecosystems, University of Göttingen, Göttingen, Germany
| | | |
Collapse
|
5
|
Geng X, Zuo J, Meng Y, Zhuge Y, Zhu P, Wu N, Bai X, Ni G, Hou Y. Changes in nitrogen and phosphorus availability driven by secondary succession in temperate forests shape soil fungal communities and function. Ecol Evol 2023; 13:e10593. [PMID: 37818249 PMCID: PMC10560873 DOI: 10.1002/ece3.10593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/01/2023] [Accepted: 09/25/2023] [Indexed: 10/12/2023] Open
Abstract
The soil fungal community plays an important role in forest ecosystems and is crucially influenced by forest secondary succession. However, the driving factors of fungal community and function during temperate forest succession and their potential impact on succession processes remain poorly understood. In this study, we investigated the dynamics of the soil fungal community in three temperate forest secondary successional stages (shrublands, coniferous forests, and deciduous broad-leaved forests) using high-throughput DNA sequencing coupled with functional prediction via the FUNGuild database. We found that fungal community richness, α-diversity, and evenness decreased significantly during the succession process. Soil available phosphorus and nitrate nitrogen decreased significantly after initial succession occurred, and redundancy analysis showed that both were significant predictors of soil fungal community structure. Among functional groups, fungal saprotrophs and pathotrophs represented by plant pathogens were significantly enriched in the early-successional stage, while fungal symbiotrophs represented by ectomycorrhiza were significantly increased in the late-successional stage. The abundance of both saprotroph and pathotroph fungal guilds was positively correlated with soil nitrate nitrogen and available phosphorus content. Ectomycorrhizal fungi were negatively correlated with nitrate nitrogen and available phosphorus content and positively correlated with ammonium nitrogen content. These results indicate that the dynamics of fungal community and function reflected the changes in nitrogen and phosphorus availability caused by the secondary succession in temperate forests. The fungal plant pathogen accumulated in the early-successional stage and ectomycorrhizal fungi accumulated in the late-successional stage may have a potential role in promoting forest succession. These findings contribute to a better understanding of the response of soil fungal communities to secondary forest succession and highlight the importance of fungal communities during the successional process.
Collapse
Affiliation(s)
- Xinze Geng
- College of Life SciencesLudong UniversityYantaiChina
| | - Jincheng Zuo
- College of Life SciencesLudong UniversityYantaiChina
| | - Yunhao Meng
- School of Resources and Environmental EngineeringLudong UniversityYantaiChina
| | - Yanhui Zhuge
- School of Resources and Environmental EngineeringLudong UniversityYantaiChina
| | - Ping Zhu
- School of Resources and Environmental EngineeringLudong UniversityYantaiChina
| | - Nan Wu
- School of Resources and Environmental EngineeringLudong UniversityYantaiChina
| | - Xinfu Bai
- School of Resources and Environmental EngineeringLudong UniversityYantaiChina
| | - Guangyan Ni
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems and Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical GardenChinese Academy of SciencesGuangzhouChina
| | - Yuping Hou
- College of Life SciencesLudong UniversityYantaiChina
| |
Collapse
|
6
|
Yi R, Liu Q, Yang F, Dai X, Meng S, Fu X, Li S, Kou L, Wang H. Complementary belowground strategies underlie species coexistence in an early successional forest. THE NEW PHYTOLOGIST 2023; 238:612-623. [PMID: 36647205 DOI: 10.1111/nph.18736] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Unravelling belowground strategies is critical for understanding species coexistence and successional dynamics; yet, our knowledge of nutrient acquisition strategies of forest species at different successional stages remains limited. We measured morphological (diameter, specific root length, and root tissue density), architectural (branching ratio), physiological (ammonium, nitrate, and glycine uptake rates) root traits, and mycorrhizal colonisation rates of eight coexisting woody species in an early successional plantation forest in subtropical China. By incorporating physiological uptake efficiency, we revealed a bi-dimensional root economics space comprising of an 'amount-efficiency' dimension represented by morphological and physiological traits, and a 'self-symbiosis' dimension dominated by architectural and mycorrhizal traits. The early pioneer species relied on root-fungal symbiosis, developing densely branched roots with high mycorrhizal colonisation rates for foraging mobile soil nitrate. The late pioneer species invested in roots themselves and allocated effort towards improving uptake efficiency of less-mobile ammonium. Within the root economics space, the covariation of axes with soil phosphorus availability also distinguished the strategy preference of the two successional groups. These results demonstrate the importance of incorporating physiological uptake efficiency into root economics space, and reveal a trade-off between expanding soil physical space exploration and improving physiological uptake efficiency for successional species coexistence in forests.
Collapse
Affiliation(s)
- Ruojun Yi
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qianyuan Liu
- School of Geographical Sciences, Hebei Key Laboratory of Environmental Change and Ecological Construction, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Fengting Yang
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaoqin Dai
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shengwang Meng
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaoli Fu
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shenggong Li
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
- National Ecosystem Science Data Center, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Liang Kou
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huimin Wang
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
7
|
|