1
|
Shen Y, Benner R, Broek TAB, Walker BD, McCarthy MD. Special delivery of proteinaceous matter to deep-sea microbes. SCIENCE ADVANCES 2025; 11:eadr0736. [PMID: 40106540 PMCID: PMC11922029 DOI: 10.1126/sciadv.adr0736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 02/13/2025] [Indexed: 03/22/2025]
Abstract
Earth's deep ocean holds a vast reservoir of dissolved organic carbon, traditionally considered old and resistant to microbial degradation. Radiocarbon analyses indicate the hidden occurrence of younger dissolved organic carbon components, assumed to be accessible to deep-sea microorganisms but not yet demonstrated. Using compound-class radiocarbon analysis, molecular characterization, and bioassay experiments, we provide direct evidence for rapid microbial utilization of young, labile, high-molecular weight proteinaceous material in bathypelagic waters. The abundance of labile proteinaceous material diminishes from epipelagic to mesopelagic waters but notably increases in bathypelagic waters, where it exhibits a short turnover time (days) and resembles surface plankton in molecular composition. This observation coincides with peak zooplankton biomass recorded over the year. The nonmonotonic depth trend suggests a deep-sea replenishment of organic particles from mesopelagic migrating zooplankton. Our results indicate the presence of labile organic molecules at bathypelagic depths and reveal a nonlinear supply of plankton-derived substrates that support microbial metabolism and carbon sequestration in the deep ocean.
Collapse
Affiliation(s)
- Yuan Shen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361000, China
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Xiamen University, Xiamen 361000, China
| | - Ronald Benner
- Department of Biological Science, and the School of the Earth, Ocean and Environment, University of South Carolina, Columbia, SC 29208, USA
| | - Taylor A. B. Broek
- Ocean Sciences Department, University of California, Santa Cruz, CA 95064, USA
| | - Brett D. Walker
- Department of Earth System Science, University of California, Irvine, CA 92697, USA
| | - Matthew D. McCarthy
- Ocean Sciences Department, University of California, Santa Cruz, CA 95064, USA
| |
Collapse
|
2
|
Lin H, Lv Y, Zhang Y. High hydrostatic pressure stimulates n-C 16 mineralization to CO 2 by deep-ocean bacterium Alcanivorax xenomutans A28. Commun Biol 2025; 8:248. [PMID: 39956881 PMCID: PMC11830761 DOI: 10.1038/s42003-025-07728-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/12/2025] [Indexed: 02/18/2025] Open
Abstract
Medium-chain alkanes have strong ecological impacts on marine ecosystems due to their persistence, toxicity, and ability to travel long distances. Microbial degradation is the dominant and ultimate removal process for n-alkanes in the deep ocean, where high hydrostatic pressure (HHP) regulates microbial activity. To gain insight into the impact of hydrostatic pressure (HP) on n-alkane degradation, we applied the deep-ocean experimental simulation to culture Alcanivorax xenomutans A28, a novel piezotolerant bacterium strain from trench sediment, with n-C16 as the sole carbon source under different HPs (0.1, 40, and 80 MPa). Activity analysis demonstrated that HHP stimulated the n-C16 complete mineralization ratio. Transcriptomic and metabolomic analyses showed that HHP induced the intracellular oxidative stress and accelerated the tricarboxylic acid (TCA) cycle. These results indicate a shift of n-alkanes biodegradation pattern regulated by HP, elucidating the fate and ecological risk of n-alkanes in the deep ocean.
Collapse
Affiliation(s)
- Huaying Lin
- School of Oceanography; Shanghai Key Laboratory of Polar Life and Environment Sciences; Key Laboratory of Polar Ecosystem and Climate Change, Ministry of Education; Shanghai Frontiers Science Center of Polar Science, Shanghai Jiao Tong University, Shanghai, China
| | - Yongxin Lv
- School of Oceanography; Shanghai Key Laboratory of Polar Life and Environment Sciences; Key Laboratory of Polar Ecosystem and Climate Change, Ministry of Education; Shanghai Frontiers Science Center of Polar Science, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Zhang
- School of Oceanography; Shanghai Key Laboratory of Polar Life and Environment Sciences; Key Laboratory of Polar Ecosystem and Climate Change, Ministry of Education; Shanghai Frontiers Science Center of Polar Science, Shanghai Jiao Tong University, Shanghai, China.
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya, China.
| |
Collapse
|
3
|
Glud RN, Schauberger C. Element cycling and microbial life in the hadal realm. Trends Microbiol 2024; 32:1045-1048. [PMID: 39084910 DOI: 10.1016/j.tim.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 08/02/2024]
Abstract
Hadal trenches represent the deepest oceanic realm and were once considered to be deprived of life. However, trenches act as important depocenters for organic matter with highly elevated microbial activity. In this forum, we discuss the biogeochemistry of the hadal realm and its microbial communities thriving at extreme hydrostatic pressure.
Collapse
Affiliation(s)
- Ronnie N Glud
- HADAL and Nordcee, Department of Biology, University of Southern Denmark, Odense, Denmark; Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Odense, Denmark; Department of Ocean and Environmental Sciences, Tokyo University of Marine Science and Technology, Tokyo, Japan.
| | - Clemens Schauberger
- HADAL and Nordcee, Department of Biology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
4
|
Zhao Z, Amano C, Reinthaler T, Baltar F, Orellana MV, Herndl GJ. Metaproteomic analysis decodes trophic interactions of microorganisms in the dark ocean. Nat Commun 2024; 15:6411. [PMID: 39080340 PMCID: PMC11289388 DOI: 10.1038/s41467-024-50867-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 07/24/2024] [Indexed: 08/02/2024] Open
Abstract
Proteins in the open ocean represent a significant source of organic matter, and their profiles reflect the metabolic activities of marine microorganisms. Here, by analyzing metaproteomic samples collected from the Pacific, Atlantic and Southern Ocean, we reveal size-fractionated patterns of the structure and function of the marine microbiota protein pool in the water column, particularly in the dark ocean (>200 m). Zooplankton proteins contributed three times more than algal proteins to the deep-sea community metaproteome. Gammaproteobacteria exhibited high metabolic activity in the deep-sea, contributing up to 30% of bacterial proteins. Close virus-host interactions of this taxon might explain the dominance of gammaproteobacterial proteins in the dissolved fraction. A high urease expression in nitrifiers suggested links between their dark carbon fixation and zooplankton urea production. In summary, our results uncover the taxonomic contribution of the microbiota to the oceanic protein pool, revealing protein fluxes from particles to the dissolved organic matter pool.
Collapse
Affiliation(s)
- Zihao Zhao
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria.
| | - Chie Amano
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria
| | - Thomas Reinthaler
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria
| | - Federico Baltar
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Mónica V Orellana
- Polar Science Center, Applied Physics Laboratory, University of Washington, Seattle, WA, USA
- Institute for Systems Biology, Seattle, WA, USA
| | - Gerhard J Herndl
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria.
- NIOZ, Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Utrecht University, Den Burg, The Netherlands.
- Environmental & Climate Research Hub, University of Vienna, Vienna, Austria.
| |
Collapse
|
5
|
Jiao N, Luo T, Chen Q, Zhao Z, Xiao X, Liu J, Jian Z, Xie S, Thomas H, Herndl GJ, Benner R, Gonsior M, Chen F, Cai WJ, Robinson C. The microbial carbon pump and climate change. Nat Rev Microbiol 2024; 22:408-419. [PMID: 38491185 DOI: 10.1038/s41579-024-01018-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2024] [Indexed: 03/18/2024]
Abstract
The ocean has been a regulator of climate change throughout the history of Earth. One key mechanism is the mediation of the carbon reservoir by refractory dissolved organic carbon (RDOC), which can either be stored in the water column for centuries or released back into the atmosphere as CO2 depending on the conditions. The RDOC is produced through a myriad of microbial metabolic and ecological processes known as the microbial carbon pump (MCP). Here, we review recent research advances in processes related to the MCP, including the distribution patterns and molecular composition of RDOC, links between the complexity of RDOC compounds and microbial diversity, MCP-driven carbon cycles across time and space, and responses of the MCP to a changing climate. We identify knowledge gaps and future research directions in the role of the MCP, particularly as a key component in integrated approaches combining the mechanisms of the biological and abiotic carbon pumps for ocean negative carbon emissions.
Collapse
Affiliation(s)
- Nianzhi Jiao
- Innovation Research Center for Carbon Neutralization, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China.
- UN Global ONCE joint focal points at Shandong University, University of East Anglia, University of Maryland Center for Environmental Science, and Xiamen University, Xiamen, China.
| | - Tingwei Luo
- Innovation Research Center for Carbon Neutralization, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
- UN Global ONCE joint focal points at Shandong University, University of East Anglia, University of Maryland Center for Environmental Science, and Xiamen University, Xiamen, China
| | - Quanrui Chen
- Innovation Research Center for Carbon Neutralization, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
- UN Global ONCE joint focal points at Shandong University, University of East Anglia, University of Maryland Center for Environmental Science, and Xiamen University, Xiamen, China
| | - Zhao Zhao
- Innovation Research Center for Carbon Neutralization, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
- UN Global ONCE joint focal points at Shandong University, University of East Anglia, University of Maryland Center for Environmental Science, and Xiamen University, Xiamen, China
| | - Xilin Xiao
- Innovation Research Center for Carbon Neutralization, Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen, China
- UN Global ONCE joint focal points at Shandong University, University of East Anglia, University of Maryland Center for Environmental Science, and Xiamen University, Xiamen, China
| | - Jihua Liu
- UN Global ONCE joint focal points at Shandong University, University of East Anglia, University of Maryland Center for Environmental Science, and Xiamen University, Xiamen, China
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
| | - Zhimin Jian
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, China
| | - Shucheng Xie
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Helmuth Thomas
- Institute of Carbon Cycles, Helmholtz-Zentrum Hereon, Geesthacht, Germany
- Institut für Chemie und Biologie des Meeres (ICBM), Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Gerhard J Herndl
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Ronald Benner
- Department of Biological Sciences, School of the Earth, Ocean and Environment, University of South Carolina, Columbia, SC, USA
| | - Micheal Gonsior
- UN Global ONCE joint focal points at Shandong University, University of East Anglia, University of Maryland Center for Environmental Science, and Xiamen University, Xiamen, China
- Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science, Solomons, MD, USA
| | - Feng Chen
- UN Global ONCE joint focal points at Shandong University, University of East Anglia, University of Maryland Center for Environmental Science, and Xiamen University, Xiamen, China
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD, USA
| | - Wei-Jun Cai
- School of Marine Science and Policy, University of Delaware, Newark, DE, USA
| | - Carol Robinson
- UN Global ONCE joint focal points at Shandong University, University of East Anglia, University of Maryland Center for Environmental Science, and Xiamen University, Xiamen, China.
- Centre for Ocean and Atmospheric Sciences (COAS), School of Environmental Sciences, University of East Anglia, Norwich, UK.
| |
Collapse
|
6
|
Chen S, Xie ZX, Yan KQ, Chen JW, Li DX, Wu PF, Peng L, Lin L, Dong CM, Zhao Z, Fan GY, Liu SQ, Herndl GJ, Wang DZ. Functional vertical connectivity of microbial communities in the ocean. SCIENCE ADVANCES 2024; 10:eadj8184. [PMID: 38781332 PMCID: PMC11114224 DOI: 10.1126/sciadv.adj8184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 04/15/2024] [Indexed: 05/25/2024]
Abstract
Sinking particles are a critical conduit for the transport of surface microbes to the ocean's interior. Vertical connectivity of phylogenetic composition has been shown; however, the functional vertical connectivity of microbial communities has not yet been explored in detail. We investigated protein and taxa profiles of both free-living and particle-attached microbial communities from the surface to 3000 m depth using a combined metaproteomic and 16S rRNA amplicon sequencing approach. A clear compositional and functional vertical connectivity of microbial communities was observed throughout the water column with Oceanospirillales, Alteromonadales, and Rhodobacterales as key taxa. The surface-derived particle-associated microbes increased the expression of proteins involved in basic metabolism, organic matter processing, and environmental stress response in deep waters. This study highlights the functional vertical connectivity between surface and deep-sea microbial communities via sinking particles and reveals that a considerable proportion of the deep-sea microbes might originate from surface waters and have a major impact on the biogeochemical cycles in the deep sea.
Collapse
Affiliation(s)
- Shi Chen
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Zhang-Xian Xie
- School of Resource and Environmental Sciences, Quanzhou Normal University, Quanzhou 362000, China
| | - Ke-Qiang Yan
- BGI-Shenzhen, Shenzhen 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian-Wei Chen
- Qingdao Key Laboratory of Marine Genomics, BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao 266555, China
| | - Dong-Xu Li
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Peng-Fei Wu
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
| | - Ling Peng
- Qingdao Key Laboratory of Marine Genomics, BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
| | - Lin Lin
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| | - Chun-Ming Dong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, No. 184, Daxue Road, Siming District, Xiamen 361005, Fujian, China
| | - Zihao Zhao
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Guang-Yi Fan
- BGI-Shenzhen, Shenzhen 518083, China
- Qingdao Key Laboratory of Marine Genomics, BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Shenzhen, Qingdao 266555, China
| | - Si-Qi Liu
- BGI-Shenzhen, Shenzhen 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gerhard J. Herndl
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
- NIOZ, Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Utrecht University, 1790 AB Den Burg, Texel, Netherlands
| | - Da-Zhi Wang
- State Key Laboratory of Marine Environmental Science/College of the Environment and Ecology, Xiamen University, Xiamen 361005, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China
| |
Collapse
|
7
|
Karthäuser C, Fucile PD, Maas AE, Blanco-Bercial L, Gossner H, Lowenstein DP, Niimi YJ, Van Mooy BAS, Bernhard JM, Buesseler KO, Sievert SM. RotoBOD─Quantifying Oxygen Consumption by Suspended Particles and Organisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8760-8770. [PMID: 38717860 PMCID: PMC11112748 DOI: 10.1021/acs.est.4c03186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 05/22/2024]
Abstract
Sinking or floating is the natural state of planktonic organisms and particles in the ocean. Simulating these conditions is critical when making measurements, such as respirometry, because they allow the natural exchange of substrates and products between sinking particles and water flowing around them and prevent organisms that are accustomed to motion from changing their metabolism. We developed a rotating incubator, the RotoBOD (named after its capability to rotate and determine biological oxygen demand, BOD), that uniquely enables automated oxygen measurements in small volumes while keeping the samples in their natural state of suspension. This allows highly sensitive rate measurements of oxygen utilization and subsequent characterization of single particles or small planktonic organisms, such as copepods, jellyfish, or protists. As this approach is nondestructive, it can be combined with several further measurements during and after the incubation, such as stable isotope additions and molecular analyses. This makes the instrument useful for ecologists, biogeochemists, and potentially other user groups such as aquaculture facilities. Here, we present the technical background of our newly developed apparatus and provide examples of how it can be utilized to determine oxygen production and consumption in small organisms and particles.
Collapse
Affiliation(s)
- Clarissa Karthäuser
- Woods
Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, Falmouth, Massachusetts 02543, United States
| | - Paul D. Fucile
- Woods
Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, Falmouth, Massachusetts 02543, United States
| | - Amy E. Maas
- Bermuda
Institute of Ocean Sciences, Arizona State
University, 17 Biological
Station, St. George’s GE01, Bermuda
| | - Leocadio Blanco-Bercial
- Bermuda
Institute of Ocean Sciences, Arizona State
University, 17 Biological
Station, St. George’s GE01, Bermuda
| | - Hannah Gossner
- Bermuda
Institute of Ocean Sciences, Arizona State
University, 17 Biological
Station, St. George’s GE01, Bermuda
| | - Daniel P. Lowenstein
- Woods
Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, Falmouth, Massachusetts 02543, United States
| | - Yuuki J. Niimi
- Bermuda
Institute of Ocean Sciences, Arizona State
University, 17 Biological
Station, St. George’s GE01, Bermuda
| | - Benjamin A. S. Van Mooy
- Woods
Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, Falmouth, Massachusetts 02543, United States
| | - Joan M. Bernhard
- Woods
Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, Falmouth, Massachusetts 02543, United States
| | - Ken O. Buesseler
- Woods
Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, Falmouth, Massachusetts 02543, United States
| | - Stefan M. Sievert
- Woods
Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, Falmouth, Massachusetts 02543, United States
| |
Collapse
|
8
|
Zhao Z, Amano C, Reinthaler T, Orellana MV, Herndl GJ. Substrate uptake patterns shape niche separation in marine prokaryotic microbiome. SCIENCE ADVANCES 2024; 10:eadn5143. [PMID: 38748788 PMCID: PMC11095472 DOI: 10.1126/sciadv.adn5143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/11/2024] [Indexed: 05/19/2024]
Abstract
Marine heterotrophic prokaryotes primarily take up ambient substrates using transporters. The patterns of transporters targeting particular substrates shape the ecological role of heterotrophic prokaryotes in marine organic matter cycles. Here, we report a size-fractionated pattern in the expression of prokaryotic transporters throughout the oceanic water column due to taxonomic variations, revealed by a multi-"omics" approach targeting ATP-binding cassette (ABC) transporters and TonB-dependent transporters (TBDTs). Substrate specificity analyses showed that marine SAR11, Rhodobacterales, and Oceanospirillales use ABC transporters to take up organic nitrogenous compounds in the free-living fraction, while Alteromonadales, Bacteroidetes, and Sphingomonadales use TBDTs for carbon-rich organic matter and metal chelates on particles. The expression of transporter proteins also supports distinct lifestyles of deep-sea prokaryotes. Our results suggest that transporter divergency in organic matter assimilation reflects a pronounced niche separation in the prokaryote-mediated organic matter cycles.
Collapse
Affiliation(s)
- Zihao Zhao
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria
| | - Chie Amano
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria
| | - Thomas Reinthaler
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria
| | - Mónica V. Orellana
- Polar Science Center, Applied Physics Laboratory, University of Washington, Seattle, WA 98195, USA
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Gerhard J. Herndl
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria
- NIOZ, Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Den Burg, Netherlands
- Environmental and Climate Research Hub, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria
| |
Collapse
|
9
|
Zhang R, Zhang H, Chen M, Liu L, Tan H, Tang Y. Impact of Hydrostatic Pressure on Molecular Structure and Dynamics of the Sodium and Chloride Ions in Portlandite Nanopores. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2151. [PMID: 38730957 PMCID: PMC11084592 DOI: 10.3390/ma17092151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/13/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
In order to address the issues of energy depletion, more resources are being searched for in the deep sea. Therefore, research into how the deep-sea environment affects cement-based materials for underwater infrastructure is required. This paper examines the impact of ocean depth (0, 500, 1000, and 1500 m) on the ion interaction processes in concrete nanopores using molecular dynamics simulations. At the portlandite interface, the local structural and kinetic characteristics of ions and water molecules are examined. The findings show that the portlandite surface hydrophilicity is unaffected by increasing depth. The density profile and coordination number of ions alter as depth increases, and the diffusion speed noticeably decreases. The main cause of the ions' reduced diffusion velocity is expected to be the low temperature. This work offers a thorough understanding of the cement hydration products' microstructure in deep sea, which may help explain why cement-based underwater infrastructure deteriorates over time.
Collapse
Affiliation(s)
- Run Zhang
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, China; (R.Z.); (L.L.); (H.T.)
| | - Hongping Zhang
- School of Mechanical Engineering, Institute for Advanced Study, Chengdu University, Chengdu 610100, China
| | - Meng Chen
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou 510640, China;
| | - Laibao Liu
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, China; (R.Z.); (L.L.); (H.T.)
| | - Hongbin Tan
- School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, China; (R.Z.); (L.L.); (H.T.)
| | - Youhong Tang
- Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Adelaide 5042, Australia
| |
Collapse
|
10
|
Charalampous G, Fragkou E, Kalogerakis N, Antoniou E, Gontikaki E. Diversity links to functionality: Unraveling the impact of pressure disruption and culture medium on crude oil-enriched microbial communities from the deep Eastern Mediterranean Sea. MARINE POLLUTION BULLETIN 2024; 202:116275. [PMID: 38564821 DOI: 10.1016/j.marpolbul.2024.116275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/19/2024] [Accepted: 03/17/2024] [Indexed: 04/04/2024]
Abstract
Mesopelagic water from the deep Eastern Mediterranean Sea (EMS) was collected under disrupted (REPRESS) or undisturbed (HP) pressure conditions and was acclimated to oil (OIL) or dispersed-oil (DISPOIL) under in situ pressure and temperature (10 MPa, 14 °C). Decompression resulted in oil-acclimatised microbial communities of lower diversity despite the restoration of in situ pressure conditions during the 1-week incubation. Further biodiversity loss was observed when oil-acclimatised communities were transferred to ONR7 medium to facilitate the isolation of oil-degrading bacteria. Microbial diversity loss impacted the degradation of recalcitrant oil compounds, especially PAHs, as low-abundance taxa, linked with PAH degradation, were outcompeted in the enrichment process. Thalassomonas, Pseudoalteromonas, Halomonas and Alcanivorax were enriched in ONR7 under all experimental conditions. No effect of dispersant application on the microbial community structure was identified. A. venustensis was isolated under all tested conditions suggesting a potential key role of this species in hydrocarbons removal in the deep EMS.
Collapse
Affiliation(s)
- Georgia Charalampous
- School of Chemical and Environmental Engineering, Technical University of Crete, Chania, Greece; Institute of Geoenergy, Foundation for Research and Technology Hellas, Chania, Greece.
| | - Efsevia Fragkou
- School of Chemical and Environmental Engineering, Technical University of Crete, Chania, Greece; Institute of Geoenergy, Foundation for Research and Technology Hellas, Chania, Greece
| | - Nicolas Kalogerakis
- School of Chemical and Environmental Engineering, Technical University of Crete, Chania, Greece; Institute of Geoenergy, Foundation for Research and Technology Hellas, Chania, Greece
| | - Eleftheria Antoniou
- School of Chemical and Environmental Engineering, Technical University of Crete, Chania, Greece; School of Mineral Resources Engineering, Technical University of Crete, Chania, Greece
| | - Evangelia Gontikaki
- Institute of Geoenergy, Foundation for Research and Technology Hellas, Chania, Greece.
| |
Collapse
|
11
|
Franco-Cisterna B, Stief P, Glud RN. Hydrostatic pressure impedes the degradation of sinking copepod carcasses and fecal pellets. JOURNAL OF PLANKTON RESEARCH 2024; 46:219-223. [PMID: 38572121 PMCID: PMC10987097 DOI: 10.1093/plankt/fbae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/05/2024] [Indexed: 04/05/2024]
Abstract
Fast-sinking zooplankton carcasses and fecal pellets appear to contribute significantly to the vertical transport of particulate organic carbon (POC), partly because of low temperature that decreases microbial degradation during the descent into the deep ocean. Increasing hydrostatic pressure could further reduce the degradation efficiency of sinking POC, but this effect remains unexplored. Here, the degradation of carcasses and fecal pellets of the abundant marine copepod Calanus finmarchicus was experimentally studied as a function of pressure (0.1-100 MPa). Samples were either exposed to elevated pressure in short 1-day incubations or a gradual pressure increase, simulating continuous particle sinking during a 20-day incubation. Both experiments revealed gradual inhibition of microbial respiration in the pressure range of 20-100 MPa, corresponding to 2-10-km depth. This suggests that hydrostatic pressure impedes carbon mineralization of fast-sinking carcasses and fecal pellets and enhances the deep-sea deposition rate of zooplankton-derived organic material.
Collapse
Affiliation(s)
- Belén Franco-Cisterna
- HADAL & Nordcee, Department of Biology, University of Southern Denmark, Odense 5230, Denmark
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen 6708 PB, The Netherlands
| | - Peter Stief
- HADAL & Nordcee, Department of Biology, University of Southern Denmark, Odense 5230, Denmark
| | - Ronnie N Glud
- HADAL & Nordcee, Department of Biology, University of Southern Denmark, Odense 5230, Denmark
- Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Odense 5230, Denmark
- Department of Ocean and Environmental Sciences, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan
| |
Collapse
|
12
|
Sebastián M, Giner CR, Balagué V, Gómez-Letona M, Massana R, Logares R, Duarte CM, Gasol JM. The active free-living bathypelagic microbiome is largely dominated by rare surface taxa. ISME COMMUNICATIONS 2024; 4:ycae015. [PMID: 38456147 PMCID: PMC10919342 DOI: 10.1093/ismeco/ycae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/09/2024] [Accepted: 01/19/2024] [Indexed: 03/09/2024]
Abstract
A persistent microbial seed bank is postulated to sustain the marine biosphere, and recent findings show that prokaryotic taxa present in the ocean's surface dominate prokaryotic communities throughout the water column. Yet, environmental conditions exert a tight control on the activity of prokaryotes, and drastic changes in these conditions are known to occur from the surface to deep waters. The simultaneous characterization of the total (DNA) and active (i.e. with potential for protein synthesis, RNA) free-living communities in 13 stations distributed across the tropical and subtropical global ocean allowed us to assess their change in structure and diversity along the water column. We observed that active communities were surprisingly more similar along the vertical gradient than total communities. Looking at the vertical connectivity of the active vs. the total communities, we found that taxa detected in the surface sometimes accounted for more than 75% of the active microbiome of bathypelagic waters (50% on average). These active taxa were generally rare in the surface, representing a small fraction of all the surface taxa. Our findings show that the drastic vertical change in environmental conditions leads to the inactivation and disappearance of a large proportion of surface taxa, but some surface-rare taxa remain active (or with potential for protein synthesis) and dominate the bathypelagic active microbiome.
Collapse
Affiliation(s)
- Marta Sebastián
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar, CSIC. Pg Marítim de la Barceloneta 37-49, Barcelona, Catalunya E08003, Spain
| | - Caterina R Giner
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar, CSIC. Pg Marítim de la Barceloneta 37-49, Barcelona, Catalunya E08003, Spain
| | - Vanessa Balagué
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar, CSIC. Pg Marítim de la Barceloneta 37-49, Barcelona, Catalunya E08003, Spain
| | - Markel Gómez-Letona
- Instituto de Oceanografía y Cambio Global, Universidad de Las Palmas de Gran Canaria, Parque Científico Tecnológico Marino de Taliarte, s/n, Telde, Las Palmas 35214, Spain
| | - Ramon Massana
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar, CSIC. Pg Marítim de la Barceloneta 37-49, Barcelona, Catalunya E08003, Spain
| | - Ramiro Logares
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar, CSIC. Pg Marítim de la Barceloneta 37-49, Barcelona, Catalunya E08003, Spain
| | - Carlos M Duarte
- Red Sea Research Centre (RSRC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Josep M Gasol
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar, CSIC. Pg Marítim de la Barceloneta 37-49, Barcelona, Catalunya E08003, Spain
| |
Collapse
|
13
|
Lim Y, Seo JH, Giovannoni SJ, Kang I, Cho JC. Cultivation of marine bacteria of the SAR202 clade. Nat Commun 2023; 14:5098. [PMID: 37607927 PMCID: PMC10444878 DOI: 10.1038/s41467-023-40726-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/07/2023] [Indexed: 08/24/2023] Open
Abstract
Bacteria of the SAR202 clade, within the phylum Chloroflexota, are ubiquitously distributed in the ocean but have not yet been cultivated in the lab. It has been proposed that ancient expansions of catabolic enzyme paralogs broadened the spectrum of organic compounds that SAR202 bacteria could oxidize, leading to transformations of the Earth's carbon cycle. Here, we report the successful cultivation of SAR202 bacteria from surface seawater using dilution-to-extinction culturing. The growth of these strains is very slow (0.18-0.24 day-1) and is inhibited by exposure to light. The genomes, of ca. 3.08 Mbp, encode archaella (archaeal motility structures) and multiple sets of enzyme paralogs, including 80 genes coding for enolase superfamily enzymes and 44 genes encoding NAD(P)-dependent dehydrogenases. We propose that these enzyme paralogs participate in multiple parallel pathways for non-phosphorylative catabolism of sugars and sugar acids. Indeed, we demonstrate that SAR202 strains can utilize several substrates that are metabolized through the predicted pathways, such as sugars ʟ-fucose and ʟ-rhamnose, as well as their lactone and acid forms.
Collapse
Affiliation(s)
- Yeonjung Lim
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea
- Center for Molecular and Cell Biology, Inha University, Incheon, 22212, Republic of Korea
| | - Ji-Hui Seo
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea
| | | | - Ilnam Kang
- Center for Molecular and Cell Biology, Inha University, Incheon, 22212, Republic of Korea.
| | - Jang-Cheon Cho
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea.
| |
Collapse
|
14
|
Amano C, Reinthaler T, Sintes E, Varela MM, Stefanschitz J, Kaneko S, Nakano Y, Borchert W, Herndl GJ, Utsumi M. A device for assessing microbial activity under ambient hydrostatic pressure: The in situ microbial incubator (ISMI). LIMNOLOGY AND OCEANOGRAPHY, METHODS 2023; 21:69-81. [PMID: 38505832 PMCID: PMC10946486 DOI: 10.1002/lom3.10528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/22/2022] [Accepted: 11/22/2022] [Indexed: 03/21/2024]
Abstract
Microbes in the dark ocean are exposed to hydrostatic pressure increasing with depth. Activity rate measurements and biomass production of dark ocean microbes are, however, almost exclusively performed under atmospheric pressure conditions due to technical constraints of sampling equipment maintaining in situ pressure conditions. To evaluate the microbial activity under in situ hydrostatic pressure, we designed and thoroughly tested an in situ microbial incubator (ISMI). The ISMI allows autonomously collecting and incubating seawater at depth, injection of substrate and fixation of the samples after a preprogramed incubation time. The performance of the ISMI was tested in a high-pressure tank and in several field campaigns under ambient hydrostatic pressure by measuring prokaryotic bulk 3H-leucine incorporation rates. Overall, prokaryotic leucine incorporation rates were lower at in situ pressure conditions than under to depressurized conditions reaching only about 50% of the heterotrophic microbial activity measured under depressurized conditions in bathypelagic waters in the North Atlantic Ocean off the northwestern Iberian Peninsula. Our results show that the ISMI is a valuable tool to reliably determine the metabolic activity of deep-sea microbes at in situ hydrostatic pressure conditions. Hence, we advocate that deep-sea biogeochemical and microbial rate measurements should be performed under in situ pressure conditions to obtain a more realistic view on deep-sea biotic processes.
Collapse
Affiliation(s)
- Chie Amano
- Department of Functional and Evolutionary Ecology, Bio‐Oceanography UnitUniversity of ViennaViennaAustria
| | - Thomas Reinthaler
- Department of Functional and Evolutionary Ecology, Bio‐Oceanography UnitUniversity of ViennaViennaAustria
| | - Eva Sintes
- Instituto Español de Oceanografía‐CSIC, Centro Oceanográfico de BalearesPalma de MallorcaSpain
| | - Marta M. Varela
- Instituto Español de Oceanografia‐CSIC, Centro Oceanografico de A CoruñaA CoruñaSpain
| | - Julia Stefanschitz
- Department of Functional and Evolutionary Ecology, Bio‐Oceanography UnitUniversity of ViennaViennaAustria
- Present address:
Marine Evolutionary Ecology, Deep‐Sea Biology Group, GEOMAR Helmholtz Centre for Ocean Research KielKielGermany
| | | | - Yoshiyuki Nakano
- Japan Agency for Marine‐Earth Science and Technology (JAMSTEC)YokosukaJapan
| | | | - Gerhard J. Herndl
- Department of Functional and Evolutionary Ecology, Bio‐Oceanography UnitUniversity of ViennaViennaAustria
- NIOZ, Department of Marine Microbiology and BiogeochemistryRoyal Netherlands Institute for Sea Research, Utrecht UniversityTexelThe Netherlands
| | - Motoo Utsumi
- Faculty of Life and Environmental SciencesUniversity of TsukubaIbarakiJapan
- Microbiology Research Center for SustainabilityUniversity of TsukubaIbarakiJapan
| |
Collapse
|