1
|
Christ M, Rubio Elizalde I, Weiland P, Kern A, Iwen T, Mais CN, Pané-Farré J, Kiontke S, Altegoer F, Freitag J, Bange G. Structural and Functional Analysis of the Lectin-like Protein Llp1 Secreted by Ustilago maydis upon Infection of Maize. J Fungi (Basel) 2025; 11:164. [PMID: 39997458 PMCID: PMC11857070 DOI: 10.3390/jof11020164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/17/2025] [Accepted: 02/10/2025] [Indexed: 02/26/2025] Open
Abstract
The biotrophic fungus Ustilago maydis, which causes smut disease in maize, secretes numerous proteins upon plant colonization. Some of them, termed effectors, help to evade plant defenses and manipulate cellular processes within the host. The function of many proteins specifically secreted during infection remains elusive. In this study, we biochemically characterized one such protein, UMAG_00027, that is highly expressed during plant infection. We show that UMAG_00027 is a secreted protein with a lectin-like fold and therefore term it Llp1 (lectin-like-protein 1). Llp1 decorated the fungal cell wall of cells grown in axenic culture or proliferating in planta, which is in agreement with its potential sugar-binding ability. We were unable to identify the precise sugar moieties that are bound by Llp1. CRISPR/Cas9-mediated deletion of llp1 reveals that the gene is not essential for fungal virulence. A structural search shows the presence of several other lectin-like proteins in U. maydis that might compensate for the function of Llp1 in ∆llp1 mutants. We therefore speculate that Llp1 is part of a family of lectin-like proteins with redundant functions.
Collapse
Affiliation(s)
- Marvin Christ
- Center for Synthetic Microbiology (SYNMIKRO), Departments of Biology and Chemistry, University of Marburg, Karl-von-Frisch Straße 14, 35043 Marburg, Germany
| | - Itzel Rubio Elizalde
- Center for Synthetic Microbiology (SYNMIKRO), Departments of Biology and Chemistry, University of Marburg, Karl-von-Frisch Straße 14, 35043 Marburg, Germany
| | - Paul Weiland
- Center for Synthetic Microbiology (SYNMIKRO), Departments of Biology and Chemistry, University of Marburg, Karl-von-Frisch Straße 14, 35043 Marburg, Germany
| | - Antonia Kern
- Center for Synthetic Microbiology (SYNMIKRO), Departments of Biology and Chemistry, University of Marburg, Karl-von-Frisch Straße 14, 35043 Marburg, Germany
| | - Thomas Iwen
- Center for Synthetic Microbiology (SYNMIKRO), Departments of Biology and Chemistry, University of Marburg, Karl-von-Frisch Straße 14, 35043 Marburg, Germany
| | - Christopher-Nils Mais
- Center for Synthetic Microbiology (SYNMIKRO), Departments of Biology and Chemistry, University of Marburg, Karl-von-Frisch Straße 14, 35043 Marburg, Germany
| | - Jan Pané-Farré
- Center for Synthetic Microbiology (SYNMIKRO), Departments of Biology and Chemistry, University of Marburg, Karl-von-Frisch Straße 14, 35043 Marburg, Germany
| | - Stephan Kiontke
- Center for Synthetic Microbiology (SYNMIKRO), Departments of Biology and Chemistry, University of Marburg, Karl-von-Frisch Straße 14, 35043 Marburg, Germany
| | - Florian Altegoer
- Institute of Microbiology, Heinrich-Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Johannes Freitag
- Center for Synthetic Microbiology (SYNMIKRO), Departments of Biology and Chemistry, University of Marburg, Karl-von-Frisch Straße 14, 35043 Marburg, Germany
| | - Gert Bange
- Center for Synthetic Microbiology (SYNMIKRO), Departments of Biology and Chemistry, University of Marburg, Karl-von-Frisch Straße 14, 35043 Marburg, Germany
- Max-Planck-Insitute for Terrestrial Microbiology, Karl-von-Frisch Straße 14, 35043 Marburg, Germany
| |
Collapse
|
2
|
Leiva-Mora M, Capdesuñer Y, Villalobos-Olivera A, Moya-Jiménez R, Saa LR, Martínez-Montero ME. Uncovering the Mechanisms: The Role of Biotrophic Fungi in Activating or Suppressing Plant Defense Responses. J Fungi (Basel) 2024; 10:635. [PMID: 39330396 PMCID: PMC11433257 DOI: 10.3390/jof10090635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024] Open
Abstract
This paper discusses the mechanisms by which fungi manipulate plant physiology and suppress plant defense responses by producing effectors that can target various host proteins. Effector-triggered immunity and effector-triggered susceptibility are pivotal elements in the complex molecular dialogue underlying plant-pathogen interactions. Pathogen-produced effector molecules possess the ability to mimic pathogen-associated molecular patterns or hinder the binding of pattern recognition receptors. Effectors can directly target nucleotide-binding domain, leucine-rich repeat receptors, or manipulate downstream signaling components to suppress plant defense. Interactions between these effectors and receptor-like kinases in host plants are critical in this process. Biotrophic fungi adeptly exploit the signaling networks of key plant hormones, including salicylic acid, jasmonic acid, abscisic acid, and ethylene, to establish a compatible interaction with their plant hosts. Overall, the paper highlights the importance of understanding the complex interplay between plant defense mechanisms and fungal effectors to develop effective strategies for plant disease management.
Collapse
Affiliation(s)
- Michel Leiva-Mora
- Laboratorio de Biotecnología, Facultad de Ciencias Agropecuarias, Universidad Técnica de Ambato (UTA-DIDE), Cantón Cevallos Vía a Quero, Sector El Tambo-La Universidad, Cevallos 1801334, Ecuador
| | - Yanelis Capdesuñer
- Natural Products Department, Centro de Bioplantas, Universidad de Ciego de Ávila Máximo Gómez Báez, Ciego de Ávila 65200, Cuba;
| | - Ariel Villalobos-Olivera
- Facultad de Ciencias Agropecuarias, Universidad de Ciego de Ávila Máximo Gómez Báez, Ciego de Ávila 65200, Cuba;
| | - Roberto Moya-Jiménez
- Facultad de Diseño y Arquitectura, Universidad Técnica de Ambato (UTA-DIDE), Huachi 180207, Ecuador;
| | - Luis Rodrigo Saa
- Departamento de Ciencias Biológicas y Agropecuarias, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja (UTPL), San Cayetano Alto, Calle París s/n, Loja 1101608, Ecuador;
| | - Marcos Edel Martínez-Montero
- Facultad de Ciencias Agropecuarias, Universidad de Ciego de Ávila Máximo Gómez Báez, Ciego de Ávila 65200, Cuba;
| |
Collapse
|
3
|
Rozano L, Jones DAB, Hane JK, Mancera RL. Template-Based Modelling of the Structure of Fungal Effector Proteins. Mol Biotechnol 2024; 66:784-813. [PMID: 36940017 PMCID: PMC11043172 DOI: 10.1007/s12033-023-00703-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/14/2023] [Indexed: 03/21/2023]
Abstract
The discovery of new fungal effector proteins is necessary to enable the screening of cultivars for disease resistance. Sequence-based bioinformatics methods have been used for this purpose, but only a limited number of functional effector proteins have been successfully predicted and subsequently validated experimentally. A significant obstacle is that many fungal effector proteins discovered so far lack sequence similarity or conserved sequence motifs. The availability of experimentally determined three-dimensional (3D) structures of a number of effector proteins has recently highlighted structural similarities amongst groups of sequence-dissimilar fungal effectors, enabling the search for similar structural folds amongst effector sequence candidates. We have applied template-based modelling to predict the 3D structures of candidate effector sequences obtained from bioinformatics predictions and the PHI-BASE database. Structural matches were found not only with ToxA- and MAX-like effector candidates but also with non-fungal effector-like proteins-including plant defensins and animal venoms-suggesting the broad conservation of ancestral structural folds amongst cytotoxic peptides from a diverse range of distant species. Accurate modelling of fungal effectors were achieved using RaptorX. The utility of predicted structures of effector proteins lies in the prediction of their interactions with plant receptors through molecular docking, which will improve the understanding of effector-plant interactions.
Collapse
Affiliation(s)
- Lina Rozano
- Curtin Medical School, Curtin Health Innovation Research Institute, GPO Box U1987, Perth, WA, 6845, Australia
- Curtin Institute for Computation, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| | - Darcy A B Jones
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
- Curtin Institute for Computation, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| | - James K Hane
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
- Curtin Institute for Computation, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| | - Ricardo L Mancera
- Curtin Medical School, Curtin Health Innovation Research Institute, GPO Box U1987, Perth, WA, 6845, Australia.
- Curtin Institute for Computation, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia.
| |
Collapse
|
4
|
Schuster M, Schweizer G, Reißmann S, Happel P, Aßmann D, Rössel N, Güldener U, Mannhaupt G, Ludwig N, Winterberg S, Pellegrin C, Tanaka S, Vincon V, Presti LL, Wang L, Bender L, Gonzalez C, Vranes M, Kämper J, Seong K, Krasileva K, Kahmann R. Novel Secreted Effectors Conserved Among Smut Fungi Contribute to the Virulence of Ustilago maydis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:250-263. [PMID: 38416124 DOI: 10.1094/mpmi-09-23-0139-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Fungal pathogens deploy a set of molecules (proteins, specialized metabolites, and sRNAs), so-called effectors, to aid the infection process. In comparison to other plant pathogens, smut fungi have small genomes and secretomes of 20 Mb and around 500 proteins, respectively. Previous comparative genomic studies have shown that many secreted effector proteins without known domains, i.e., novel, are conserved only in the Ustilaginaceae family. By analyzing the secretomes of 11 species within Ustilaginaceae, we identified 53 core homologous groups commonly present in this lineage. By collecting existing mutants and generating additional ones, we gathered 44 Ustilago maydis strains lacking single core effectors as well as 9 strains containing multiple deletions of core effector gene families. Pathogenicity assays revealed that 20 of these 53 mutant strains were affected in virulence. Among the 33 mutants that had no obvious phenotypic changes, 13 carried additional, sequence-divergent, structurally similar paralogs. We report a virulence contribution of seven previously uncharacterized single core effectors and of one effector family. Our results help to prioritize effectors for understanding U. maydis virulence and provide genetic resources for further characterization. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Mariana Schuster
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany
| | - Gabriel Schweizer
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- Independent Data Lab UG, 80937 Munich, Germany
| | - Stefanie Reißmann
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Petra Happel
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Daniela Aßmann
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Nicole Rössel
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Ulrich Güldener
- Deutsches Herzzentrum München, Technische Universität München, 80636 München, Germany
| | - Gertrud Mannhaupt
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Nicole Ludwig
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- Research & Development, Weed Control Bayer AG, Crop Science Division, 65926 Frankfurt am Main, Germany
| | - Sarah Winterberg
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Clément Pellegrin
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Shigeyuki Tanaka
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Volker Vincon
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Libera Lo Presti
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Lei Wang
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Lena Bender
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
- Department of Pharmaceutics and Biopharmaceutics, Phillips-University Marburg, 35037 Marburg, Germany
| | - Carla Gonzalez
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Miroslav Vranes
- Karlsruhe Institute of Technology, Institute for Applied Biosciences, Department of Genetics, 76131 Karlsruhe, Germany
| | - Jörg Kämper
- Karlsruhe Institute of Technology, Institute for Applied Biosciences, Department of Genetics, 76131 Karlsruhe, Germany
| | - Kyungyong Seong
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, U.S.A
| | - Ksenia Krasileva
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, U.S.A
| | - Regine Kahmann
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| |
Collapse
|
5
|
Suzuki M, Kitazawa Y, Iwabuchi N, Maejima K, Matsuyama J, Matsumoto O, Oshima K, Namba S, Yamaji Y. Target degradation specificity of phytoplasma effector phyllogen is regulated by the recruitment of host proteasome shuttle protein. MOLECULAR PLANT PATHOLOGY 2024; 25:e13410. [PMID: 38105442 PMCID: PMC10799209 DOI: 10.1111/mpp.13410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/19/2023]
Abstract
Phytoplasmas infect a wide variety of plants and can cause distinctive symptoms including the conversion of floral organs into leaf-like organs, known as phyllody. Phyllody is induced by an effector protein family called phyllogens, which interact with floral MADS-box transcription factors (MTFs) responsible for determining the identity of floral organs. The MTF/phyllogen complex then interacts with the proteasomal shuttle protein RADIATION SENSITIVE23 (RAD23), which facilitates delivery of the MTF/phyllogen complex to the host proteasome for MTF degradation. Previous studies have indicated that the MTF degradation specificity of phyllogens is determined by their ability to bind to MTFs. However, in the present study, we discovered a novel mechanism determining the degradation specificity through detailed functional analyses of a phyllogen homologue of rice yellow dwarf phytoplasma (PHYLRYD ). PHYLRYD degraded a narrower range of floral MTFs than other phyllody-inducing phyllogens, resulting in compromised phyllody phenotypes in plants. Interestingly, PHYLRYD was able to bind to some floral MTFs that PHYLRYD was unable to efficiently degrade. However, the complex of PHYLRYD and the non-degradable MTF could not interact with RAD23. These results indicate that the MTF degradation specificity of PHYLRYD is correlated with the ability to form the MTF/PHYLRYD /RAD23 ternary complex, rather than the ability to bind to MTF. This study elucidated that phyllogen target specificity is regulated by both the MTF-binding ability and RAD23 recruitment ability of the MTF/phyllogen complex.
Collapse
Affiliation(s)
- Masato Suzuki
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Yugo Kitazawa
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Nozomu Iwabuchi
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Kensaku Maejima
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Juri Matsuyama
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Oki Matsumoto
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Kenro Oshima
- Faculty of Bioscience, Hosei UniversityTokyoJapan
| | - Shigetou Namba
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Yasuyuki Yamaji
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| |
Collapse
|
6
|
Beernink BM, Whitham SA. Foxtail mosaic virus: A tool for gene function analysis in maize and other monocots. MOLECULAR PLANT PATHOLOGY 2023; 24:811-822. [PMID: 37036421 PMCID: PMC10257046 DOI: 10.1111/mpp.13330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/20/2023] [Accepted: 03/08/2023] [Indexed: 06/11/2023]
Abstract
Many plant viruses have been engineered into vectors for use in functional genomics studies, expression of heterologous proteins, and, most recently, gene editing applications. The use of viral vectors overcomes bottlenecks associated with mutagenesis and transgenesis approaches often implemented for analysis of gene function. There are several engineered viruses that are demonstrated or suggested to be useful in maize through proof-of-concept studies. However, foxtail mosaic virus (FoMV), which has a relatively broad host range, is emerging as a particularly useful virus for gene function studies in maize and other monocot crop or weed species. A few clones of FoMV have been independently engineered, and they have different features and capabilities for virus-induced gene silencing (VIGS) and virus-mediated overexpression (VOX) of proteins. In addition, FoMV can be used to deliver functional guide RNAs in maize and other plants expressing the Cas9 protein, demonstrating its potential utility in virus-induced gene editing applications. There is a growing number of studies in which FoMV vectors are being applied for VIGS or VOX in maize and the vast majority of these are related to maize-microbe interactions. In this review, we highlight the biology and engineering of FoMV as well as its applications in maize-microbe interactions and more broadly in the context of the monocot functional genomics toolbox.
Collapse
Affiliation(s)
- Bliss M. Beernink
- Department of Plant Pathology, Entomology, and MicrobiologyIowa State UniversityAmesIowaUSA
- Department of BiologyUniversity of ManitobaWinnipegManitobaCanada
| | - Steven A. Whitham
- Department of Plant Pathology, Entomology, and MicrobiologyIowa State UniversityAmesIowaUSA
| |
Collapse
|
7
|
Wang S, Xia W, Li Y, Peng Y, Zhang Y, Tang J, Cui H, Qu L, Yao T, Yu Z, Ye Z. The Novel Effector Ue943 Is Essential for Host Plant Colonization by Ustilago esculenta. J Fungi (Basel) 2023; 9:jof9050593. [PMID: 37233304 DOI: 10.3390/jof9050593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023] Open
Abstract
The smut fungus Ustilago esculenta obligately parasitizes Zizania latifolia and induces smut galls at the stem tips of host plants. Previous research identified a putative secreted protein, Ue943, which is required for the biotrophic phase of U. esculenta but not for the saprophytic phase. Here, we studied the role of Ue943 during the infection process. Conserved homologs of Ue943 were found in smut fungi. Ue943 can be secreted by U. esculenta and localized to the biotrophic interface between fungi and plants. It is required at the early stage of colonization. The Ue943 deletion mutant caused reactive oxygen species (ROS) production and callose deposition in the host plant at 1 and 5 days post inoculation, which led to failed colonization. The virulence deficiency was restored by overexpressing gene Ue943 or Ue943:GFP. Transcriptome analysis further showed a series of changes in plant hormones following ROS production when the host plant was exposed to ΔUe943. We hypothesize that Ue943 might be responsible for ROS suppression or avoidance of recognition by the plant immune system. The mechanism underlying Ue943 requires further study to provide more insights into the virulence of smut fungi.
Collapse
Affiliation(s)
- Shuqing Wang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Wenqiang Xia
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310012, China
| | - Yani Li
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Yuyan Peng
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Yafen Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Jintian Tang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Haifeng Cui
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Lisi Qu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Tongfu Yao
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Zetao Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Zihong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
8
|
Seong K, Krasileva KV. Prediction of effector protein structures from fungal phytopathogens enables evolutionary analyses. Nat Microbiol 2023; 8:174-187. [PMID: 36604508 PMCID: PMC9816061 DOI: 10.1038/s41564-022-01287-6] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 11/11/2022] [Indexed: 01/07/2023]
Abstract
Elucidating the similarity and diversity of pathogen effectors is critical to understand their evolution across fungal phytopathogens. However, rapid divergence that diminishes sequence similarities between putatively homologous effectors has largely concealed the roots of effector evolution. Here we modelled the structures of 26,653 secreted proteins from 14 agriculturally important fungal phytopathogens, six non-pathogenic fungi and one oomycete with AlphaFold 2. With 18,000 successfully predicted folds, we performed structure-guided comparative analyses on two aspects of effector evolution: uniquely expanded sequence-unrelated structurally similar (SUSS) effector families and common folds present across the fungal species. Extreme expansion of lineage-specific SUSS effector families was found only in several obligate biotrophs, Blumeria graminis and Puccinia graminis. The highly expanded effector families were the source of conserved sequence motifs, such as the Y/F/WxC motif. We identified new classes of SUSS effector families that include known virulence factors, such as AvrSr35, AvrSr50 and Tin2. Structural comparisons revealed that the expanded structural folds further diversify through domain duplications and fusion with disordered stretches. Putatively sub- and neo-functionalized SUSS effectors could reconverge on regulation, expanding the functional pools of effectors in the pathogen infection cycle. We also found evidence that many effector families could have originated from ancestral folds conserved across fungi. Collectively, our study highlights diverse effector evolution mechanisms and supports divergent evolution as a major force in driving SUSS effector evolution from ancestral proteins.
Collapse
Affiliation(s)
- Kyungyong Seong
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Ksenia V Krasileva
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA.
| |
Collapse
|
9
|
Yoshimoto R, Ishida F, Yamaguchi M, Tanaka S. The production and secretion of tRNA-derived RNA fragments in the corn smut fungus Ustilago maydis. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:958798. [PMID: 37746175 PMCID: PMC10512261 DOI: 10.3389/ffunb.2022.958798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/18/2022] [Indexed: 09/26/2023]
Abstract
The biogenesis of small non-coding RNAs is a molecular event that contributes to cellular functions. The basidiomycete fungus Ustilago maydis is a biotrophic pathogen parasitizing maize. A hallmark of its genome structure is an absence of RNAi machinery including Dicer and Argonaute proteins, which are responsible for the production of small RNAs in other organisms. However, it remains unclear whether U. maydis produces small RNAs during fungal growth. Here we found that U. maydis cells accumulate approximately 20-30 nucleotides of small RNA fragments during growth in the axenic culture condition. The RNA-seq analysis of these fragments identified that these small RNAs are originated from tRNAs and 5.8S ribosomal RNA. Interestingly, majority of their sequences are generated from tRNAs responsible for asparagine, glutamine and glycine, suggesting a bias of origin. The cleavage of tRNAs mainly occurs at the position near anticodon-stem-loop. We generated the deletion mutants of two genes nuc1 and nuc2 encoding RNase T2, which is a candidate enzyme that cleaves tRNAs. The deletion mutants of two genes largely fail to accumulate tRNA-derived RNA fragments. Nuc1 and tRNA are co-localized at the tip of budding cells and tRNA fragment could be detected in culture supernatant. Our results suggest that specific tRNAs would be cleaved during secretory processes and tRNA fragments might have extracellular functions.
Collapse
Affiliation(s)
- Rei Yoshimoto
- Faculty of Agriculture, Setsunan University, Osaka, Japan
| | | | | | | |
Collapse
|
10
|
Plett JM, Plett KL. Leveraging genomics to understand the broader role of fungal small secreted proteins in niche colonization and nutrition. ISME COMMUNICATIONS 2022; 2:49. [PMID: 37938664 PMCID: PMC9723739 DOI: 10.1038/s43705-022-00139-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/24/2022] [Accepted: 06/08/2022] [Indexed: 08/09/2023]
Abstract
The last few years have seen significant advances in the breadth of fungi for which we have genomic resources and our understanding of the biological mechanisms evolved to enable fungi to interact with their environment and other organisms. One field of research that has seen a paradigm shift in our understanding concerns the role of fungal small secreted proteins (SSPs) classified as effectors. Classically thought to be a class of proteins utilized by pathogenic microbes to manipulate host physiology in support of colonization, comparative genomic studies have demonstrated that mutualistic fungi and fungi not associated with a living host (i.e., saprotrophic fungi) also encode inducible effector and candidate effector gene sequences. In this review, we discuss the latest advances in understanding how fungi utilize these secreted proteins to colonize a particular niche and affect nutrition and nutrient cycles. Recent studies show that candidate effector SSPs in fungi may have just as significant a role in modulating hyphosphere microbiomes and in orchestrating fungal growth as they do in supporting colonization of a living host. We conclude with suggestions on how comparative genomics may direct future studies seeking to characterize and differentiate effector from other more generalized functions of these enigmatic secreted proteins across all fungal lifestyles.
Collapse
Affiliation(s)
- Jonathan M Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.
| | - Krista L Plett
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, NSW, 2568, Australia
| |
Collapse
|
11
|
Zhang S, Li C, Si J, Han Z, Chen D. Action Mechanisms of Effectors in Plant-Pathogen Interaction. Int J Mol Sci 2022; 23:6758. [PMID: 35743201 PMCID: PMC9224169 DOI: 10.3390/ijms23126758] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 02/08/2023] Open
Abstract
Plant pathogens are one of the main factors hindering the breeding of cash crops. Pathogens, including oomycetes, fungus, and bacteria, secrete effectors as invasion weapons to successfully invade and propagate in host plants. Here, we review recent advances made in the field of plant-pathogen interaction models and the action mechanisms of phytopathogenic effectors. The review illustrates how effectors from different species use similar and distinct strategies to infect host plants. We classify the main action mechanisms of effectors in plant-pathogen interactions according to the infestation process: targeting physical barriers for disruption, creating conditions conducive to infestation, protecting or masking themselves, interfering with host cell physiological activity, and manipulating plant downstream immune responses. The investigation of the functioning of plant pathogen effectors contributes to improved understanding of the molecular mechanisms of plant-pathogen interactions. This understanding has important theoretical value and is of practical significance in plant pathology and disease resistance genetics and breeding.
Collapse
Affiliation(s)
| | | | | | - Zhigang Han
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China; (S.Z.); (C.L.); (J.S.)
| | - Donghong Chen
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China; (S.Z.); (C.L.); (J.S.)
| |
Collapse
|
12
|
Kahmann R. My Personal Journey from the Fascination for Phages to a Tumor-Inducing Fungal Pathogen of Corn. Annu Rev Microbiol 2022; 76:1-19. [PMID: 35395169 DOI: 10.1146/annurev-micro-121721-111032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
My path in science began with a fascination for microbiology and phages and later involved a switch of subjects to the fungus Ustilago maydis and how it causes disease in maize. I will not provide a review of my work but rather focus on decisive findings, serendipitous, lucky moments when major advances made the U. maydis-maize system what it is now-a well-established model for biotrophic fungi. I also want to share with you the joy of finding the needle in a haystack at the very end of my scientific career, a fungal structure likely used for effector delivery, and how we were able to translate this into a potential application in agriculture. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Regine Kahmann
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany;
| |
Collapse
|
13
|
López-Estrada EK, Sanmartín I, Uribe JE, Abalde S, Jiménez-Ruiz Y, García-París M. Mitogenomics and hidden-trait models reveal the role of phoresy and host shifts in the diversification of parasitoid blister beetles (Coleoptera: Meloidae). Mol Ecol 2022; 31:2453-2474. [PMID: 35146829 PMCID: PMC9305437 DOI: 10.1111/mec.16390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 01/24/2022] [Accepted: 01/31/2022] [Indexed: 11/28/2022]
Abstract
Changes in life history traits are often considered speciation triggers and can have dramatic effects on the evolutionary history of a lineage. Here, we examine the consequences of changes in two life history traits, host‐type and phoresy, in the hypermetamorphic blister beetles, Meloidae. Subfamilies Nemognathinae and Meloinae exhibit a complex life cycle involving multiple metamorphoses and parasitoidism. Most genera and tribes are bee‐parasitoids, and include phoretic or nonphoretic species, while two tribes feed on grasshopper eggs. These different life strategies are coupled with striking differences in species richness among clades. We generated a mitogenomic phylogeny for Nemognathinae and Meloinae, confirming the monophyly of these two clades, and used the dated phylogeny to explore the association between diversification rates and changes in host specificity and phoresy, using state‐dependent speciation and extinction (SSE) models that include the effect of hidden traits. To account for the low taxon sampling, we implemented a phylogenetic‐taxonomic approach based on birth‐death simulations, and used a Bayesian framework to integrate parameter and phylogenetic uncertainty. Results show that the ancestral hypermetamorphic Meloidae was a nonphoretic bee‐parasitoid, and that transitions towards a phoretic bee‐parasitoid and grasshopper parasitoidism occurred multiple times. Nonphoretic bee‐parasitoid lineages exhibit significantly higher relative extinction and lower diversification rates than phoretic bee‐and grasshopper‐parasitoids, but no significant differences were found between the latter two strategies. This suggests that Orthopteran host shifts and phoresy contributed jointly to the evolutionary success of the parasitoid meloidae. We also demonstrate that SSE models can be used to identify hidden traits coevolving with the focal trait in driving a lineage's diversification dynamics.
Collapse
Affiliation(s)
- E K López-Estrada
- Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal, 2, 28006, Madrid, España.,Real Jardín Botánico (RJB-CSIC). Plaza de Murillo, 2, 28014. Madrid, España
| | - I Sanmartín
- Real Jardín Botánico (RJB-CSIC). Plaza de Murillo, 2, 28014. Madrid, España
| | - J E Uribe
- Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal, 2, 28006, Madrid, España
| | - S Abalde
- Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal, 2, 28006, Madrid, España.,Centro de Estudios Avanzados de Blanes (CEAB-CSIC). Accéss, Cala Sant Francesc, 14, 17300, Blanes, España
| | - Y Jiménez-Ruiz
- Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal, 2, 28006, Madrid, España
| | - M García-París
- Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal, 2, 28006, Madrid, España
| |
Collapse
|
14
|
Dissection of the Complex Transcription and Metabolism Regulation Networks Associated with Maize Resistance to Ustilago maydis. Genes (Basel) 2021; 12:genes12111789. [PMID: 34828395 PMCID: PMC8619255 DOI: 10.3390/genes12111789] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 01/22/2023] Open
Abstract
The biotrophic fungal pathogen Ustilago maydis causes common smut in maize, forming tumors on all aerial organs, especially on reproductive organs, leading to significant reduction in yield and quality defects. Resistance to U. maydis is thought to be a quantitative trait, likely controlled by many minor gene effects. However, the genes and the underlying complex mechanisms for maize resistance to U. maydis remain largely uncharacterized. Here, we conducted comparative transcriptome and metabolome study using a pair of maize lines with contrast resistance to U. maydis post-infection. WGCNA of transcriptome profiling reveals that defense response, photosynthesis, and cell cycle are critical processes in maize response to U. maydis, and metabolism regulation of glycolysis, amino acids, phenylpropanoid, and reactive oxygen species are closely correlated with defense response. Metabolomic analysis supported that phenylpropanoid and flavonoid biosynthesis was induced upon U. maydis infection, and an obviously higher content of shikimic acid, a key compound in glycolysis and aromatic amino acids biosynthesis pathways, was detected in resistant samples. Thus, we propose that complex gene co-expression and metabolism networks related to amino acids and ROS metabolism might contribute to the resistance to corn smut.
Collapse
|
15
|
Bauters L, Stojilković B, Gheysen G. Pathogens pulling the strings: Effectors manipulating salicylic acid and phenylpropanoid biosynthesis in plants. MOLECULAR PLANT PATHOLOGY 2021; 22:1436-1448. [PMID: 34414650 PMCID: PMC8518561 DOI: 10.1111/mpp.13123] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/15/2021] [Accepted: 08/01/2021] [Indexed: 06/01/2023]
Abstract
During evolution, plants have developed sophisticated ways to cope with different biotic and abiotic stresses. Phytohormones and secondary metabolites are known to play pivotal roles in defence responses against invading pathogens. One of the key hormones involved in plant immunity is salicylic acid (SA), of which the role in plant defence is well established and documented. Plants produce an array of secondary metabolites categorized in different classes, with the phenylpropanoids as major players in plant immunity. Both SA and phenylpropanoids are needed for an effective immune response by the plant. To successfully infect the host, pathogens secrete proteins, called effectors, into the plant tissue to lower defence. Secreted effectors can interfere with several metabolic or signalling pathways in the host to facilitate infection. In this review, we will focus on the different strategies pathogens have developed to affect the levels of SA and phenylpropanoids to increase plant susceptibility.
Collapse
Affiliation(s)
- Lander Bauters
- Department of BiotechnologyFaculty of Bioscience EngineeringGhent UniversityGhentBelgium
| | - Boris Stojilković
- Department of BiotechnologyFaculty of Bioscience EngineeringGhent UniversityGhentBelgium
| | - Godelieve Gheysen
- Department of BiotechnologyFaculty of Bioscience EngineeringGhent UniversityGhentBelgium
| |
Collapse
|
16
|
Tariqjaveed M, Mateen A, Wang S, Qiu S, Zheng X, Zhang J, Bhadauria V, Sun W. Versatile effectors of phytopathogenic fungi target host immunity. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1856-1873. [PMID: 34383388 DOI: 10.1111/jipb.13162] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Phytopathogenic fungi secrete a large arsenal of effector molecules, including proteinaceous effectors, small RNAs, phytohormones and derivatives thereof. The pathogenicity of fungal pathogens is primarily determined by these effectors that are secreted into host cells to undermine innate immunity, as well as to facilitate the acquisition of nutrients for their in planta growth and proliferation. After conventional and non-conventional secretion, fungal effectors are translocated into different subcellular compartments of the host cells to interfere with various biological processes. In extracellular spaces, apoplastic effectors cope with physical and chemical barriers to break the first line of plant defenses. Intracellular effectors target essential immune components on the plasma membrane, in the cytosol, including cytosolic organelles, and in the nucleus to suppress host immunity and reprogram host physiology, favoring pathogen colonization. In this review, we comprehensively summarize the recent advances in fungal effector biology, with a focus on the versatile virulence functions of fungal effectors in promoting pathogen infection and colonization. A perspective of future research on fungal effector biology is also discussed.
Collapse
Affiliation(s)
- Muhammad Tariqjaveed
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Abdul Mateen
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Shanzhi Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Shanshan Qiu
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Xinhang Zheng
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Jie Zhang
- Institute of Microbiology, The Chinese Academy of Sciences, Beijing, 100101, China
| | - Vijai Bhadauria
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Wenxian Sun
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, 100193, China
- Department of Plant Pathology, College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China
| |
Collapse
|
17
|
Bentham AR, Petit-Houdenot Y, Win J, Chuma I, Terauchi R, Banfield MJ, Kamoun S, Langner T. A single amino acid polymorphism in a conserved effector of the multihost blast fungus pathogen expands host-target binding spectrum. PLoS Pathog 2021; 17:e1009957. [PMID: 34758051 PMCID: PMC8608293 DOI: 10.1371/journal.ppat.1009957] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 11/22/2021] [Accepted: 09/14/2021] [Indexed: 12/14/2022] Open
Abstract
Accelerated gene evolution is a hallmark of pathogen adaptation and specialization following host-jumps. However, the molecular processes associated with adaptive evolution between host-specific lineages of a multihost plant pathogen remain poorly understood. In the blast fungus Magnaporthe oryzae (Syn. Pyricularia oryzae), host specialization on different grass hosts is generally associated with dynamic patterns of gain and loss of virulence effector genes that tend to define the distinct genetic lineages of this pathogen. Here, we unravelled the biochemical and structural basis of adaptive evolution of APikL2, an exceptionally conserved paralog of the well-studied rice-lineage specific effector AVR-Pik. Whereas AVR-Pik and other members of the six-gene AVR-Pik family show specific patterns of presence/absence polymorphisms between grass-specific lineages of M. oryzae, APikL2 stands out by being ubiquitously present in all blast fungus lineages from 13 different host species. Using biochemical, biophysical and structural biology methods, we show that a single aspartate to asparagine polymorphism expands the binding spectrum of APikL2 to host proteins of the heavy-metal associated (HMA) domain family. This mutation maps to one of the APikL2-HMA binding interfaces and contributes to an altered hydrogen-bonding network. By combining phylogenetic ancestral reconstruction with an analysis of the structural consequences of allelic diversification, we revealed a common mechanism of effector specialization in the AVR-Pik/APikL2 family that involves two major HMA-binding interfaces. Together, our findings provide a detailed molecular evolution and structural biology framework for diversification and adaptation of a fungal pathogen effector family following host-jumps.
Collapse
Affiliation(s)
- Adam R. Bentham
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Yohann Petit-Houdenot
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
- Université Paris-Saclay, INRAE, AgroParisTech, UMR BIOGER, Thiverval-Grignon, France
| | - Joe Win
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Izumi Chuma
- Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Ryohei Terauchi
- Kyoto University, Kyoto, Japan
- Iwate Biotechnology Research Center, Kitakami, Japan
| | - Mark J. Banfield
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Thorsten Langner
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
18
|
Ploch S, Kruse J, Choi YJ, Thiel H, Thines M. Ancestral state reconstruction in Peronospora provides further evidence for host jumping as a key element in the diversification of obligate parasites. Mol Phylogenet Evol 2021; 166:107321. [PMID: 34626809 DOI: 10.1016/j.ympev.2021.107321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 09/08/2021] [Accepted: 10/04/2021] [Indexed: 11/15/2022]
Abstract
Biotrophic plant parasites cause economically important diseases, e.g. downy mildew of grape, powdery mildew of legumes, wheat stripe rust, and wheat bunt. But also in natural ecosystems, these organisms are abundant and diverse, and for many hosts more than one specialised biotrophic pathogen is known. However, only a fraction of their diversity is thought to have been described. There is accumulating evidence for the importance of host jumping for the diversification of obligate biotrophic pathogens but tracing this process along the phylogeny of pathogens is often complicated by a lack of resolution of phylogenetic trees, low taxon and specimen sampling, or either too few or too many host jumps in the pathogen group in question. Here, a clade of Peronospora species mostly infecting members of the Ranunculales was investigated using multigene analyses and ancestral state reconstructions. These analyses show that this clade started out in Papaveraceae, with subsequent host jumps to Berberidaceae, Euphorbiaceae, and Ranunculaceae. In Ranunculaceae, radiation to a variety of hosts took place, and a new host jump occurred to Caryophyllaceae. This highlights that host jumping and subsequent radiation is a key evolutionary process driving the diversification of Peronospora. It seems likely that the observed pattern can be generalised to other obligate parasite lineages, as diverse hosts in unrelated families have also been reported for other pathogen groups, including powdery mildew, rust fungi, and smut fungi.
Collapse
Affiliation(s)
- Sebastian Ploch
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany.
| | - Julia Kruse
- Pfalzmuseum für Naturkunde - POLLICHIA-Museum, Hermann-Schäfer-Str. 17, 67098 Bad Dürkheim, Germany
| | - Young-Joon Choi
- Department of Biology, College of Natural Sciences, Kunsan National University, Gunsan 54150, Republic of Korea
| | | | - Marco Thines
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, 60325 Frankfurt am Main, Germany; Goethe University Frankfurt am Main, Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| |
Collapse
|
19
|
Zuo W, Depotter JRL, Gupta DK, Thines M, Doehlemann G. Cross-species analysis between the maize smut fungi Ustilago maydis and Sporisorium reilianum highlights the role of transcriptional change of effector orthologs for virulence and disease. THE NEW PHYTOLOGIST 2021; 232:719-733. [PMID: 34270791 DOI: 10.1111/nph.17625] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
The constitution and regulation of effector repertoires shape host-microbe interactions. Ustilago maydis and Sporisorium reilianum are two closely related smut fungi, which both infect maize but cause distinct disease symptoms. Understanding how effector orthologs are regulated in these two pathogens can therefore provide insights into the evolution of different infection strategies. We tracked the infection progress of U. maydis and S. reilianum in maize leaves and used two distinct infection stages for cross-species RNA-sequencing analyses. We identified 207 of 335 one-to-one effector orthologs as differentially regulated during host colonization, which might reflect the distinct disease development strategies. Using CRISPR-Cas9-mediated gene conversion, we identified two differentially expressed effector orthologs with conserved function between two pathogens. Thus, differential expression of functionally conserved genes might contribute to species-specific adaptation and symptom development. Interestingly, another differentially expressed orthogroup (UMAG_05318/Sr10075) showed divergent protein function, providing a possible case for neofunctionalization. Collectively, we demonstrated that the diversification of effector genes in related pathogens can be caused both by alteration on the transcriptional level and through functional diversification of the encoded effector proteins.
Collapse
Affiliation(s)
- Weiliang Zuo
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Zuelpicher Str. 47a, Cologne, 50674, Germany
| | - Jasper R L Depotter
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Zuelpicher Str. 47a, Cologne, 50674, Germany
| | - Deepak K Gupta
- Department for Biological Sciences, Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt am Main, Frankfurt am Main, 60325, Germany
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, 60325, Germany
- Integrative Fungal Research Cluster (IPF), Frankfurt am Main, 60325, Germany
| | - Marco Thines
- Department for Biological Sciences, Institute of Ecology, Evolution and Diversity, Goethe University Frankfurt am Main, Frankfurt am Main, 60325, Germany
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, 60325, Germany
- Integrative Fungal Research Cluster (IPF), Frankfurt am Main, 60325, Germany
| | - Gunther Doehlemann
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Zuelpicher Str. 47a, Cologne, 50674, Germany
| |
Collapse
|
20
|
Arias SL, Mary VS, Velez PA, Rodriguez MG, Otaiza-González SN, Theumer MG. Where Does the Peanut Smut Pathogen, Thecaphora frezii, Fit in the Spectrum of Smut Diseases? PLANT DISEASE 2021; 105:2268-2280. [PMID: 33904333 DOI: 10.1094/pdis-11-20-2438-fe] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Smut fungi, such as Ustilago maydis, have been studied extensively as a model for plant-pathogenic basidiomycetes. However, little attention has been paid to smut diseases of agronomic importance that are caused by species of the genus Thecaphora, probably due to their more localized distribution. Peanut smut incited by Thecaphora frezii has been reported only in South America, and Argentina is the only country where this disease has been noted in commercial peanut production. In this work, important advances in deciphering T. frezii specific biology/pathobiology in relation to potato (T. solani), wheat (U. tritici), and barley (U. nuda) smuts are presented. We summarize the state of knowledge of fungal effectors, functionally characterized to date in U. maydis and most recently in T. thlaspeos, as well as the potential to be present in other Thecaphora species involved in dicot-host interactions like T. frezii-peanut. We also discuss applicability and limitations of currently available methods for identification of smut fungi in different situations and management strategies to reduce their impact on agri-food quality. We conclude by describing some of the challenges in elucidating T. frezii strategies that allow it to infect the host and tolerate or evade plant immune defense mechanisms, and assessing other aspects related to pest control and their implications for human health.
Collapse
Affiliation(s)
- Silvina L Arias
- Plant Pathology and Microbiology Department, Seed Science Center, Iowa State University, Ames, IA 50011-4009, U.S.A
| | - Verónica S Mary
- Universidad Nacional de Córdoba (UNC), Facultad de Ciencias Químicas (FCQ), Departamento de Bioquímica Clínica, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
| | - Pilar A Velez
- Universidad Nacional de Córdoba (UNC), Facultad de Ciencias Químicas (FCQ), Departamento de Bioquímica Clínica, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
| | - María G Rodriguez
- Universidad Nacional de Córdoba (UNC), Facultad de Ciencias Químicas (FCQ), Departamento de Bioquímica Clínica, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
| | - Santiago N Otaiza-González
- Universidad Nacional de Córdoba (UNC), Facultad de Ciencias Químicas (FCQ), Departamento de Bioquímica Clínica, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
| | - Martín G Theumer
- Universidad Nacional de Córdoba (UNC), Facultad de Ciencias Químicas (FCQ), Departamento de Bioquímica Clínica, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Córdoba, Argentina
| |
Collapse
|
21
|
Storfie ERM, Saville BJ. Fungal Pathogen Emergence: Investigations with an Ustilago maydis × Sporisorium reilianum Hybrid. J Fungi (Basel) 2021; 7:672. [PMID: 34436211 PMCID: PMC8400639 DOI: 10.3390/jof7080672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 08/17/2021] [Indexed: 11/17/2022] Open
Abstract
The emergence of new fungal pathogens threatens sustainable crop production worldwide. One mechanism by which new pathogens may arise is hybridization. To investigate hybridization, the related smut fungi, Ustilago maydis and Sporisorium reilianum, were selected because they both infect Zea mays, can hybridize, and tools are available for their analysis. The hybrid dikaryons of these fungi grew as filaments on plates but their colonization and virulence in Z. mays were reduced compared to the parental dikaryons. The anthocyanin induction caused by the hybrid dikaryon infections was distinct, suggesting its interaction with the host was different from that of the parental dikaryons. Selected virulence genes previously characterized in U. maydis and their predicted S. reilianum orthologs had altered transcript levels during hybrid infection of Z. mays. The downregulated U. maydis effectors, tin2, pit2, and cce1, and transcription factors, rbf1, hdp2, and nlt1, were constitutively expressed in the hybrid. Little impact was observed with increased effector expression; however, increased expression of rbf1 and hdp2, which regulate early pathogenic development by U. maydis, increased the hybrid's capacity to induce symptoms including the rare induction of small leaf tumors. These results establish a base for investigating molecular aspects of smut fungal hybrid pathogen emergence.
Collapse
Affiliation(s)
- Emilee R. M. Storfie
- Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Barry J. Saville
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON K9J 7B8, Canada
- Forensic Science Program, Trent University, Peterborough, ON K9J 7B8, Canada
| |
Collapse
|
22
|
Hoang CV, Bhaskar CK, Ma LS. A Novel Core Effector Vp1 Promotes Fungal Colonization and Virulence of Ustilago maydis. J Fungi (Basel) 2021; 7:jof7080589. [PMID: 34436129 PMCID: PMC8396986 DOI: 10.3390/jof7080589] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 02/07/2023] Open
Abstract
The biotrophic fungus Ustilago maydis secretes a plethora of uncharacterized effector proteins and causes smut disease in maize. Among the effector genes that are up-regulated during the biotrophic growth in maize, we identified vp1 (virulence promoting 1), which has an expression that was up-regulated and maintained at a high level throughout the life cycle of the fungus. We characterized Vp1 by applying in silico analysis, reverse genetics, phenotypic assessment, microscopy, and protein localization and provided a fundamental understanding of the Vp1 protein in U. maydis. The reduction in fungal virulence and colonization in the vp1 mutant suggests the virulence-promoting function of Vp1. The deletion studies on the NLS (nuclear localization signal) sequence and the protein localization study revealed that the C-terminus of Vp1 is processed after secretion in plant apoplast and could localize to the plant nucleus. The Ustilago hordei ortholog UhVp1 lacks NLS localized in the plant cytoplasm, suggesting that the orthologs might have a distinct subcellular localization. Further complementation studies of the Vp1 orthologs in related smut fungi revealed that none of them could complement the virulence function of U. maydis Vp1, suggesting that UmVp1 could acquire a specialized function via sequence divergence.
Collapse
Affiliation(s)
- Cuong V. Hoang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan; (C.V.H.); (C.K.B.)
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei 11529, Taiwan
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 402, Taiwan
| | - Chibbhi K. Bhaskar
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan; (C.V.H.); (C.K.B.)
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei 11529, Taiwan
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 402, Taiwan
| | - Lay-Sun Ma
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan; (C.V.H.); (C.K.B.)
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, National Chung Hsing University and Academia Sinica, Taipei 11529, Taiwan
- Biotechnology Center, National Chung Hsing University, Taichung 402, Taiwan
- Correspondence: ; Tel.: +886-2-2787-1145
| |
Collapse
|
23
|
Białas A, Langner T, Harant A, Contreras MP, Stevenson CE, Lawson DM, Sklenar J, Kellner R, Moscou MJ, Terauchi R, Banfield MJ, Kamoun S. Two NLR immune receptors acquired high-affinity binding to a fungal effector through convergent evolution of their integrated domain. eLife 2021; 10:e66961. [PMID: 34288868 PMCID: PMC8294853 DOI: 10.7554/elife.66961] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/01/2021] [Indexed: 12/17/2022] Open
Abstract
A subset of plant NLR immune receptors carry unconventional integrated domains in addition to their canonical domain architecture. One example is rice Pik-1 that comprises an integrated heavy metal-associated (HMA) domain. Here, we reconstructed the evolutionary history of Pik-1 and its NLR partner, Pik-2, and tested hypotheses about adaptive evolution of the HMA domain. Phylogenetic analyses revealed that the HMA domain integrated into Pik-1 before Oryzinae speciation over 15 million years ago and has been under diversifying selection. Ancestral sequence reconstruction coupled with functional studies showed that two Pik-1 allelic variants independently evolved from a weakly binding ancestral state to high-affinity binding of the blast fungus effector AVR-PikD. We conclude that for most of its evolutionary history the Pik-1 HMA domain did not sense AVR-PikD, and that different Pik-1 receptors have recently evolved through distinct biochemical paths to produce similar phenotypic outcomes. These findings highlight the dynamic nature of the evolutionary mechanisms underpinning NLR adaptation to plant pathogens.
Collapse
Affiliation(s)
- Aleksandra Białas
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Thorsten Langner
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Adeline Harant
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Mauricio P Contreras
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Clare Em Stevenson
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - David M Lawson
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Jan Sklenar
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Ronny Kellner
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Matthew J Moscou
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Ryohei Terauchi
- Division of Genomics and Breeding, Iwate Biotechnology Research Centre, Iwate, Japan
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Mark J Banfield
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
24
|
Białas A, Langner T, Harant A, Contreras MP, Stevenson CE, Lawson DM, Sklenar J, Kellner R, Moscou MJ, Terauchi R, Banfield MJ, Kamoun S. Two NLR immune receptors acquired high-affinity binding to a fungal effector through convergent evolution of their integrated domain. eLife 2021; 10:66961. [PMID: 34288868 DOI: 10.1101/2021.01.26.428286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 07/01/2021] [Indexed: 05/21/2023] Open
Abstract
A subset of plant NLR immune receptors carry unconventional integrated domains in addition to their canonical domain architecture. One example is rice Pik-1 that comprises an integrated heavy metal-associated (HMA) domain. Here, we reconstructed the evolutionary history of Pik-1 and its NLR partner, Pik-2, and tested hypotheses about adaptive evolution of the HMA domain. Phylogenetic analyses revealed that the HMA domain integrated into Pik-1 before Oryzinae speciation over 15 million years ago and has been under diversifying selection. Ancestral sequence reconstruction coupled with functional studies showed that two Pik-1 allelic variants independently evolved from a weakly binding ancestral state to high-affinity binding of the blast fungus effector AVR-PikD. We conclude that for most of its evolutionary history the Pik-1 HMA domain did not sense AVR-PikD, and that different Pik-1 receptors have recently evolved through distinct biochemical paths to produce similar phenotypic outcomes. These findings highlight the dynamic nature of the evolutionary mechanisms underpinning NLR adaptation to plant pathogens.
Collapse
Affiliation(s)
- Aleksandra Białas
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Thorsten Langner
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Adeline Harant
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Mauricio P Contreras
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Clare Em Stevenson
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - David M Lawson
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Jan Sklenar
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Ronny Kellner
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Matthew J Moscou
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Ryohei Terauchi
- Division of Genomics and Breeding, Iwate Biotechnology Research Centre, Iwate, Japan
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Mark J Banfield
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
25
|
Medeiros DB, Brotman Y, Fernie AR. The utility of metabolomics as a tool to inform maize biology. PLANT COMMUNICATIONS 2021; 2:100187. [PMID: 34327322 PMCID: PMC8299083 DOI: 10.1016/j.xplc.2021.100187] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/26/2021] [Accepted: 04/19/2021] [Indexed: 05/04/2023]
Abstract
With the rise of high-throughput omics tools and the importance of maize and its products as food and bioethanol, maize metabolism has been extensively explored. Modern maize is still rich in genetic and phenotypic variation, yielding a wide range of structurally and functionally diverse metabolites. The maize metabolome is also incredibly dynamic in terms of topology and subcellular compartmentalization. In this review, we examine a broad range of studies that cover recent developments in maize metabolism. Particular attention is given to current methodologies and to the use of metabolomics as a tool to define biosynthetic pathways and address biological questions. We also touch upon the use of metabolomics to understand maize natural variation and evolution, with a special focus on research that has used metabolite-based genome-wide association studies (mGWASs).
Collapse
Affiliation(s)
- David B. Medeiros
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Yariv Brotman
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheva, Israel
| | | |
Collapse
|
26
|
Waheed A, Wang YP, Nkurikiyimfura O, Li WY, Liu ST, Lurwanu Y, Lu GD, Wang ZH, Yang LN, Zhan J. Effector Avr4 in Phytophthora infestans Escapes Host Immunity Mainly Through Early Termination. Front Microbiol 2021; 12:646062. [PMID: 34122360 PMCID: PMC8192973 DOI: 10.3389/fmicb.2021.646062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/19/2021] [Indexed: 11/13/2022] Open
Abstract
Effector genes play critical roles in the antagonistic interactions between plants and pathogens. However, knowledge of mutation mechanisms and evolutionary processes in effector genes and the contribution of climatic factors to the evolution of effector genes are fragmented but important in sustainable management of plant diseases and securing food supply under changing climates. Here, we used a population genetic approach to explore the evolution of the Avr4 gene in Phytophthora infestans, the causal agent of potato blight. We found that the Avr4 gene exhibited a high genetic diversity generated by point mutation and sequence deletion. Frameshifts caused by a single base-pair deletion at the 194th nucleotide position generate two stop codons, truncating almost the entire C-terminal, which is important for effector function and R4 recognition in all sequences. The effector is under natural selection for adaptation supported by comparative analyses of population differentiation (FST ) and isolation-by-distance between Avr4 sequences and simple sequence repeat marker loci. Furthermore, we found that local air temperature was positively associated with pairwise FST in the Avr4 sequences. These results suggest that the evolution of the effector gene is influenced by local air temperature, and the C-terminal truncation is one of the main mutation mechanisms in the P. infestans effector gene to circumvent the immune response of potato plants. The implication of these results to agricultural and natural sustainability in future climate conditions is discussed.
Collapse
Affiliation(s)
- Abdul Waheed
- Key Lab for Bio Pesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yan-Ping Wang
- Key Lab for Bio Pesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Oswald Nkurikiyimfura
- Key Lab for Bio Pesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wen-Yang Li
- Key Lab for Bio Pesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shi-Ting Liu
- Key Lab for Bio Pesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yahuza Lurwanu
- Key Lab for Bio Pesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Crop Protection, Bayero University Kano, Kano, Nigeria
| | - Guo-Dong Lu
- Key Lab for Bio Pesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zong-Hua Wang
- Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Li-Na Yang
- Key Lab for Bio Pesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Jiasui Zhan
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
27
|
dos Santos KCG, Pelletier G, Séguin A, Guillemette F, Hawkes J, Desgagné-Penix I, Germain H. Unrelated Fungal Rust Candidate Effectors Act on Overlapping Plant Functions. Microorganisms 2021; 9:microorganisms9050996. [PMID: 34063040 PMCID: PMC8148019 DOI: 10.3390/microorganisms9050996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/23/2021] [Accepted: 04/30/2021] [Indexed: 11/21/2022] Open
Abstract
Rust fungi cause epidemics that threaten the production of important plant species, such as wheat and soy. Melampsora larici-populina (Mlp) causes the poplar rust and encodes at least 1184 candidate effectors (CEs) whose functions are poorly known. In this study, we sequenced the transcriptome and used mass spectrometry to analyze the metabolome of Arabidopsis plants constitutively expressing 14 Mlp CEs and of a control line to discover alterations leading to plant susceptibility. We found 2299 deregulated genes across the experiment. Genes involved in pattern-triggered immunity, such as FRK1, PR1, RBOHD, and WRKY33, as well as AUX/IAA genes were down-regulated. We further observed that 680 metabolites were deregulated in at least one CE-expressing transgenic line, with “highly unsaturated and phenolic compounds” and “peptides” enriched among down- and up-regulated metabolites. Interestingly, transgenic lines expressing unrelated CEs had correlated patterns of gene and metabolite deregulation, while expression of CEs belonging to the same family deregulated different genes and metabolites. Thus, our results uncouple effector sequence similarity and function. This supports that effector functional investigation in the context of their virulence activity and effect on plant susceptibility requires the investigation of the individual effector and precludes generalization based on sequence similarity.
Collapse
Affiliation(s)
- Karen Cristine Goncalves dos Santos
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H9, Canada; (K.C.G.d.S.); (I.D.-P.)
- Plant Biology Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 1V3, Canada
| | - Gervais Pelletier
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Quebec City, QC G1V 4C7, Canada; (G.P.); (A.S.)
| | - Armand Séguin
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Quebec City, QC G1V 4C7, Canada; (G.P.); (A.S.)
| | - François Guillemette
- Centre for Research on Aquatic Ecosystem Interactions (RIVE), Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 1V3, Canada;
| | - Jeffrey Hawkes
- Department of Chemistry—BMC, Analytical Chemistry, Uppsala University, VJ2J+92 Uppsala, Sweden;
| | - Isabel Desgagné-Penix
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H9, Canada; (K.C.G.d.S.); (I.D.-P.)
- Plant Biology Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 1V3, Canada
| | - Hugo Germain
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H9, Canada; (K.C.G.d.S.); (I.D.-P.)
- Plant Biology Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 1V3, Canada
- Correspondence:
| |
Collapse
|
28
|
Zhang W, Huang J, Cook DE. Histone modification dynamics at H3K27 are associated with altered transcription of in planta induced genes in Magnaporthe oryzae. PLoS Genet 2021; 17:e1009376. [PMID: 33534835 PMCID: PMC7886369 DOI: 10.1371/journal.pgen.1009376] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 02/16/2021] [Accepted: 01/22/2021] [Indexed: 12/03/2022] Open
Abstract
Transcriptional dynamic in response to environmental and developmental cues are fundamental to biology, yet many mechanistic aspects are poorly understood. One such example is fungal plant pathogens, which use secreted proteins and small molecules, termed effectors, to suppress host immunity and promote colonization. Effectors are highly expressed in planta but remain transcriptionally repressed ex planta, but our mechanistic understanding of these transcriptional dynamics remains limited. We tested the hypothesis that repressive histone modification at H3-Lys27 underlies transcriptional silencing ex planta, and that exchange for an active chemical modification contributes to transcription of in planta induced genes. Using genetics, chromatin immunoprecipitation and sequencing and RNA-sequencing, we determined that H3K27me3 provides significant local transcriptional repression. We detail how regions that lose H3K27me3 gain H3K27ac, and these changes are associated with increased transcription. Importantly, we observed that many in planta induced genes were marked by H3K27me3 during axenic growth, and detail how altered H3K27 modification influences transcription. ChIP-qPCR during in planta growth suggests that H3K27 modifications are generally stable, but can undergo dynamics at specific genomic locations. Our results support the hypothesis that dynamic histone modifications at H3K27 contributes to fungal genome regulation and specifically contributes to regulation of genes important during host infection. Fungal pathogens of crops and humans pose annual threats to our food and health. There are many steps to the host infection process, during which fungal pathogens display unique growth, and use specific genes to cause disease. Despite this knowledge, many aspects of how pathogens regulate their genome to enact this process remain unknown. Here, we demonstrate how chemical modification of lysine residues on the histone H3, which helps organize and control DNA usage, play an important regulatory role in the model fungal pathogen causing rice blast disease. Our analysis shows a significant association between genes important for host infection and H3 lysine 27 methylation. We show that by experimentally changing histone modifications, many fungal genes normally used during plant infection are turned on outside of the host. Furthermore, we detail how histone modifications can change naturally in the fungus during plant infection. These findings help broaden our knowledge of genome regulation for these pathogens, and advances the goal of a more comprehensive understanding of the infection process.
Collapse
Affiliation(s)
- Wei Zhang
- Kansas State University, Department of Plant Pathology, Manhattan, Kansas, United States of America
| | - Jun Huang
- Kansas State University, Department of Plant Pathology, Manhattan, Kansas, United States of America
| | - David E. Cook
- Kansas State University, Department of Plant Pathology, Manhattan, Kansas, United States of America
- * E-mail:
| |
Collapse
|
29
|
Understanding Ustilago maydis Infection of Multiple Maize Organs. J Fungi (Basel) 2020; 7:jof7010008. [PMID: 33375485 PMCID: PMC7823922 DOI: 10.3390/jof7010008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 02/01/2023] Open
Abstract
Ustilago maydis is a smut fungus that infects all aerial maize organs, namely, seedling leaves, tassels, and ears. In all organs, tumors are formed by inducing hypertrophy and hyperplasia in actively dividing cells; however, the vast differences in cell types and developmental stages for different parts of the plant requires that U. maydis have both general and organ-specific strategies for infecting maize. In this review, we summarize how the maize–U. maydis interaction can be studied using mutant U. maydis strains to better understand how individual effectors contribute to this interaction, either through general or specific expression in a cell type, tissue, or organ. We also examine how male sterile maize mutants that do not support tumor formation can be used to explore key features of the maize anthers that are required for successful infection. Finally, we discuss key unanswered questions about the maize–U. maydis interaction and how new technologies can potentially be used to answer them.
Collapse
|
30
|
Harris JM, Balint-Kurti P, Bede JC, Day B, Gold S, Goss EM, Grenville-Briggs LJ, Jones KM, Wang A, Wang Y, Mitra RM, Sohn KH, Alvarez ME. What are the Top 10 Unanswered Questions in Molecular Plant-Microbe Interactions? MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:1354-1365. [PMID: 33106084 DOI: 10.1094/mpmi-08-20-0229-cr] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This article is part of the Top 10 Unanswered Questions in MPMI invited review series.The past few decades have seen major discoveries in the field of molecular plant-microbe interactions. As the result of technological and intellectual advances, we are now able to answer questions at a level of mechanistic detail that we could not have imagined possible 20 years ago. The MPMI Editorial Board felt it was time to take stock and reassess. What big questions remain unanswered? We knew that to identify the fundamental, overarching questions that drive our research, we needed to do this as a community. To reach a diverse audience of people with different backgrounds and perspectives, working in different areas of plant-microbe interactions, we queried the more than 1,400 participants at the 2019 International Congress on Molecular Plant-Microbe Interactions meeting in Glasgow. This group effort resulted in a list of ten, broad-reaching, fundamental questions that influence and inform our research. Here, we introduce these Top 10 unanswered questions, giving context and a brief description of the issues. Each of these questions will be the subject of a detailed review in the coming months. We hope that this process of reflecting on what is known and unknown and identifying the themes that underlie our research will provide a framework to use going forward, giving newcomers a sense of the mystery of the big questions and inspiring new avenues and novel insights.[Formula: see text] Copyright © 2020 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Jeanne M Harris
- Department of Plant Biology, University of Vermont, Burlington, VT 05405, U.S.A
| | - Peter Balint-Kurti
- USDA-ARS, Plant Science Research Unit, Raleigh NC, and Dept. of Entomology and Plant Pathology, NC State University, Raleigh, NC 27695-7613, U.S.A
| | - Jacqueline C Bede
- Department of Plant Science, McGill University, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Brad Day
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, U.S.A
| | - Scott Gold
- Plant Pathology Department, University of Georgia, USDA-ARS, Athens, GA 30605-2720, U.S.A
| | - Erica M Goss
- Plant Pathology Department and Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, U.S.A
| | - Laura J Grenville-Briggs
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, SE-230 53 Alnarp, Sweden
| | - Kathryn M Jones
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, U.S.A
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Raka M Mitra
- Biology Department, Carleton College, Northfield, MN 55057, U.S.A
| | - Kee Hoon Sohn
- Department of Life Sciences, Pohang University of Science and Technology and School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Maria Elena Alvarez
- Centro de Investigaciones en Química Biológica de Córdoba, CIQUIBIC, CONICET, Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| |
Collapse
|
31
|
Liu Y, Li M, Li T, Chen Y, Zhang L, Zhao G, Zhuang J, Zhao W, Gao L, Xia T. Airborne fungus-induced biosynthesis of anthocyanins in Arabidopsis thaliana via jasmonic acid and salicylic acid signaling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 300:110635. [PMID: 33180713 DOI: 10.1016/j.plantsci.2020.110635] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 08/09/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
Anthocyanins are plant-specific pigments, the biosynthesis of which is stimulated by pathogen infection in several plant species. A. thaliana seedlings injected with airborne fungi can accumulate a high content of anthocyanins. The mechanism involved in fungus-induced anthocyanin accumulation in plants has not been fully described. In this study, the fungus Penicillium corylophilum (P. corylophilum), isolated from an Arabidopsis culture chamber, triggered jasmonic acid (JA), salicylic acid (SA), and anthocyanin accumulation in A. thaliana. Inhibitors of JA and SA biosynthesis suppressed the anthocyanin accumulation induced by P. corylophilum. The anthocyanin content was minimal in both the null mutant of JA-receptor coi1 and the null mutant of SA-receptor npr1 under P. corylophilum stimulation. The results indicate that JA and SA signaling mediated fungus-induced anthocyanin biosynthesis in A. thaliana. P. corylophilum led to different levels of anthocyanin generation in null mutants for MYB75, bHLH, EGL3, and GL3 transcription factors and WD40 protein, demonstrating that multiple MYB-bHLH-WD40 transcription factor complexes participated in fungus-induced anthocyanin accumulation in A. thaliana. The present study will help further elucidate the mechanism of plant resistance to pathogen infection.
Collapse
Affiliation(s)
- Yajun Liu
- School of Life Science, Anhui Agricultural University, Hefei 230036, China; State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Ming Li
- School of Life Science, Anhui Agricultural University, Hefei 230036, China; Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Tongtong Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Yujie Chen
- School of Life Science, Anhui Agricultural University, Hefei 230036, China
| | - Lingjie Zhang
- School of Life Science, Anhui Agricultural University, Hefei 230036, China
| | - Guifu Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Juhua Zhuang
- School of Life Science, Anhui Agricultural University, Hefei 230036, China
| | - Wenyan Zhao
- School of Life Science, Anhui Agricultural University, Hefei 230036, China
| | - Liping Gao
- School of Life Science, Anhui Agricultural University, Hefei 230036, China.
| | - Tao Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
32
|
An orphan protein of Fusarium graminearum modulates host immunity by mediating proteasomal degradation of TaSnRK1α. Nat Commun 2020; 11:4382. [PMID: 32873802 PMCID: PMC7462860 DOI: 10.1038/s41467-020-18240-y] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023] Open
Abstract
Fusarium graminearum is a causal agent of Fusarium head blight (FHB) and a deoxynivalenol (DON) producer. In this study, OSP24 is identified as an important virulence factor in systematic characterization of the 50 orphan secreted protein (OSP) genes of F. graminearum. Although dispensable for growth and initial penetration, OSP24 is important for infectious growth in wheat rachis tissues. OSP24 is specifically expressed during pathogenesis and its transient expression suppresses BAX- or INF1-induced cell death. Osp24 is translocated into plant cells and two of its 8 cysteine-residues are required for its function. Wheat SNF1-related kinase TaSnRK1α is identified as an Osp24-interacting protein and shows to be important for FHB resistance in TaSnRK1α-overexpressing or silencing transgenic plants. Osp24 accelerates the degradation of TaSnRK1α by facilitating its association with the ubiquitin-26S proteasome. Interestingly, TaSnRK1α also interacts with TaFROG, an orphan wheat protein induced by DON. TaFROG competes against Osp24 for binding with the same region of TaSnRKα and protects it from degradation. Overexpression of TaFROG stabilizes TaSnRK1α and increases FHB resistance. Taken together, Osp24 functions as a cytoplasmic effector by competing against TaFROG for binding with TaSnRK1α, demonstrating the counteracting roles of orphan proteins of both host and fungal pathogens during their interactions. Fusarium graminearum is a major fungal pathogen of cereals. Here the authors show that F. graminearum secretes an effector, Osp24, that induces degradation of the wheat TaSnRK1α kinase to promote disease while an orphan wheat protein, TaFROG1, can compete with Osp24 for binding to TaSnRK1α and protect it from degradation
Collapse
|
33
|
Tanaka S, Gollin I, Rössel N, Kahmann R. The functionally conserved effector Sta1 is a fungal cell wall protein required for virulence in Ustilago maydis. THE NEW PHYTOLOGIST 2020; 227:185-199. [PMID: 32112567 DOI: 10.1111/nph.16508] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
The biotrophic fungus Ustilago maydis causes the smut disease of maize. The interaction with its host and induction of characteristic tumors are governed largely by secreted effectors whose function is mostly unknown. To identify effectors with a prominent role in virulence, we used RNA sequencing and found that the gene sta1 is upregulated during early stages of infection. We characterized Sta1 by comparative genomics, reverse genetics, protein localization, stress assays, and microscopy. sta1 mutants show a dramatic reduction of virulence and show altered colonization of tissue neighboring the vascular bundles. Functional orthologues of Sta1 are found in related smut pathogens infecting monocot and dicot plants. Sta1 is secreted by budding cells but is attached to the cell wall of filamentous hyphae. Upon constitutive expression of Sta1, fungal filaments become susceptible to Congo red, β-glucanase, and chitinase, suggesting that Sta1 alters the structure of the fungal cell wall. Constitutive or delayed expression of sta1 during plant colonization negatively impacts on virulence. Our results suggest that Sta1 is a novel kind of effector, which needs to modify the hyphal cell wall to allow hyphae to be accommodated in tissue next to the vascular bundles.
Collapse
Affiliation(s)
- Shigeyuki Tanaka
- Department of Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, D-35043, Marburg, Germany
| | - Isabelle Gollin
- Department of Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, D-35043, Marburg, Germany
| | - Nicole Rössel
- Department of Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, D-35043, Marburg, Germany
| | - Regine Kahmann
- Department of Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, D-35043, Marburg, Germany
| |
Collapse
|
34
|
Xia W, Yu X, Ye Z. Smut fungal strategies for the successful infection. Microb Pathog 2020; 142:104039. [PMID: 32027975 DOI: 10.1016/j.micpath.2020.104039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 12/05/2019] [Accepted: 02/02/2020] [Indexed: 01/01/2023]
Abstract
The smut fungi include a large number of plant pathogens that establish obligate biotrophic relationships with their host. Throughout the whole life inside plant tissue, smut fungi keep plant cells alive and acquire nutrients via biotrophic interfaces. This mini-review mainly summarizes the interactions between smut fungi and their host plants during the infection process. Despite various strategies recruited by plants to defense invading pathogens, smut fungi successfully evolved an arsenal for colonization. Mating of two compatible haploids gives rise to parasitic mycelium, which can sense plant surface cues such as fatty acids and hydrophobic surface, and induce the formation of appressoria for surface penetration. Plants can recognize fungal invading and activate defense response, including callose and lignin deposition, programmed cell death, and SA signaling pathway. To suppress plant immunity and alter the metabolic pathway of host plants, a cocktail of effectors is secreted by smut fungi depending on the plant organ and cell type that is infected.
Collapse
Affiliation(s)
- Wenqiang Xia
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, 310018, China
| | - Zihong Ye
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, 310018, China.
| |
Collapse
|
35
|
Thines M. An evolutionary framework for host shifts - jumping ships for survival. THE NEW PHYTOLOGIST 2019; 224:605-617. [PMID: 31381166 DOI: 10.1111/nph.16092] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
Host jumping is a process by which pathogens settle in new host groups. It is a cornerstone in the evolution of pathogens, as it leads to pathogen diversification. It is unsurprising that host jumping is observed in facultative pathogens, as they can reproduce even if they kill their hosts. However, host jumps were thought to be rare in obligate biotrophic pathogens, but molecular phylogenetics has revealed that the opposite is true. Here, I review some concepts and recent findings and present several hypotheses on the matter. In short, pathogens evolve and diversify via host jumps, followed by radiation, specialisation and speciation. Host jumps are facilitated by, for example, effector innovations, stress, compatible pathogens and physiological similarities. Host jumping, subsequent establishment, and speciation takes place rapidly - within centuries and millennia rather than over millions of years. If pathogens are unable to evolve into neutral or mutualistic interactions with their hosts, they will eventually be removed from the host population, despite balancing trade-offs. Thus, generally, plant pathogens only survive in the course of evolution if they jump hosts. This is also reflected by the diversity patterns observed in many genera of plant pathogens, where it leads to a mosaic pattern of host groups over time, in which the original host group becomes increasingly obscure.
Collapse
Affiliation(s)
- Marco Thines
- Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Str. 13, D-60486, Frankfurt am Main, Germany
- Senckenberg Gesellschaft für Naturforschung, Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, D-60325, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (TBG), Georg-Voigt-Str. 14-16, D-60325, Frankfurt am Main, Germany
| |
Collapse
|
36
|
Zuo W, Ökmen B, Depotter JRL, Ebert MK, Redkar A, Misas Villamil J, Doehlemann G. Molecular Interactions Between Smut Fungi and Their Host Plants. ANNUAL REVIEW OF PHYTOPATHOLOGY 2019; 57:411-430. [PMID: 31337276 DOI: 10.1146/annurev-phyto-082718-100139] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Smut fungi are a large group of biotrophic plant pathogens that infect mostly monocot species, including economically relevant cereal crops. For years, Ustilago maydis has stood out as the model system to study the genetics and cell biology of smut fungi as well as the pathogenic development of biotrophic plant pathogens. The identification and functional characterization of secreted effectors and their role in virulence have particularly been driven forward using the U. maydis-maize pathosystem. Today, advancing tools for additional smut fungi such as Ustilago hordei and Sporisorium reilianum, as well as an increasing number of available genome sequences, provide excellent opportunities to investigate in parallel the effector function and evolution associated with different lifestyles and host specificities. In addition, genome analyses revealed similarities in the genomic signature between pathogenic smuts and epiphytic Pseudozyma species. This review elaborates on how knowledge about fungal lifestyles, genome biology, and functional effector biology has helped in understanding the biology of this important group of fungal pathogens. We highlight the contribution of the U. maydis model system but also discuss the differences from other smut fungi, which raises the importance of comparative genomic and genetic analyses in future research.
Collapse
Affiliation(s)
- Weiliang Zuo
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, 50674 Cologne, Germany;
| | - Bilal Ökmen
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, 50674 Cologne, Germany;
| | - Jasper R L Depotter
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, 50674 Cologne, Germany;
| | - Malaika K Ebert
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, 50674 Cologne, Germany;
| | - Amey Redkar
- Current affiliation: Department of Genetics, University of Córdoba, 14071 Córdoba, Spain
| | - Johana Misas Villamil
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, 50674 Cologne, Germany;
| | - Gunther Doehlemann
- Botanical Institute and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, 50674 Cologne, Germany;
| |
Collapse
|
37
|
Zhang M, Xie S, Zhao Y, Meng X, Song L, Feng H, Huang L. Hce2 domain-containing effectors contribute to the full virulence of Valsa mali in a redundant manner. MOLECULAR PLANT PATHOLOGY 2019; 20:843-856. [PMID: 30912612 PMCID: PMC6637899 DOI: 10.1111/mpp.12796] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Valsa mali is the causal agent of apple Valsa canker, a destructive disease in East Asia. Effector proteins play important roles in the virulence of phytopathogenic fungi, and we identified five Hce2 domain-containing effectors (VmHEP1, VmHEP2, VmHEP3, VmHEP4 and VmHEP5) from the V. mali genome. Amongst these, VmHEP1 and VmHEP2 were found to be up-regulated during the early infection stage and VmHEP1 was also identified as a cell death inducer through its transient expression in Nicotiana benthamiana. Although the deletion of each single VmHEP gene did not lead to a reduction in virulence, the double-deletion of VmHEP1 and VmHEP2 notably attenuated V. mali virulence in both apple twigs and leaves. An evolutionary analysis revealed that VmHEP1 and VmHEP2 are two paralogues, under purifying selection. VmHEP1 and VmHEP2 are located next to each other on chromosome 11 as tandem genes with only a 604 bp physical distance. Interestingly, the deletion of VmHEP1 promoted the expression of VmHEP2 and, vice versa, the deletion of VmHEP2 promoted the expression of VmHEP1. The present results provide insights into the functions of Hce2 domain-containing effectors acting as virulence factors of V. mali, and provide a new perspective regarding the contribution of tandem genes to the virulence of phytopathogenic fungi.
Collapse
Affiliation(s)
- Mian Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Shichang Xie
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Yuhuan Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Xiang Meng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Linlin Song
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Hao Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| |
Collapse
|
38
|
Affiliation(s)
- Erin K Zess
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Aleksandra Białas
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom.
| |
Collapse
|
39
|
A fungal substrate mimicking molecule suppresses plant immunity via an inter-kingdom conserved motif. Nat Commun 2019; 10:1576. [PMID: 30952847 PMCID: PMC6450895 DOI: 10.1038/s41467-019-09472-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 03/11/2019] [Indexed: 12/20/2022] Open
Abstract
Ustilago maydis is a biotrophic fungus causing corn smut disease in maize. The secreted effector protein Pit2 is an inhibitor of papain-like cysteine proteases (PLCPs) essential for virulence. Pit2 inhibitory function relies on a conserved 14 amino acids motif (PID14). Here we show that synthetic PID14 peptides act more efficiently as PLCP inhibitors than the full-length Pit2 effector. Mass spectrometry shows processing of Pit2 by maize PLCPs, which releases an inhibitory core motif from the PID14 sequence. Mutational analysis demonstrates that two conserved residues are essential for Pit2 function. We propose that the Pit2 effector functions as a substrate mimicking molecule: Pit2 is a suitable substrate for apoplastic PLCPs and its processing releases the embedded inhibitor peptide, which in turn blocks PLCPs to modulate host immunity. Remarkably, the PID14 core motif is present in several plant associated fungi and bacteria, indicating the existence of a conserved microbial inhibitor of proteases (cMIP).
Collapse
|