1
|
Zawiasa A, Schmidt M, Olejnik-Schmidt A. Phage-Based Control of Listeria innocua in the Food Industry: A Strategy for Preventing Listeria monocytogenes Persistence in Biofilms. Viruses 2025; 17:482. [PMID: 40284925 PMCID: PMC12031349 DOI: 10.3390/v17040482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/17/2025] [Accepted: 03/24/2025] [Indexed: 04/29/2025] Open
Abstract
Listeria innocua, though considered non-pathogenic, frequently coexists with Listeria monocytogenes in industrial environments, aiding its survival in biofilms. These biofilms pose a significant challenge in food processing facilities, as they protect bacteria from disinfectants and facilitate their spread. The aim of this review was to identify bacteriophages as a promising method for eliminating Listeria biofilms from the food industry. Lytic bacteriophages show great potential in combating Listeria biofilms. Commercially available products, such as PhageGuard Listex™ (P100) (Micreos Food Safety, Wageningen, The Netherlands), effectively reduce both L. monocytogenes and L. innocua in food products and on production surfaces. Additionally, phage-derived enzymes, such as endolysins, can degrade biofilms, eliminating bacteria without compromising food quality. The following article highlights that although bacteriophages present a promising biocontrol method, further research is necessary to assess their long-term effectiveness, particularly regarding bacterial resistance. To maximize efficacy, a combination of strategies such as phage cocktails and disinfectants is recommended to enhance biofilm eradication and minimize food contamination risks.
Collapse
Affiliation(s)
| | - Marcin Schmidt
- Department of Food Biotechnology and Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627 Poznan, Poland;
| | - Agnieszka Olejnik-Schmidt
- Department of Food Biotechnology and Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627 Poznan, Poland;
| |
Collapse
|
2
|
Kabwe M, Tucci J, Darby I, Dashper S. Oral bacteriophages and their potential as adjunctive treatments for periodontitis: a narrative review. J Oral Microbiol 2025; 17:2469890. [PMID: 40013014 PMCID: PMC11864011 DOI: 10.1080/20002297.2025.2469890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/29/2025] [Accepted: 01/31/2025] [Indexed: 02/28/2025] Open
Abstract
Background There is no specific cure for periodontitis and treatment is symptomatic, primarily by physical removal of the subgingival plaque biofilm. Current non-surgical periodontal therapy becomes less effective as the periodontal pocket depth increases and as such new adjunctive treatments are required. The development of antibiotic resistance has driven a recent resurgence of interest in bacteriophage therapy. Methods Here we review the published literature with a focus on the subgingival phageome, key oral pathobionts and the dysbiotic nature of periodontitis leading to the emergence of synergistic, proteolytic and inflammophilic bacterial species in subgingival plaque. We discuss the opportunities available, the barriers and the steps needed to develop bacteriophage therapy as an adjunctive treatment for periodontitis. Results The oral phageome (or virome) is diverse, featuring abundant bacteriophage, that could target key subgingival bacteria. Yet to date few bacteriophages have been isolated and characterised from oral bacterial species, although many more have been predicted by genomic analyses. Bacteriophage therapy has yet to be tested against chronic diseases that are caused by dysbiosis of the endogenous microbial communities. Conclusion To be effective as an adjunctive treatment for periodontitis, bacteriophage therapy must cause the collapse of the dysbiotic bacterial community, thereby resolving inflammation and enabling the reestablishment of a health-associated mutualistic subgingival bacterial community. The isolation and characterisation of novel oral bacteriophage is an essential first step in this process.
Collapse
Affiliation(s)
- Mwila Kabwe
- Department of Rural Clinical Sciences, La Trobe Rural Health School & La Trobe Institute for Molecular Science, La Trobe University, Bendigo, Victoria, Australia
| | - Joseph Tucci
- Department of Rural Clinical Sciences, La Trobe Rural Health School & La Trobe Institute for Molecular Science, La Trobe University, Bendigo, Victoria, Australia
| | - Ivan Darby
- Melbourne Dental School, University of Melbourne, Parkville, Victoria, Australia
| | - Stuart Dashper
- Melbourne Dental School, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
3
|
Paranos P, Pournaras S, Meletiadis J. Detection of Phage's Lytic Activity Against Carbapenemase-Producing Klebsiella pneumoniae Isolates Using a High-Throughput Microbroth Growth Inhibition Assay. Infect Dis Ther 2025; 14:217-228. [PMID: 39709574 PMCID: PMC11782791 DOI: 10.1007/s40121-024-01092-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/04/2024] [Indexed: 12/23/2024] Open
Abstract
INTRODUCTION The host range of phages is usually assessed with the agar overlay method. However, this method is both cumbersome and subjective. Therefore, a microbroth assay was developed to assess host range and lytic activity patterns of phages in the agar overlay method against a collection of carbapenemase-producing Klebsiella pneumoniae (CRKP) isolates. METHODS The host range of 11 K. pneumoniae-specific phages against 8 non-repetitive well-characterized CRKP isolates was assessed with the agar overlay method and a microbroth assay by monitoring optical density (OD) at 630 nm for 24 h at different phage concentrations (5 × 109-5 × 103 PFU/ml) and two bacterial inocula (5 × 106 and 5 × 108 CFU/ml). The lytic activity of phage-bacteria pairs with transparent/semi-transparent (N = 7), turbid (N = 6), and no (N = 6) lysis in overlay agar method was compared statistically with the growth inhibition at 6 and 24 h in the microbroth assay with analysis of variance (ANOVA), receiver operating characteristic curves (ROC) curves and Fisher's exact test. Optimal cutoffs were determined, and sensitivity and specificity were calculated. RESULTS Statistically significant differences of growth inhibition at 6 and 24 h for phage concentrations ≥ 5 × 108 PFU/ml for both inocula were found between phages with transparent/semi-transparent, turbid, and no lysis. ROC curve analysis indicated an optimal growth inhibition cutoff of ≥ 31% at high phage and bacteria concentrations for detecting phages with lysis and ≥ 61% at high-phage and low-bacteria concentrations for detecting phages with transparent/semi-transparent lysis with sensitivity/specificity 100%/100% and 100%/86%, respectively. CONCLUSIONS The microbroth growth inhibition assay provided fast, reliable, and objective results for K. pneumoniae phage host-range lytic activity differentiating different patterns of lysis in a high-throughput format.
Collapse
Affiliation(s)
- Paschalis Paranos
- Clinical Microbiology Laboratory, Medical School, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Spyros Pournaras
- Clinical Microbiology Laboratory, Medical School, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Joseph Meletiadis
- Clinical Microbiology Laboratory, Medical School, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
4
|
Torrens G, Cava F. Mechanisms conferring bacterial cell wall variability and adaptivity. Biochem Soc Trans 2024; 52:1981-1993. [PMID: 39324635 PMCID: PMC11555704 DOI: 10.1042/bst20230027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/27/2024]
Abstract
The bacterial cell wall, a sophisticated and dynamic structure predominantly composed of peptidoglycan (PG), plays a pivotal role in bacterial survival and adaptation. Bacteria actively modify their cell walls by editing PG components in response to environmental challenges. Diverse variations in peptide composition, cross-linking patterns, and glycan strand structures empower bacteria to resist antibiotics, evade host immune detection, and adapt to dynamic environments. This review comprehensively summarizes the most common modifications reported to date and their associated adaptive role and further highlights how regulation of PG synthesis and turnover provides resilience to cell lysis.
Collapse
Affiliation(s)
- Gabriel Torrens
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, SciLifeLab, Umeå University, Umeå, Sweden
| | - Felipe Cava
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, SciLifeLab, Umeå University, Umeå, Sweden
| |
Collapse
|
5
|
Carvalho F, Carreaux A, Sartori-Rupp A, Tachon S, Gazi AD, Courtin P, Nicolas P, Dubois-Brissonnet F, Barbotin A, Desgranges E, Bertrand M, Gloux K, Schouler C, Carballido-López R, Chapot-Chartier MP, Milohanic E, Bierne H, Pagliuso A. Aquatic environment drives the emergence of cell wall-deficient dormant forms in Listeria. Nat Commun 2024; 15:8499. [PMID: 39358320 PMCID: PMC11447242 DOI: 10.1038/s41467-024-52633-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
Stressed bacteria can enter a dormant viable but non-culturable (VBNC) state. VBNC pathogens pose an increased health risk as they are undetectable by growth-based techniques and can wake up back into a virulent state. Although widespread in bacteria, the mechanisms governing this phenotypic switch remain elusive. Here, we investigate the VBNC state transition in the human pathogen Listeria monocytogenes. We show that bacteria starved in mineral water become VBNC by converting into osmotically stable cell wall-deficient coccoid forms, a phenomenon that occurs in other Listeria species. We reveal the bacterial stress response regulator SigB and the autolysin NamA as major actors of VBNC state transition. We lastly show that VBNC Listeria revert to a walled and virulent state after passage in chicken embryos. Our study provides more detail on the VBNC state transition mechanisms, revealing wall-free bacteria naturally arising in aquatic environments as a potential survival strategy in hypoosmotic and oligotrophic conditions.
Collapse
Affiliation(s)
- Filipe Carvalho
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Alexis Carreaux
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | | | | | - Anastasia D Gazi
- Ultrastructural Bioimaging Facility, Institut Pasteur, Paris, France
| | - Pascal Courtin
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Pierre Nicolas
- INRAE, Université Paris-Saclay, MaIAGE, Jouy-en-Josas, France
| | | | - Aurélien Barbotin
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Emma Desgranges
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Matthieu Bertrand
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Karine Gloux
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | | | - Rut Carballido-López
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | | | - Eliane Milohanic
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Hélène Bierne
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Alessandro Pagliuso
- INRAE, Université Paris-Saclay, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.
| |
Collapse
|
6
|
Gontijo M, Pereira Teles M, Martins Correia H, Pérez Jorge G, Rodrigues Santos Goes IC, Fasabi Flores AJ, Braz M, de Moraes Ceseti L, Zonzini Ramos P, Rosa e Silva I, Pereira Vidigal PM, Kobarg J, Miguez Couñago R, Alvarez-Martinez CE, Pereira C, Freire CSR, Almeida A, Brocchi M. Combined effect of SAR-endolysin LysKpV475 with polymyxin B and Salmonella bacteriophage phSE-5. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001462. [PMID: 38739436 PMCID: PMC11170124 DOI: 10.1099/mic.0.001462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/26/2024] [Indexed: 05/14/2024]
Abstract
Endolysins are bacteriophage (or phage)-encoded enzymes that catalyse the peptidoglycan breakdown in the bacterial cell wall. The exogenous action of recombinant phage endolysins against Gram-positive organisms has been extensively studied. However, the outer membrane acts as a physical barrier when considering the use of recombinant endolysins to combat Gram-negative bacteria. This study aimed to evaluate the antimicrobial activity of the SAR-endolysin LysKpV475 against Gram-negative bacteria as single or combined therapies, using an outer membrane permeabilizer (polymyxin B) and a phage, free or immobilized in a pullulan matrix. In the first step, the endolysin LysKpV475 in solution, alone and combined with polymyxin B, was tested in vitro and in vivo against ten Gram-negative bacteria, including highly virulent strains and multidrug-resistant isolates. In the second step, the lyophilized LysKpV475 endolysin was combined with the phage phSE-5 and investigated, free or immobilized in a pullulan matrix, against Salmonella enterica subsp. enterica serovar Typhimurium ATCC 13311. The bacteriostatic action of purified LysKpV475 varied between 8.125 μg ml-1 against Pseudomonas aeruginosa ATCC 27853, 16.25 μg ml-1 against S. enterica Typhimurium ATCC 13311, and 32.50 μg ml-1 against Klebsiella pneumoniae ATCC BAA-2146 and Enterobacter cloacae P2224. LysKpV475 showed bactericidal activity only for P. aeruginosa ATCC 27853 (32.50 μg ml-1) and P. aeruginosa P2307 (65.00 μg ml-1) at the tested concentrations. The effect of the LysKpV475 combined with polymyxin B increased against K. pneumoniae ATCC BAA-2146 [fractional inhibitory concentration index (FICI) 0.34; a value lower than 1.0 indicates an additive/combined effect] and S. enterica Typhimurium ATCC 13311 (FICI 0.93). A synergistic effect against S. enterica Typhimurium was also observed when the lyophilized LysKpV475 at ⅔ MIC was combined with the phage phSE-5 (m.o.i. of 100). The lyophilized LysKpV475 immobilized in a pullulan matrix maintained a significant Salmonella reduction of 2 logs after 6 h of treatment. These results demonstrate the potential of SAR-endolysins, alone or in combination with other treatments, in the free form or immobilized in solid matrices, which paves the way for their application in different areas, such as in biocontrol at the food processing stage, biosanitation of food contact surfaces and biopreservation of processed food in active food packing.
Collapse
Affiliation(s)
- Marco Gontijo
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-862, Brazil
| | - Mateus Pereira Teles
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-862, Brazil
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP 13083-970, Brazil
- Department of Biology, and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Hugo Martins Correia
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-862, Brazil
| | - Genesy Pérez Jorge
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-862, Brazil
- Research Group Statistics and Mathematical Modeling Applied to Educational Quality (GEMMA), University of Sucre, Sincelejo, Sucre, Colombia
| | - Isabella Carolina Rodrigues Santos Goes
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-862, Brazil
| | - Anthony Jhoao Fasabi Flores
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-862, Brazil
| | - Márcia Braz
- Department of Biology, and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Lucas de Moraes Ceseti
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-862, Brazil
| | - Priscila Zonzini Ramos
- Centro de Química Medicinal, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-970, Brazil
| | - Ivan Rosa e Silva
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP 13083-970, Brazil
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-871, Brazil
| | - Pedro Marcus Pereira Vidigal
- Núcleo de Análise de Biomoléculas (NuBioMol), Universidade Federal de Viçosa (UFV), Viçosa, MG 36570-900, Brazil
| | - Jörg Kobarg
- Faculdade de Ciências Farmacêuticas, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-871, Brazil
| | - Rafael Miguez Couñago
- Centro de Química Medicinal, Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-970, Brazil
| | - Cristina Elisa Alvarez-Martinez
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-862, Brazil
| | - Carla Pereira
- Department of Biology, and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Carmen S. R. Freire
- CICECO – Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Adelaide Almeida
- Department of Biology, and Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Aveiro, Portugal
| | - Marcelo Brocchi
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP 13083-862, Brazil
| |
Collapse
|
7
|
Lendel AM, Antonova NP, Grigoriev IV, Usachev EV, Gushchin VA, Vasina DV. Biofilm-disrupting effects of phage endolysins LysAm24, LysAp22, LysECD7, and LysSi3: breakdown the matrix. World J Microbiol Biotechnol 2024; 40:186. [PMID: 38683213 DOI: 10.1007/s11274-024-03999-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/21/2024] [Indexed: 05/01/2024]
Abstract
The ability of most opportunistic bacteria to form biofilms, coupled with antimicrobial resistance, hinder the efforts to control widespread infections, resulting in high risks of negative outcomes and economic costs. Endolysins are promising compounds that efficiently combat bacteria, including multidrug-resistant strains and biofilms, without a low probability of subsequent emergence of stable endolysin-resistant phenotypes. However, the details of antibiofilm effects of these enzymes are poorly understood. To elucidate the interactions of bacteriophage endolysins LysAm24, LysAp22, LysECD7, and LysSi3 with bacterial films formed by Gram-negative species, we estimated their composition and assessed the endolysins' effects on the most abundant exopolymers in vitro. The obtained data suggests a pronounced efficiency of these lysins against biofilms with high (Klebsiella pneumoniae) and low (Acinetobacter baumannii) matrix contents, or dual-species biofilms, resulting in at least a twofold loss of the biomass. These peptidoglycan hydrolases interacted diversely with protective compounds of biofilms such as extracellular DNA and polyanionic carbohydrates, indicating a spectrum of biofilm-disrupting effects for bacteriolytic phage enzymes. Specifically, we detected disruption of acid exopolysaccharides by LysAp22, strong DNA-binding capacity of LysAm24, both of these interactions for LysECD7, and neither of them for LysSi3.
Collapse
Affiliation(s)
- Anastasiya M Lendel
- Laboratory of Pathogen Population Variability Mechanisms, N. F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, 123098, Russia.
| | - Nataliia P Antonova
- Laboratory of Pathogen Population Variability Mechanisms, N. F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, 123098, Russia
| | - Igor V Grigoriev
- Translational Biomedicine Laboratory, N. F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, 123098, Russia
| | - Evgeny V Usachev
- Translational Biomedicine Laboratory, N. F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, 123098, Russia
| | - Vladimir A Gushchin
- Laboratory of Pathogen Population Variability Mechanisms, N. F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, 123098, Russia
| | - Daria V Vasina
- Laboratory of Pathogen Population Variability Mechanisms, N. F. Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, 123098, Russia
| |
Collapse
|
8
|
Kanaparthi D, Lampe M, Krohn JH, Zhu B, Klingl A, Lueders T. The reproduction of gram-negative protoplasts and the influence of environmental conditions on this process. iScience 2023; 26:108149. [PMID: 37942012 PMCID: PMC10628739 DOI: 10.1016/j.isci.2023.108149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/31/2023] [Accepted: 10/02/2023] [Indexed: 11/10/2023] Open
Abstract
Bacterial protoplasts are known to reproduce independently of canonical molecular biological processes. Although their reproduction is thought to be influenced by environmental conditions, the growth of protoplasts in their natural habitat has never been empirically studied. Here, we studied the life cycle of protoplasts in their native environment. Contrary to the previous perception that protoplasts reproduce in an erratic manner, cells in our study reproduced in a defined sequence of steps, always leading to viable daughter cells. Their reproduction can be explained by an interplay between intracellular metabolism, the physicochemical properties of cell constituents, and the nature of cations in the growth media. The efficiency of reproduction is determined by the environmental conditions. Under favorable environmental conditions, protoplasts reproduce with nearly similar efficiency to cells that possess a cell wall. In short, here we demonstrate the simplest method of cellular reproduction and the influence of environmental conditions on this process.
Collapse
Affiliation(s)
- Dheeraj Kanaparthi
- Max-Planck Institute for Biochemistry, Munich, Germany
- Chair of Ecological Microbiology, BayCeer, University of Bayreuth, Bayreuth, Germany
- Excellence Cluster ORIGINS, Garching, Germany
| | - Marko Lampe
- Advanced Light Microscopy Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Jan-Hagen Krohn
- Max-Planck Institute for Biochemistry, Munich, Germany
- Excellence Cluster ORIGINS, Garching, Germany
| | - Baoli Zhu
- Chair of Ecological Microbiology, BayCeer, University of Bayreuth, Bayreuth, Germany
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, CAS, Changsha, China
| | - Andreas Klingl
- Department of Biology, LMU, Planegg-Martinsried, Germany
| | - Tillmann Lueders
- Chair of Ecological Microbiology, BayCeer, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
9
|
Georjon H, Bernheim A. The highly diverse antiphage defence systems of bacteria. Nat Rev Microbiol 2023; 21:686-700. [PMID: 37460672 DOI: 10.1038/s41579-023-00934-x] [Citation(s) in RCA: 180] [Impact Index Per Article: 90.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2023] [Indexed: 09/14/2023]
Abstract
Bacteria and their viruses have coevolved for billions of years. This ancient and still ongoing arms race has led bacteria to develop a vast antiphage arsenal. The development of high-throughput screening methods expanded our knowledge of defence systems from a handful to more than a hundred systems, unveiling many different molecular mechanisms. These findings reveal that bacterial immunity is much more complex than previously thought. In this Review, we explore recently discovered bacterial antiphage defence systems, with a particular focus on their molecular diversity, and discuss the ecological and evolutionary drivers and implications of the existing diversity of antiphage defence mechanisms.
Collapse
Affiliation(s)
- Héloïse Georjon
- Molecular Diversity of Microbes Lab, Institut Pasteur, Université Paris Cité, INSERM, Paris, France
| | - Aude Bernheim
- Molecular Diversity of Microbes Lab, Institut Pasteur, Université Paris Cité, INSERM, Paris, France.
| |
Collapse
|
10
|
Luthe T, Kever L, Thormann K, Frunzke J. Bacterial multicellular behavior in antiviral defense. Curr Opin Microbiol 2023; 74:102314. [PMID: 37030144 DOI: 10.1016/j.mib.2023.102314] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 04/08/2023]
Abstract
Multicellular behavior benefits seemingly simple organisms such as bacteria, by improving nutrient uptake, resistance to stresses, or by providing advantages in predatory interactions. Several recent studies have shown that this also extends to the defense against bacteriophages, which are omnipresent in almost all habitats. In this review, we summarize strategies conferring protection against phage infection at the multicellular level, covering secretion of small antiphage molecules or membrane vesicles, the role of quorum sensing in phage defense, the development of transient phage resistance, and the impact of biofilm components and architecture. Recent studies focusing on these topics push the boundaries of our understanding of the bacterial immune system and set the ground for an appreciation of bacterial multicellular behavior in antiviral defense.
Collapse
|
11
|
Schlimpert S, Elliot MA. The Best of Both Worlds-Streptomyces coelicolor and Streptomyces venezuelae as Model Species for Studying Antibiotic Production and Bacterial Multicellular Development. J Bacteriol 2023; 205:e0015323. [PMID: 37347176 PMCID: PMC10367585 DOI: 10.1128/jb.00153-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023] Open
Abstract
Streptomyces bacteria have been studied for more than 80 years thanks to their ability to produce an incredible array of antibiotics and other specialized metabolites and their unusual fungal-like development. Their antibiotic production capabilities have ensured continual interest from both academic and industrial sectors, while their developmental life cycle has provided investigators with unique opportunities to address fundamental questions relating to bacterial multicellular growth. Much of our understanding of the biology and metabolism of these fascinating bacteria, and many of the tools we use to manipulate these organisms, have stemmed from investigations using the model species Streptomyces coelicolor and Streptomyces venezuelae. Here, we explore the pioneering work in S. coelicolor that established foundational genetic principles relating to specialized metabolism and development, alongside the genomic and cell biology developments that led to the emergence of S. venezuelae as a new model system. We highlight key discoveries that have stemmed from studies of these two systems and discuss opportunities for future investigations that leverage the power and understanding provided by S. coelicolor and S. venezuelae.
Collapse
Affiliation(s)
- Susan Schlimpert
- Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom
| | - Marie A. Elliot
- Department of Biology and M. G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
12
|
Du Toit A. Leaving the wall behind to escape. Nat Rev Microbiol 2023; 21:219. [PMID: 36792885 DOI: 10.1038/s41579-023-00866-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
13
|
Bacteria can shed a layer when phages turn up the heat. Nat Microbiol 2023; 8:367-368. [PMID: 36797486 DOI: 10.1038/s41564-023-01332-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|