1
|
Payer SE, Prejanò M, Kögl P, Reiter T, Pferschy-Wenzig EM, Himo F, Kroutil W. C-C Bond Cleavage in the Late-Stage Biosynthesis of Huperzine Alkaloids Occurs via Enzymatic Retro-Aza-Prins Reaction. J Am Chem Soc 2025. [PMID: 40346026 DOI: 10.1021/jacs.4c10410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
The demand for novel enzyme-catalyzed reactions in chemical synthesis has spurred the development of many new-to-nature reactions. Additionally, detailed analysis of biosynthetic pathways can uncover unprecedented chemical/enzymatic mechanisms. In this study, we revisited the catalytic mechanism of the 2-oxoglutarate-dependent dioxygenase Pt2OGD-1, involved in the biosynthesis of huperzine alkaloids. Our experimental and computational investigations uncovered a previously unknown enzymatic C-C bond cleavage in the piperidine ring of the alkaloid scaffold, resembling an oxidative retro-aza-Prins reaction. Here, this transformation is initiated by hydrogen abstraction, followed by electron transfer at the 4-position of the heterocycle, triggering ring opening and finally resulting in the loss of a carbon atom as formaldehyde. This discovery expands the toolbox of reactions, enhances our understanding of these enzymes, and may facilitate their application in the biotechnological production of pharmaceutically relevant alkaloid scaffolds as well as the development of biocatalysts with similar activities.
Collapse
Affiliation(s)
- Stefan E Payer
- Institute of Chemistry, University of Graz, BioTechMed Graz, Heinrichstrasse 28, A-8010 Graz, Austria
- Enzyan Biocatalysis GmbH, Stiftingtalstraße 14, A-8010 Graz, Austria
| | - Mario Prejanò
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci, 87036 Rende, Italy
| | - Philipp Kögl
- Institute of Chemistry, University of Graz, BioTechMed Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| | - Tamara Reiter
- Institute of Chemistry, University of Graz, BioTechMed Graz, Heinrichstrasse 28, A-8010 Graz, Austria
| | - Eva-Maria Pferschy-Wenzig
- Institute of Pharmaceutical Sciences, Pharmacognosy, University of Graz, Beethovenstrasse 8, A-8010 Graz, Austria
| | - Fahmi Himo
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Wolfgang Kroutil
- Institute of Chemistry, University of Graz, BioTechMed Graz, Heinrichstrasse 28, A-8010 Graz, Austria
- Field of Excellence BioHealth, University of Graz, 8010 Graz, Austria
| |
Collapse
|
2
|
Yi R, Shi Y, Cao X, Pan C. Actinomycetes: Treasure trove for discovering novel antibiotic candidates. Eur J Med Chem 2025; 286:117317. [PMID: 39884098 DOI: 10.1016/j.ejmech.2025.117317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/24/2024] [Accepted: 01/01/2025] [Indexed: 02/01/2025]
Abstract
Actinomycetes are an important source of secondary metabolites such as antibiotics and other active natural products. Many well-known antibiotics, such as streptomycin, oxytetracycline, and tetracycline, are produced by actinomycetes. Different types of antibiotics have distinct mechanisms of action against microorganisms: inhibit protein synthesis, inhibit nucleic acid synthesis, or inhibit cell wall synthesis. For decades, actinomycetes have played a crucial role in clinical treatment for major diseases such as pathogenic bacterial infections, serving as one of the most significant sources of new discoveries. However, due to extensive use of antibiotics, the types and numbers of drug-resistant bacteria, represented by multidrug resistant (MDR) and extensively drug resistant (XDR) bacteria, have increased dramatically in clinical settings, posing a significant threat to human survival. Therefore, there is an urgent need to search for structurally novel antibacterial natural products and develop new antibiotics. In this review, a total of 170 antibacterial secondary metabolites from actinomycetes, published in the 54 literatures (2020 to September 2024) and some synthetic analogs, are discussed with emphasis on their structures and biological activities.
Collapse
Affiliation(s)
- Rexing Yi
- Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yutong Shi
- College of Food Science and Engineering, Ningbo University, Ningbo, 315832, China
| | - Xun Cao
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, China
| | - Chengqian Pan
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
3
|
Li K, Cho YI, Tran MA, Wiedemann C, Zhang S, Koweek RS, Hoàng NK, Hamrick GS, Bowen MA, Kokona B, Stallforth P, Beld J, Hellmich UA, Charkoudian LK. Strategic Acyl Carrier Protein Engineering Enables Functional Type II Polyketide Synthase Reconstitution In Vitro. ACS Chem Biol 2025; 20:197-207. [PMID: 39745931 PMCID: PMC11744666 DOI: 10.1021/acschembio.4c00678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/02/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025]
Abstract
Microbial polyketides represent a structurally diverse class of secondary metabolites with medicinally relevant properties. Aromatic polyketides are produced by type II polyketide synthase (PKS) systems, each minimally composed of a ketosynthase-chain length factor (KS-CLF) and a phosphopantetheinylated acyl carrier protein (holo-ACP). Although type II PKSs are found throughout the bacterial kingdom, and despite their importance to strategic bioengineering, type II PKSs have not been well-studied in vitro. In cases where the KS-CLF can be accessed via E. coli heterologous expression, often the cognate ACPs are not activatable by the broad specificity Bacillus subtilis surfactin-producing phosphopantetheinyl transferase (PPTase) Sfp and, conversely, in systems where the ACP can be activated by Sfp, the corresponding KS-CLF is typically not readily obtained. Here, we report the high-yield heterologous expression of both cyanobacterial Gloeocapsa sp. PCC 7428 minimal type II PKS (gloPKS) components in E. coli, which allowed us to study this minimal type II PKS in vitro. Initially, neither the cognate PPTase nor Sfp converted gloACP to its active holo state. However, by examining sequence differences between Sfp-compatible and -incompatible ACPs, we identified two conserved residues in gloACP that, when mutated, enabled high-yield phosphopantetheinylation of gloACP by Sfp. Using analogous mutations, other previously Sfp-incompatible type II PKS ACPs from different bacterial phyla were also rendered activatable by Sfp. This demonstrates the generalizability of our approach and breaks down a longstanding barrier to type II PKS studies and the exploration of complex biosynthetic pathways.
Collapse
Affiliation(s)
- Kevin Li
- Department
of Chemistry, Haverford College, Haverford, Pennsylvania 19041, United States
| | - Yae In Cho
- Department
of Chemistry, Haverford College, Haverford, Pennsylvania 19041, United States
| | - Mai Anh Tran
- Faculty
of Chemistry and Earth Sciences, Institute for Organic Chemistry and
Macromolecular Chemistry, Friedrich Schiller
University Jena, 07743 Jena, Germany
- Department
of Paleobiotechnology, Leibniz Institute
for Natural Product Research and Infection Biology, Hans Knöll
Institute, 07745 Jena, Germany
| | - Christoph Wiedemann
- Faculty
of Chemistry and Earth Sciences, Institute for Organic Chemistry and
Macromolecular Chemistry, Friedrich Schiller
University Jena, 07743 Jena, Germany
| | - Shuaibing Zhang
- Department
of Paleobiotechnology, Leibniz Institute
for Natural Product Research and Infection Biology, Hans Knöll
Institute, 07745 Jena, Germany
| | - Rebecca S. Koweek
- Department
of Chemistry, Haverford College, Haverford, Pennsylvania 19041, United States
| | - Ngọc Khánh Hoàng
- Department
of Chemistry, Haverford College, Haverford, Pennsylvania 19041, United States
| | - Grayson S. Hamrick
- Department
of Chemistry, Haverford College, Haverford, Pennsylvania 19041, United States
| | - Margaret A. Bowen
- Department
of Chemistry, Haverford College, Haverford, Pennsylvania 19041, United States
| | - Bashkim Kokona
- Department
of Chemistry, Haverford College, Haverford, Pennsylvania 19041, United States
| | - Pierre Stallforth
- Faculty
of Chemistry and Earth Sciences, Institute for Organic Chemistry and
Macromolecular Chemistry, Friedrich Schiller
University Jena, 07743 Jena, Germany
- Department
of Paleobiotechnology, Leibniz Institute
for Natural Product Research and Infection Biology, Hans Knöll
Institute, 07745 Jena, Germany
- Cluster
of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Joris Beld
- Department
of Microbiology & Immunology, Center for Advanced Microbial Processing,
Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania 19104, United States
| | - Ute A. Hellmich
- Faculty
of Chemistry and Earth Sciences, Institute for Organic Chemistry and
Macromolecular Chemistry, Friedrich Schiller
University Jena, 07743 Jena, Germany
- Cluster
of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743 Jena, Germany
- Center
for
Biomolecular Magnetic Resonance (BMRZ), Goethe University, 60629 Frankfurt, Germany
| | - Louise K. Charkoudian
- Department
of Chemistry, Haverford College, Haverford, Pennsylvania 19041, United States
| |
Collapse
|
4
|
Jeannette PL, Budimir ZL, Johnson LO, Parkinson EI. Biocatalytic Tetrapeptide Macrocyclization by Cryptic Penicillin-binding Protein-type Thioesterases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.16.623930. [PMID: 39605408 PMCID: PMC11601455 DOI: 10.1101/2024.11.16.623930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Cyclic tetrapeptides (CTPs) are a diverse class of natural products with a broad range of biological activities. However, they are extremely challenging to synthesize due to the ring strain associated with their small ring size. While chemical methods have been developed to access CTPs, they generally require the presence of certain amino acids, limiting their substrate scopes. Herein, we report the first bioinformatics guided discovery of a thioesterase from a cryptic biosynthetic gene cluster for peptide cyclization. Specifically, we hypothesized that predicted Penicillin-binding type thioesterases (PBP-TEs) from cryptic nonribosomal peptide synthetase gene clusters containing four adenylation domains would catalyze tetrapeptide cyclization. We found that one of the predicted PBP-TEs, WP516, efficiently cyclizes a wide variety of tetrapeptide substrates. To date, it is only the second stand-alone enzyme capable of cyclizing tetrapeptides, and its substrate scope greatly surpasses that of the only other reported tetrapeptide cyclase Ulm16. AlphaFold modeling and covalent docking were used to rationalize the broad substrate scope of WP516 in comparison to other PBP-TEs. Overall, the bioinformatics guided workflow outlined in this paper, and the discovery of WP516, represent promising tools for the biocatalytic production of head-to-tail CTPs, as well as a more general strategy for discovery of enzymes for peptide cyclization.
Collapse
Affiliation(s)
- Paisley L. Jeannette
- James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, IN 47906
| | - Zachary L. Budimir
- James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, IN 47906
| | - Lucas O. Johnson
- James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, IN 47906
| | - Elizabeth I. Parkinson
- James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, IN 47906
- Borch Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47906
| |
Collapse
|
5
|
Cano-Prieto C, Undabarrena A, de Carvalho AC, Keasling JD, Cruz-Morales P. Triumphs and Challenges of Natural Product Discovery in the Postgenomic Era. Annu Rev Biochem 2024; 93:411-445. [PMID: 38639989 DOI: 10.1146/annurev-biochem-032620-104731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Natural products have played significant roles as medicine and food throughout human history. Here, we first provide a brief historical overview of natural products, their classification and biosynthetic origins, and the microbiological and genetic methods used for their discovery. We also describe and discuss the technologies that revolutionized the field, which transitioned from classic genetics to genome-centric discovery approximately two decades ago. We then highlight the most recent advancements and approaches in the current postgenomic era, in which genome mining is a standard operation and high-throughput analytical methods allow parallel discovery of genes and molecules at an unprecedented pace. Finally, we discuss the new challenges faced by the field of natural products and the future of systematic heterologous expression and strain-independent discovery, which promises to deliver more molecules in vials than ever before.
Collapse
Affiliation(s)
- Carolina Cano-Prieto
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark;
| | - Agustina Undabarrena
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark;
| | - Ana Calheiros de Carvalho
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark;
| | - Jay D Keasling
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Center for Synthetic Biochemistry, Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Shenzhen, China
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, California, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark;
- Department of Bioengineering, University of California, Berkeley, California, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, USA
| | - Pablo Cruz-Morales
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark;
| |
Collapse
|
6
|
Kifle BA, Sime AM, Gemeda MT, Woldesemayat AA. Shotgun metagenomic insights into secondary metabolite biosynthetic gene clusters reveal taxonomic and functional profiles of microbiomes in natural farmland soil. Sci Rep 2024; 14:15096. [PMID: 38956049 PMCID: PMC11220033 DOI: 10.1038/s41598-024-63254-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 05/27/2024] [Indexed: 07/04/2024] Open
Abstract
Antibiotic resistance is a worldwide problem that imposes a devastating effect on developing countries and requires immediate interventions. Initially, most of the antibiotic drugs were identified by culturing soil microbes. However, this method is prone to discovering the same antibiotics repeatedly. The present study employed a shotgun metagenomics approach to investigate the taxonomic diversity, functional potential, and biosynthetic capacity of microbiomes from two natural agricultural farmlands located in Bekeka and Welmera Choke Kebelle in Ethiopia for the first time. Analysis of the small subunit rRNA revealed bacterial domain accounting for 83.33% and 87.24% in the two selected natural farmlands. Additionally, the analysis showed the dominance of Proteobacteria representing 27.27% and 28.79% followed by Actinobacteria making up 12.73% and 13.64% of the phyla composition. Furthermore, the analysis revealed the presence of unassigned bacteria in the studied samples. The metagenome functional analysis showed 176,961 and 104, 636 number of protein-coding sequences (pCDS) from the two samples found a match with 172,655 and 102, 275 numbers of InterPro entries, respectively. The Genome ontology annotation suggests the presence of 5517 and 3293 pCDS assigned to the "biosynthesis process". Numerous Kyoto Encyclopedia of Genes and Genomes modules (KEGG modules) involved in the biosynthesis of terpenoids and polyketides were identified. Furthermore, both known and novel Biosynthetic gene clusters, responsible for the production of secondary metabolites, such as polyketide synthases, non-ribosomal peptide synthetase, ribosomally synthesized and post-translationally modified peptides (Ripp), and Terpene, were discovered. Generally, from the results it can be concluded that the microbiomes in the selected sampling sites have a hidden functional potential for the biosynthesis of secondary metabolites. Overall, this study can serve as a strong preliminary step in the long journey of bringing new antibiotics to the market.
Collapse
Affiliation(s)
- Bezayit Amare Kifle
- Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Amsale Melkamu Sime
- Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Mesfin Tafesse Gemeda
- Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Adugna Abdi Woldesemayat
- Department of Biotechnology, College of Biological and Chemical Engineering, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia.
| |
Collapse
|
7
|
Crooke AM, Chand AK, Cui Z, Balskus EP. Elucidation of Chalkophomycin Biosynthesis Reveals N-Hydroxypyrrole-Forming Enzymes. J Am Chem Soc 2024; 146:16268-16280. [PMID: 38810110 PMCID: PMC11177257 DOI: 10.1021/jacs.4c04712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024]
Abstract
Reactive functional groups, such as N-nitrosamines, impart unique bioactivities to the natural products in which they are found. Recent work has illuminated enzymatic N-nitrosation reactions in microbial natural product biosynthesis, motivating interest in discovering additional metabolites constructed using such reactivity. Here, we use a genome mining approach to identify over 400 cryptic biosynthetic gene clusters (BGCs) encoding homologues of the N-nitrosating biosynthetic enzyme SznF, including the BGC for chalkophomycin, a CuII-binding metabolite that contains a C-type diazeniumdiolate and N-hydroxypyrrole. Characterizing chalkophomycin biosynthetic enzymes reveals previously unknown enzymes responsible for N-hydroxypyrrole biosynthesis, including the first prolyl-N-hydroxylase, and a key step in the assembly of the diazeniumdiolate-containing amino acid graminine. Discovery of this pathway enriches our understanding of the biosynthetic logic employed in constructing unusual heteroatom-heteroatom bond-containing functional groups, enabling future efforts in natural product discovery and biocatalysis.
Collapse
Affiliation(s)
- Anne Marie Crooke
- Department
of Chemistry and Chemical Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Anika K. Chand
- Department
of Chemistry and Chemical Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Zheng Cui
- Department
of Chemistry and Chemical Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Emily P. Balskus
- Department
of Chemistry and Chemical Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
- Howard
Hughes Medical Institute, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
8
|
Medeiros W, Hidalgo K, Leão T, de Carvalho LM, Ziemert N, Oliveira V. Unlocking the biosynthetic potential and taxonomy of the Antarctic microbiome along temporal and spatial gradients. Microbiol Spectr 2024; 12:e0024424. [PMID: 38747631 PMCID: PMC11237469 DOI: 10.1128/spectrum.00244-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/19/2024] [Indexed: 06/06/2024] Open
Abstract
Extreme environments, such as Antarctica, select microbial communities that display a range of evolutionary strategies to survive and thrive under harsh environmental conditions. These include a diversity of specialized metabolites, which have the potential to be a source for new natural product discovery. Efforts using (meta)genome mining approaches to identify and understand biosynthetic gene clusters in Antarctica are still scarce, and the extent of their diversity and distribution patterns in the environment have yet to be discovered. Herein, we investigated the biosynthetic gene diversity of the biofilm microbial community of Whalers Bay, Deception Island, in the Antarctic Peninsula and revealed its distribution patterns along spatial and temporal gradients by applying metagenome mining approaches and multivariable analysis. The results showed that the Whalers Bay microbial community harbors a great diversity of biosynthetic gene clusters distributed into seven classes, with terpene being the most abundant. The phyla Proteobacteria and Bacteroidota were the most abundant in the microbial community and contributed significantly to the biosynthetic gene abundances in Whalers Bay. Furthermore, the results highlighted a significant correlation between the distribution of biosynthetic genes and taxonomic diversity, emphasizing the intricate interplay between microbial taxonomy and their potential for specialized metabolite production.IMPORTANCEThis research on antarctic microbial biosynthetic diversity in Whalers Bay, Deception Island, unveils the hidden potential of extreme environments for natural product discovery. By employing metagenomic techniques, the research highlights the extensive diversity of biosynthetic gene clusters and identifies key microbial phyla, Proteobacteria and Bacteroidota, as significant contributors. The correlation between taxonomic diversity and biosynthetic gene distribution underscores the intricate interplay governing specialized metabolite production. These findings are crucial for understanding microbial adaptation in extreme environments and hold significant implications for bioprospecting initiatives. The study opens avenues for discovering novel bioactive compounds with potential applications in medicine and industry, emphasizing the importance of preserving and exploring these polyextreme ecosystems to advance biotechnological and pharmaceutical research.
Collapse
Affiliation(s)
- William Medeiros
- Microbial Resources Division, Research Center for Chemistry, Biology, and Agriculture (CPQBA), Universidade Estadual de Campinas (UNICAMP), Paulínia, São Paulo, Brazil
- Interfaculty Institute of Microbiology, and Infection Medicine Institute for Bioinformatics and Medical Informatics, German Centre for Infection Research (DZIF), Tübingen, Germany
| | - Kelly Hidalgo
- Microbial Resources Division, Research Center for Chemistry, Biology, and Agriculture (CPQBA), Universidade Estadual de Campinas (UNICAMP), Paulínia, São Paulo, Brazil
| | - Tiago Leão
- Chemistry Institute, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Lucas Miguel de Carvalho
- Center for Computing in Engineering and Sciences, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Nadine Ziemert
- Interfaculty Institute of Microbiology, and Infection Medicine Institute for Bioinformatics and Medical Informatics, German Centre for Infection Research (DZIF), Tübingen, Germany
| | - Valeria Oliveira
- Microbial Resources Division, Research Center for Chemistry, Biology, and Agriculture (CPQBA), Universidade Estadual de Campinas (UNICAMP), Paulínia, São Paulo, Brazil
| |
Collapse
|
9
|
Richter D, Piel J. Novel types of RiPP-modifying enzymes. Curr Opin Chem Biol 2024; 80:102463. [PMID: 38729090 DOI: 10.1016/j.cbpa.2024.102463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/12/2024] [Accepted: 04/14/2024] [Indexed: 05/12/2024]
Abstract
Novel discoveries in natural product biosynthesis reveal hidden bioactive compounds and expand our knowledge in enzymology. Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a rapidly growing class of natural products featuring diverse non-canonical amino acids introduced by maturation enzymes as a class-defining characteristic. Underexplored RiPP sources, such as the human microbiome, the oceans, uncultured microorganisms, and plants are rich hunting grounds for novel enzymology. Unusual α- and β-amino acids, peptide cleavages, lipidations, diverse macrocyclizations, and other features expand the range of chemical groups that are installed in RiPPs by often promiscuous enzymes. This review highlights the search for novelty in RiPP enzymology in the past two years, with respect to the discovery of new biochemical modifications but also towards novel applications.
Collapse
Affiliation(s)
- Daniel Richter
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland
| | - Jörn Piel
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, 8093 Zürich, Switzerland.
| |
Collapse
|
10
|
Wu S, Zhou H, Chen D, Lu Y, Li Y, Qiao J. Multi-omic analysis tools for microbial metabolites prediction. Brief Bioinform 2024; 25:bbae264. [PMID: 38859767 PMCID: PMC11165163 DOI: 10.1093/bib/bbae264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/08/2024] [Indexed: 06/12/2024] Open
Abstract
How to resolve the metabolic dark matter of microorganisms has long been a challenging problem in discovering active molecules. Diverse omics tools have been developed to guide the discovery and characterization of various microbial metabolites, which make it gradually possible to predict the overall metabolites for individual strains. The combinations of multi-omic analysis tools effectively compensates for the shortcomings of current studies that focus only on single omics or a broad class of metabolites. In this review, we systematically update, categorize and sort out different analysis tools for microbial metabolites prediction in the last five years to appeal for the multi-omic combination on the understanding of the metabolic nature of microbes. First, we provide the general survey on different updated prediction databases, webservers, or software that based on genomics, transcriptomics, proteomics, and metabolomics, respectively. Then, we discuss the essentiality on the integration of multi-omics data to predict metabolites of different microbial strains and communities, as well as stressing the combination of other techniques, such as systems biology methods and data-driven algorithms. Finally, we identify key challenges and trends in developing multi-omic analysis tools for more comprehensive prediction on diverse microbial metabolites that contribute to human health and disease treatment.
Collapse
Affiliation(s)
- Shengbo Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University, Shaoxing, Shaoxing 312300, China
| | - Haonan Zhou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Danlei Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University, Shaoxing, Shaoxing 312300, China
| | - Yutong Lu
- Zhejiang Institute of Tianjin University, Shaoxing, Shaoxing 312300, China
| | - Yanni Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin 300072, China
| | - Jianjun Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University, Shaoxing, Shaoxing 312300, China
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, China
| |
Collapse
|
11
|
Lazic J, Filipovic V, Pantelic L, Milovanovic J, Vojnovic S, Nikodinovic-Runic J. Late-stage diversification of bacterial natural products through biocatalysis. Front Bioeng Biotechnol 2024; 12:1351583. [PMID: 38807651 PMCID: PMC11130421 DOI: 10.3389/fbioe.2024.1351583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/18/2024] [Indexed: 05/30/2024] Open
Abstract
Bacterial natural products (BNPs) are very important sources of leads for drug development and chemical novelty. The possibility to perform late-stage diversification of BNPs using biocatalysis is an attractive alternative route other than total chemical synthesis or metal complexation reactions. Although biocatalysis is gaining popularity as a green chemistry methodology, a vast majority of orphan sequenced genomic data related to metabolic pathways for BNP biosynthesis and its tailoring enzymes are underexplored. In this review, we report a systematic overview of biotransformations of 21 molecules, which include derivatization by halogenation, esterification, reduction, oxidation, alkylation and nitration reactions, as well as degradation products as their sub-derivatives. These BNPs were grouped based on their biological activities into antibacterial (5), antifungal (5), anticancer (5), immunosuppressive (2) and quorum sensing modulating (4) compounds. This study summarized 73 derivatives and 16 degradation sub-derivatives originating from 12 BNPs. The highest number of biocatalytic reactions was observed for drugs that are already in clinical use: 28 reactions for the antibacterial drug vancomycin, followed by 18 reactions reported for the immunosuppressive drug rapamycin. The most common biocatalysts include oxidoreductases, transferases, lipases, isomerases and haloperoxidases. This review highlights biocatalytic routes for the late-stage diversification reactions of BNPs, which potentially help to recognize the structural optimizations of bioactive scaffolds for the generation of new biomolecules, eventually leading to drug development.
Collapse
Affiliation(s)
- Jelena Lazic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | | | | | | | | | | |
Collapse
|
12
|
Crooke AM, Chand AK, Cui Z, Balskus EP. Elucidation of chalkophomycin biosynthesis reveals N-hydroxypyrrole-forming enzymes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.24.577118. [PMID: 38328124 PMCID: PMC10849742 DOI: 10.1101/2024.01.24.577118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Reactive functional groups, such as N-nitrosamines, impart unique bioactivities to the natural products in which they are found. Recent work has illuminated enzymatic N-nitrosation reactions in microbial natural product biosynthesis, motivating an interest in discovering additional metabolites constructed using such reactivity. Here, we use a genome mining approach to identify over 400 cryptic biosynthetic gene clusters (BGCs) encoding homologs of the N-nitrosating biosynthetic enzyme SznF, including the BGC for chalkophomycin, a CuII-binding metabolite that contains a C-type diazeniumdiolate and N-hydroxypyrrole. Characterizing chalkophomycin biosynthetic enzymes reveals previously unknown enzymes responsible for N-hydroxypyrrole biosynthesis, including the first prolyl-N-hydroxylase, and a key step in assembly of the diazeniumdiolate-containing amino acid graminine. Discovery of this pathway enriches our understanding of the biosynthetic logic employed in constructing unusual heteroatom-heteroatom bond-containing functional groups, enabling future efforts in natural product discovery and biocatalysis.
Collapse
Affiliation(s)
- Anne Marie Crooke
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Anika K. Chand
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Zheng Cui
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Emily P. Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
13
|
Chioti VT, Clark KA, Ganley JG, Han EJ, Seyedsayamdost MR. N-Cα Bond Cleavage Catalyzed by a Multinuclear Iron Oxygenase from a Divergent Methanobactin-like RiPP Gene Cluster. J Am Chem Soc 2024; 146:7313-7323. [PMID: 38452252 PMCID: PMC11062405 DOI: 10.1021/jacs.3c11740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
DUF692 multinuclear iron oxygenases (MNIOs) are an emerging family of tailoring enzymes involved in the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs). Three members, MbnB, TglH, and ChrH, have been characterized to date and shown to catalyze unusual and complex transformations. Using a co-occurrence-based bioinformatic search strategy, we recently generated a sequence similarity network of MNIO-RiPP operons that encode one or more MNIOs adjacent to a transporter. The network revealed >1000 unique gene clusters, evidence of an unexplored biosynthetic landscape. Herein, we assess an MNIO-RiPP cluster from this network that is encoded in Proteobacteria and Actinobacteria. The cluster, which we have termed mov (for methanobactin-like operon in Vibrio), encodes a 23-residue precursor peptide, two MNIOs, a RiPP recognition element, and a transporter. Using both in vivo and in vitro methods, we show that one MNIO, homologous to MbnB, installs an oxazolone-thioamide at a Thr-Cys dyad in the precursor. Subsequently, the second MNIO catalyzes N-Cα bond cleavage of the penultimate Asn to generate a C-terminally amidated peptide. This transformation expands the reaction scope of the enzyme family, marks the first example of an MNIO-catalyzed modification that does not involve Cys, and sets the stage for future exploration of other MNIO-RiPPs.
Collapse
Affiliation(s)
- Vasiliki T Chioti
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Kenzie A Clark
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Jack G Ganley
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Esther J Han
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Mohammad R Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
14
|
Willetts A. The Role of Dioxygen in Microbial Bio-Oxygenation: Challenging Biochemistry, Illustrated by a Short History of a Long Misunderstood Enzyme. Microorganisms 2024; 12:389. [PMID: 38399793 PMCID: PMC10891995 DOI: 10.3390/microorganisms12020389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
A Special Issue of Microorganisms devoted to 'Microbial Biocatalysis and Biodegradation' would be incomplete without some form of acknowledgement of the many important roles that dioxygen-dependent enzymes (principally mono- and dioxygenases) play in relevant aspects of bio-oxygenation. This is reflected by the multiple strategic roles that dioxygen -dependent microbial enzymes play both in generating valuable synthons for chemoenzymatic synthesis and in facilitating reactions that help to drive the global geochemical carbon cycle. A useful insight into this can be gained by reviewing the evolution of the current status of 2,5-diketocamphane 1,2-monooxygenase (EC 1.14.14.108) from (+)-camphor-grown Pseudomonas putida ATCC 17453, the key enzyme that promotes the initial ring cleavage of this natural bicyclic terpene. Over the last sixty years, the perceived nature of this monooxygenase has transmogrified significantly. Commencing in the 1960s, extensive initial studies consistently reported that the enzyme was a monomeric true flavoprotein dependent on both FMNH2 and nonheme iron as bound cofactors. However, over the last decade, all those criteria have changed absolutely, and the enzyme is currently acknowledged to be a metal ion-independent homodimeric flavin-dependent two-component mono-oxygenase deploying FMNH2 as a cosubstrate. That transition is a paradigm of the ever evolving nature of scientific knowledge.
Collapse
Affiliation(s)
- Andrew Willetts
- 4 Sv Ivan, 21400 Sutivan, Croatia;
- Curnow Consultancies, Helston TR13 9PQ, UK
| |
Collapse
|
15
|
Johnson BA, Clark KA, Bushin LB, Spolar CN, Seyedsayamdost MR. Expanding the Landscape of Noncanonical Amino Acids in RiPP Biosynthesis. J Am Chem Soc 2024; 146:3805-3815. [PMID: 38316431 DOI: 10.1021/jacs.3c10824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Advancements in DNA sequencing technologies and bioinformatics have enabled the discovery of new metabolic reactions from overlooked microbial species and metagenomic sequences. Using a bioinformatic co-occurrence strategy, we previously generated a network of ∼600 uncharacterized quorum-sensing-regulated biosynthetic gene clusters that code for ribosomally synthesized and post-translationally modified peptide (RiPP) natural products and are tailored by radical S-adenosylmethionine (RaS) enzymes in streptococci. The most complex of these is the GRC subfamily, named after a conserved motif in the precursor peptide and found exclusively in Streptococcus pneumoniae, the causative agent of bacterial pneumonia. In this study, using both in vivo and in vitro approaches, we have elucidated the modifications installed by the grc biosynthetic enzymes, including a ThiF-like adenylyltransferase/cyclase that generates a C-terminal Glu-to-Cys thiolactone macrocycle, and two RaS enzymes, which selectively epimerize the β-carbon of threonine and desaturate histidine to generate the first instances of l-allo-Thr and didehydrohistidine in RiPP biosynthesis. RaS-RiPPs that have been discovered thus far have stood out for their exotic macrocycles. The product of the grc cluster breaks this trend by generating two noncanonical residues rather than an unusual macrocycle in the peptide substrate. These modifications expand the landscape of nonproteinogenic amino acids in RiPP natural product biosynthesis and motivate downstream biocatalytic applications of the corresponding enzymes.
Collapse
Affiliation(s)
- Brooke A Johnson
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Kenzie A Clark
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Leah B Bushin
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Calvin N Spolar
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Mohammad R Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
16
|
Ariaeenejad S, Gharechahi J, Foroozandeh Shahraki M, Fallah Atanaki F, Han JL, Ding XZ, Hildebrand F, Bahram M, Kavousi K, Hosseini Salekdeh G. Precision enzyme discovery through targeted mining of metagenomic data. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:7. [PMID: 38200389 PMCID: PMC10781932 DOI: 10.1007/s13659-023-00426-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024]
Abstract
Metagenomics has opened new avenues for exploring the genetic potential of uncultured microorganisms, which may serve as promising sources of enzymes and natural products for industrial applications. Identifying enzymes with improved catalytic properties from the vast amount of available metagenomic data poses a significant challenge that demands the development of novel computational and functional screening tools. The catalytic properties of all enzymes are primarily dictated by their structures, which are predominantly determined by their amino acid sequences. However, this aspect has not been fully considered in the enzyme bioprospecting processes. With the accumulating number of available enzyme sequences and the increasing demand for discovering novel biocatalysts, structural and functional modeling can be employed to identify potential enzymes with novel catalytic properties. Recent efforts to discover new polysaccharide-degrading enzymes from rumen metagenome data using homology-based searches and machine learning-based models have shown significant promise. Here, we will explore various computational approaches that can be employed to screen and shortlist metagenome-derived enzymes as potential biocatalyst candidates, in conjunction with the wet lab analytical methods traditionally used for enzyme characterization.
Collapse
Affiliation(s)
- Shohreh Ariaeenejad
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Javad Gharechahi
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehdi Foroozandeh Shahraki
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Fereshteh Fallah Atanaki
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Jian-Lin Han
- Livestock Genetics Program, International Livestock Research, Institute (ILRI), Nairobi, 00100, Kenya
- CAAS-ILRI Joint Laboratory On Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100193, China
| | - Xue-Zhi Ding
- Key Laboratory of Yak Breeding Engineering, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences (CAAS), Lanzhou, 730050, China
| | - Falk Hildebrand
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich, Norfolk, UK
- Digital Biology, Earlham Institute, Norwich, Norfolk, UK
| | - Mohammad Bahram
- Department of Ecology, Swedish University of Agricultural Sciences, Ulls Väg 16, 756 51, Uppsala, Sweden
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai St, Tartu, Estonia
| | - Kaveh Kavousi
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.
| | | |
Collapse
|
17
|
Shapiro J, Post SJ, Smith GC, Wuest WM. Total Synthesis of the Reported Structure of Cahuitamycin A: Insights into an Elusive Natural Product Scaffold. Org Lett 2023; 25:9243-9248. [PMID: 38155597 PMCID: PMC10758118 DOI: 10.1021/acs.orglett.3c03993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 12/30/2023]
Abstract
In a 2016 screen of natural product extracts, a new family of natural products, the cahuitamycins, was discovered and found to inhibit biofilm formation in the human pathogen Acinetobacter baumannii. The proposed molecular structures contained an unusual piperazic acid residue, which piqued interest related to their structure/function and biosynthesis. Herein we disclose the first total synthesis of the proposed structure of cahuitamycin A in a 12-step longest linear sequence and 18% overall yield. Comparison of spectral and biological data of the authentic natural product and synthetic compound revealed inconsistentancies with the isolated metabolite. We therefore executed the diverted total synthesis of three isomeric compounds, which were also found to be disparate from the isolated natural product. This work sets the stage for future synthetic and biochemical investigations of an important class of natural products.
Collapse
Affiliation(s)
- Justin
A. Shapiro
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Savannah J. Post
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Gavin C. Smith
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - William M. Wuest
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
- Emory
Antibiotic Resistance Center, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
18
|
Jaarsma AH, Zervas A, Sipes K, Campuzano Jiménez F, Smith AC, Svendsen LV, Thøgersen MS, Stougaard P, Benning LG, Tranter M, Anesio AM. The undiscovered biosynthetic potential of the Greenland Ice Sheet microbiome. Front Microbiol 2023; 14:1285791. [PMID: 38149278 PMCID: PMC10749974 DOI: 10.3389/fmicb.2023.1285791] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/24/2023] [Indexed: 12/28/2023] Open
Abstract
The Greenland Ice Sheet is a biome which is mainly microbially driven. Several different niches can be found within the glacial biome for those microbes able to withstand the harsh conditions, e.g., low temperatures, low nutrient conditions, high UV radiation in summer, and contrasting long and dark winters. Eukaryotic algae can form blooms during the summer on the ice surface, interacting with communities of bacteria, fungi, and viruses. Cryoconite holes and snow are also habitats with their own microbial community. Nevertheless, the microbiome of supraglacial habitats remains poorly studied, leading to a lack of representative genomes from these environments. Under-investigated extremophiles, like those living on the Greenland Ice Sheet, may provide an untapped reservoir of chemical diversity that is yet to be discovered. In this study, an inventory of the biosynthetic potential of these organisms is made, through cataloging the presence of biosynthetic gene clusters in their genomes. There were 133 high-quality metagenome-assembled genomes (MAGs) and 28 whole genomes of bacteria obtained from samples of the ice sheet surface, cryoconite, biofilm, and snow using culturing-dependent and -independent approaches. AntiSMASH and BiG-SCAPE were used to mine these genomes and subsequently analyze the resulting predicted gene clusters. Extensive sets of predicted Biosynthetic Gene Clusters (BGCs) were collected from the genome collection, with limited overlap between isolates and MAGs. Additionally, little overlap was found in the biosynthetic potential among different environments, suggesting specialization of organisms in specific habitats. The median number of BGCs per genome was significantly higher for the isolates compared to the MAGs. The most talented producers were found among Proteobacteria. We found evidence for the capacity of these microbes to produce antimicrobials, carotenoid pigments, siderophores, and osmoprotectants, indicating potential survival mechanisms to cope with extreme conditions. The majority of identified BGCs, including those in the most prevalent gene cluster families, have unknown functions, presenting a substantial potential for bioprospecting. This study underscores the diverse biosynthetic potential in Greenland Ice Sheet genomes, revealing insights into survival strategies and highlighting the need for further exploration and characterization of these untapped resources.
Collapse
Affiliation(s)
- Ate H. Jaarsma
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Athanasios Zervas
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Katie Sipes
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | | | | | | | | | - Peter Stougaard
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Liane G. Benning
- German Research Centre for Geosciences, Helmholtz Centre Potsdam, Potsdam, Germany
- Department of Earth Sciences, Freie Universität Berlin, Berlin, Germany
| | - Martyn Tranter
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | | |
Collapse
|
19
|
Holland DC, Carroll AR. Marine indole alkaloid diversity and bioactivity. What do we know and what are we missing? Nat Prod Rep 2023; 40:1595-1607. [PMID: 36790012 DOI: 10.1039/d2np00085g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Covering: marine indole alkaloids (n = 2048) and their reported bioactivities up to the end of 2021Despite increasing numbers of marine natural products (MNPs) reported each year, most have only been examined for cytotoxic, antibacterial, and/or antifungal biological activities with the majority found to be inactive in these assays. In this context, why are natural products continuing to be examined in assays they are unlikely to show significant activity in, and what targets might be more useful for expanding knowledge of their biologically relevant chemical space? We have undertaken a meta-analysis of the biological activities for 2048 marine indole alkaloids (MIAs), a diverse sub-class of MNPs reported up to the end of 2021, and this has highlighted that the bioactivity potentials for up to 86% of published MIAs remains underexplored and/or undefined. Although most published MIAs are not cytotoxic or antimicrobial, there is a continued focus on using these assays to evaluate new structurally related analogues. Using cheminformatics analyses, the chemical diversity of the 2048 MIAs were clustered using fragment based fingerprints and their reported bioactivity potency towards specific disease targets was assessed for structure activity trends. These analyses showed that there are groups of MIAs that possess potent and diverse activities and that many analogues, previously tested only in cellular toxicity assays, could be better exploited to generate structure activity relationships associated with leads to treat emerging diseases. A collection of indole drug and drug-lead structures from non-natural sources were also incorporated into the dataset providing complementary bioactivity profiles that were further used to predict underexplored areas of potential new activity and to better direct future testing of MIAs. Our findings clearly suggest the biological evaluation of MIAs continues to be conducted on a narrow range of bioassays and disease targets, and that shifting the focus to non-toxic disease targets should provide expanded knowledge of biologically relevant chemical space aimed at maximising the potential of MIAs for drug discovery.
Collapse
Affiliation(s)
- Darren C Holland
- School of Environment and Science, Griffith University, Gold Coast, Australia
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia.
| | - Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia.
| |
Collapse
|
20
|
Stout CN, Wasfy NM, Chen F, Renata H. Charting the Evolution of Chemoenzymatic Strategies in the Syntheses of Complex Natural Products. J Am Chem Soc 2023; 145:18161-18181. [PMID: 37553092 PMCID: PMC11107883 DOI: 10.1021/jacs.3c03422] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Bolstered by recent advances in bioinformatics, genetics, and enzyme engineering, the field of chemoenzymatic synthesis has enjoyed a rapid increase in popularity and utility. This Perspective explores the integration of enzymes into multistep chemical syntheses, highlighting the unique potential of biocatalytic transformations to streamline the synthesis of complex natural products. In particular, we identify four primary conceptual approaches to chemoenzymatic synthesis and illustrate each with a number of landmark case studies. Future opportunities and challenges are also discussed.
Collapse
Affiliation(s)
- Carter N. Stout
- Skaggs Doctoral Program in the Chemical and Biological Sciences, Scripps Research, La Jolla, CA 92037, USA
| | - Nour M. Wasfy
- Department of Chemistry, BioScience Research Collaborative, Rice University, Houston, Texas, 77005, United States
| | - Fang Chen
- Department of Chemistry, BioScience Research Collaborative, Rice University, Houston, Texas, 77005, United States
| | - Hans Renata
- Department of Chemistry, BioScience Research Collaborative, Rice University, Houston, Texas, 77005, United States
| |
Collapse
|
21
|
Jeong E, Kim W, Son S, Yang S, Gwon D, Hong J, Cho Y, Jang CY, Steinegger M, Lim YW, Kang KB. Qualitative metabolomics-based characterization of a phenolic UDP-xylosyltransferase with a broad substrate spectrum from Lentinus brumalis. Proc Natl Acad Sci U S A 2023; 120:e2301007120. [PMID: 37399371 PMCID: PMC10334773 DOI: 10.1073/pnas.2301007120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/06/2023] [Indexed: 07/05/2023] Open
Abstract
Wood-decaying fungi are the major decomposers of plant litter. Heavy sequencing efforts on genomes of wood-decaying fungi have recently been made due to the interest in their lignocellulolytic enzymes; however, most parts of their proteomes remain uncharted. We hypothesized that wood-decaying fungi would possess promiscuous enzymes for detoxifying antifungal phytochemicals remaining in the dead plant bodies, which can be useful biocatalysts. We designed a computational mass spectrometry-based untargeted metabolomics pipeline for the phenotyping of biotransformation and applied it to 264 fungal cultures supplemented with antifungal plant phenolics. The analysis identified the occurrence of diverse reactivities by the tested fungal species. Among those, we focused on O-xylosylation of multiple phenolics by one of the species tested, Lentinus brumalis. By integrating the metabolic phenotyping results with publicly available genome sequences and transcriptome analysis, a UDP-glycosyltransferase designated UGT66A1 was identified and validated as an enzyme catalyzing O-xylosylation with broad substrate specificity. We anticipate that our analytical workflow will accelerate the further characterization of fungal enzymes as promising biocatalysts.
Collapse
Affiliation(s)
- Eunah Jeong
- College of Pharmacy, Sookmyung Women’s University, Seoul04310, Korea
- Research Institute of Pharmaceutical Sciences and Muscle Physiome Research Center, Sookmyung Women’s University, Seoul04310, Korea
| | - Wonyong Kim
- Korean Lichen Research Institute, Sunchon National University, Suncheon57922, Korea
| | - Seungju Son
- College of Pharmacy, Sookmyung Women’s University, Seoul04310, Korea
| | - Sungyeon Yang
- College of Pharmacy, Sookmyung Women’s University, Seoul04310, Korea
| | - Dasom Gwon
- College of Pharmacy, Sookmyung Women’s University, Seoul04310, Korea
- Research Institute of Pharmaceutical Sciences and Muscle Physiome Research Center, Sookmyung Women’s University, Seoul04310, Korea
| | - Jihee Hong
- College of Pharmacy, Sookmyung Women’s University, Seoul04310, Korea
- Research Institute of Pharmaceutical Sciences and Muscle Physiome Research Center, Sookmyung Women’s University, Seoul04310, Korea
| | - Yoonhee Cho
- School of Biological Sciences, Seoul National University, Seoul08826, Korea
| | - Chang-Young Jang
- College of Pharmacy, Sookmyung Women’s University, Seoul04310, Korea
- Research Institute of Pharmaceutical Sciences and Muscle Physiome Research Center, Sookmyung Women’s University, Seoul04310, Korea
| | - Martin Steinegger
- School of Biological Sciences, Seoul National University, Seoul08826, Korea
- Artificial Intelligence Institute, Seoul National University, Seoul08826, Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul08826, Korea
| | - Young Woon Lim
- School of Biological Sciences, Seoul National University, Seoul08826, Korea
- Institute of Microbiology, Seoul National University, Seoul08826, Korea
| | - Kyo Bin Kang
- College of Pharmacy, Sookmyung Women’s University, Seoul04310, Korea
- Research Institute of Pharmaceutical Sciences and Muscle Physiome Research Center, Sookmyung Women’s University, Seoul04310, Korea
| |
Collapse
|
22
|
Gaudêncio SP, Bayram E, Lukić Bilela L, Cueto M, Díaz-Marrero AR, Haznedaroglu BZ, Jimenez C, Mandalakis M, Pereira F, Reyes F, Tasdemir D. Advanced Methods for Natural Products Discovery: Bioactivity Screening, Dereplication, Metabolomics Profiling, Genomic Sequencing, Databases and Informatic Tools, and Structure Elucidation. Mar Drugs 2023; 21:md21050308. [PMID: 37233502 DOI: 10.3390/md21050308] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023] Open
Abstract
Natural Products (NP) are essential for the discovery of novel drugs and products for numerous biotechnological applications. The NP discovery process is expensive and time-consuming, having as major hurdles dereplication (early identification of known compounds) and structure elucidation, particularly the determination of the absolute configuration of metabolites with stereogenic centers. This review comprehensively focuses on recent technological and instrumental advances, highlighting the development of methods that alleviate these obstacles, paving the way for accelerating NP discovery towards biotechnological applications. Herein, we emphasize the most innovative high-throughput tools and methods for advancing bioactivity screening, NP chemical analysis, dereplication, metabolite profiling, metabolomics, genome sequencing and/or genomics approaches, databases, bioinformatics, chemoinformatics, and three-dimensional NP structure elucidation.
Collapse
Affiliation(s)
- Susana P Gaudêncio
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
| | - Engin Bayram
- Institute of Environmental Sciences, Room HKC-202, Hisar Campus, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Lada Lukić Bilela
- Department of Biology, Faculty of Science, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina
| | - Mercedes Cueto
- Instituto de Productos Naturales y Agrobiología-CSIC, 38206 La Laguna, Spain
| | - Ana R Díaz-Marrero
- Instituto de Productos Naturales y Agrobiología-CSIC, 38206 La Laguna, Spain
- Instituto Universitario de Bio-Orgánica (IUBO), Universidad de La Laguna, 38206 La Laguna, Spain
| | - Berat Z Haznedaroglu
- Institute of Environmental Sciences, Room HKC-202, Hisar Campus, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Carlos Jimenez
- CICA- Centro Interdisciplinar de Química e Bioloxía, Departamento de Química, Facultade de Ciencias, Universidade da Coruña, 15071 A Coruña, Spain
| | - Manolis Mandalakis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, HCMR Thalassocosmos, 71500 Gournes, Crete, Greece
| | - Florbela Pereira
- LAQV, REQUIMTE, Chemistry Department, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
| | - Fernando Reyes
- Fundación MEDINA, Avda. del Conocimiento 34, 18016 Armilla, Spain
| | - Deniz Tasdemir
- GEOMAR Centre for Marine Biotechnology (GEOMAR-Biotech), Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, Am Kiel-Kanal 44, 24106 Kiel, Germany
- Faculty of Mathematics and Natural Science, Kiel University, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
| |
Collapse
|
23
|
Li L. Accessing hidden microbial biosynthetic potential from underexplored sources for novel drug discovery. Biotechnol Adv 2023:108176. [PMID: 37211187 DOI: 10.1016/j.biotechadv.2023.108176] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 05/23/2023]
Abstract
Microbial natural products and their structural analogues have widely used as pharmaceutical agents, especially for infectious diseases and cancer. Despite this success, new structural classes with innovative chemistry and modes of action are urgently needed to be developed to combat the growing antimicrobial resistance and other public health problems. The advances in next-generation sequencing technologies and powerful computational tools open up new opportunities to explore microbial biosynthetic potential from underexplored sources, with millions of secondary metabolites awaiting discovery. The review highlights challenges associated with discovery of new chemical entities, rich reservoirs provided by untapped taxa, ecological niches or host microbiomes, emerging synthetic biotechnologies to unearth the hidden microbial biosynthetic potential for novel drug discovery at scale and speed.
Collapse
Affiliation(s)
- Lei Li
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China.
| |
Collapse
|
24
|
Li L. Next-generation synthetic biology approaches for the accelerated discovery of microbial natural products. ENGINEERING MICROBIOLOGY 2023; 3:100060. [PMID: 39628520 PMCID: PMC11610963 DOI: 10.1016/j.engmic.2022.100060] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 12/06/2024]
Abstract
Microbial natural products (NPs) and their derivates have been widely used in health care and agriculture during the past few decades. Although large-scale bacterial or fungal (meta)genomic mining has revealed the tremendous biosynthetic potentials to produce novel small molecules, there remains a lack of universal approaches to link NP biosynthetic gene clusters (BGCs) to their associated products at a large scale and speed. In the last ten years, a series of emerging technologies have been established alongside the developments in synthetic biology to engineer cryptic metabolite BGCs and edit host genomes. Diverse computational tools, such as antiSMASH and PRISM, have also been simultaneously developed to rapidly identify BGCs and predict the chemical structures of their products. This review discusses the recent developments and trends pertaining to the accelerated discovery of microbial NPs driven by a wide variety of next-generation synthetic biology approaches, with an emphasis on the in situ activation of silent BGCs at scale, the direct cloning or refactoring of BGCs of interest for heterologous expression, and the synthetic-bioinformatic natural products (syn-BNP) approach for the guided rapid access of bioactive non-ribosomal peptides.
Collapse
Affiliation(s)
- Lei Li
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Rd., Shanghai 200240, China
| |
Collapse
|
25
|
Wu Y, Xie Y, Feng Y, Xu Z, Ban S, Song H. Diversity-Oriented Biosynthesis Yields l-Kynurenine Derivative-Based Neurological Drug Candidate Collection. ACS Synth Biol 2023; 12:608-617. [PMID: 36749842 DOI: 10.1021/acssynbio.2c00647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Natural product libraries with a remarkable range of biological activities play pivotal roles in drug discoveries due to their extraordinary structural complexity and immense diversity. l-Kynurenine (l-Kyn)-based derivatives are privileged pharmacophores that exhibit diverse therapeutic implications in neurological disorders. However, the difficulty in obtaining l-Kyn analogues with different skeletal structures has recently led to a decline in its medicinal research. Herein, we report a two-step, one-pot protocol for diversity-oriented biosynthesis of a collection of previously intractable l-Kyn-like compounds. The success of these challenging transformations mainly depends on unlocking the new catalytic scope of tryptophan 2,3-dioxygenases, followed by rational site-directed mutagenesis to modify the substrate domains further. As a result, 18 kynurenine analogues with diverse molecular scaffolds can be rapidly assembled in a predictable manner with 20-83% isolated yields, which not only fill the voids of the catalytic profile of tryptophan 2,3-dioxygenases with an array of substituent groups (e.g., F, Cl, Br, I, CH3, OCH3, and NO2) but also update the current understanding of its substrate spectrum. Our work highlights the great potential of existing enzymes in addressing long-standing synthetic challenges for facilitating the development or discovery of new drug candidates. Furthermore, our approach enables translating the reaction parameters from Eppendorf tubes to 1 L scale, affording l-4-Cl-Kyn and l-5-Cl-Kyn both on a gram scale with more than 80% isolated yields, and provides a promising alternative to further industrial applications.
Collapse
Affiliation(s)
- Yunbin Wu
- College of Chemistry & Molecular Science, Wuhan University, Wuhan, Hubei Province 430072, China
| | - Yongze Xie
- College of Chemistry & Molecular Science, Wuhan University, Wuhan, Hubei Province 430072, China
| | - Yinyin Feng
- College of Chemistry & Molecular Science, Wuhan University, Wuhan, Hubei Province 430072, China
| | - Zhiqin Xu
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi Province 030001, China
| | - Shurong Ban
- School of Pharmacy, Shanxi Medical University, Taiyuan, Shanxi Province 030001, China
| | - Heng Song
- College of Chemistry & Molecular Science, Wuhan University, Wuhan, Hubei Province 430072, China.,Wuhan University Shenzhen Research Institute, Shenzhen, Guangdong Province 518000, China
| |
Collapse
|
26
|
Schmidt S. Photoexcited Enzymes for Asymmetric Csp 3 -Csp 3 Cross-Electrophile Couplings. Angew Chem Int Ed Engl 2022; 61:e202214313. [PMID: 36239986 PMCID: PMC10100153 DOI: 10.1002/anie.202214313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Indexed: 11/07/2022]
Abstract
Enzymes have several advantages over conventional catalysts for organic synthesis. Over the last two decades, much effort has been made to further extend the scope of biocatalytic reactions available to synthetic chemists, particularly by expanding the repertoire of enzymes for abiological transformations. In this regard, exciting new developments in the area of photobiocatalysis enable now the introduction of non-natural reactivity in enzymes to solve long-standing synthetic challenges. A recently described example from the Hyster group demonstrates in an unprecedented way how the combination of photochemistry with enzyme catalysis empowers the catalytic asymmetric construction of Csp3 -Csp3 bonds with high chemo- and enantioselectivity.
Collapse
Affiliation(s)
- Sandy Schmidt
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, Antonius Deusinglaan 1, 9713 AV, Groningen (The, Netherlands
| |
Collapse
|
27
|
Long-Read Metagenome-Assembled Genomes Improve Identification of Novel Complete Biosynthetic Gene Clusters in a Complex Microbial Activated Sludge Ecosystem. mSystems 2022; 7:e0063222. [PMID: 36445112 PMCID: PMC9765116 DOI: 10.1128/msystems.00632-22] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Microorganisms produce a wide variety of secondary/specialized metabolites (SMs), the majority of which are yet to be discovered. These natural products play multiple roles in microbiomes and are important for microbial competition, communication, and success in the environment. SMs have been our major source of antibiotics and are used in a range of biotechnological applications. In silico mining for biosynthetic gene clusters (BGCs) encoding the production of SMs is commonly used to assess the genetic potential of organisms. However, as BGCs span tens to over 200 kb, identifying complete BGCs requires genome data that has minimal assembly gaps within the BGCs, a prerequisite that was previously only met by individually sequenced genomes. Here, we assess the performance of the currently available genome mining platform antiSMASH on 1,080 high-quality metagenome-assembled bacterial genomes (HQ MAGs) previously produced from wastewater treatment plants (WWTPs) using a combination of long-read (Oxford Nanopore) and short-read (Illumina) sequencing technologies. More than 4,200 different BGCs were identified, with 88% of these being complete. Sequence similarity clustering of the BGCs implies that the majority of this biosynthetic potential likely encodes novel compounds, and few BGCs are shared between genera. We identify BGCs in abundant and functionally relevant genera in WWTPs, suggesting a role of secondary metabolism in this ecosystem. We find that the assembly of HQ MAGs using long-read sequencing is vital to explore the genetic potential for SM production among the uncultured members of microbial communities. IMPORTANCE Cataloguing secondary metabolite (SM) potential using genome mining of metagenomic data has become the method of choice in bioprospecting for novel compounds. However, accurate biosynthetic gene cluster (BGC) detection requires unfragmented genomic assemblies, which have been technically difficult to obtain from metagenomes until very recently with new long-read technologies. Here, we determined the biosynthetic potential of activated sludge (AS), the microbial community used in resource recovery and wastewater treatment, by mining high-quality metagenome-assembled genomes generated from long-read data. We found over 4,000 BGCs, including BGCs in abundant process-critical bacteria, with no similarity to the BGCs of characterized products. We show how long-read MAGs are required to confidently assemble complete BGCs, and we determined that the AS BGCs from different studies have very little overlap, suggesting that AS is a rich source of biosynthetic potential and new bioactive compounds.
Collapse
|
28
|
Martínez C, García-Domínguez P, Álvarez R, de Lera AR. Bispyrrolidinoindoline Epi(poly)thiodioxopiperazines (BPI-ETPs) and Simplified Mimetics: Structural Characterization, Bioactivities, and Total Synthesis. Molecules 2022; 27:7585. [PMID: 36364412 PMCID: PMC9659040 DOI: 10.3390/molecules27217585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 09/08/2024] Open
Abstract
Within the 2,5-dioxopiperazine-containing natural products generated by "head-to-tail" cyclization of peptides, those derived from tryptophan allow further structural diversification due to the rich chemical reactivity of the indole heterocycle, which can generate tetracyclic fragments of hexahydropyrrolo[2,3-b]indole or pyrrolidinoindoline skeleton fused to the 2,5-dioxopiperazine. Even more complex are the dimeric bispyrrolidinoindoline epi(poly)thiodioxopiperazines (BPI-ETPs), since they feature transannular (poly)sulfide bridges connecting C3 and C6 of their 2,5-dioxopiperazine rings. Homo- and heterodimers composed of diastereomeric epi(poly)thiodioxopiperazines increase the complexity of the family. Furthermore, putative biogenetically generated downstream metabolites with C11 and C11'-hydroxylated cores, as well as deoxygenated and/or oxidized side chain counterparts, have also been described. The isolation of these complex polycyclic tryptophan-derived alkaloids from the classical sources, their structural characterization, the description of the relevant biological activities and putative biogenetic routes, and the synthetic efforts to generate and confirm their structures and also to prepare and further evaluate structurally simple analogs will be reported.
Collapse
Affiliation(s)
| | | | | | - Angel R. de Lera
- CINBIO, ORCHID Group, Departmento de Química Orgánica, Universidade de Vigo, 36310 Vigo, Spain
| |
Collapse
|
29
|
Richardson SM, Marchetti PM, Herrera MA, Campopiano DJ. Coupled Natural Fusion Enzymes in a Novel Biocatalytic Cascade Convert Fatty Acids to Amines. ACS Catal 2022; 12:12701-12710. [PMID: 36313522 PMCID: PMC9594044 DOI: 10.1021/acscatal.2c02954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/29/2022] [Indexed: 11/28/2022]
Abstract
![]()
Tambjamine YP1 is a pyrrole-containing natural product.
Analysis
of the enzymes encoded in the Pseudoalteromonas tunicata “tam” biosynthetic gene cluster (BGC)
identified a unique di-domain biocatalyst (PtTamH).
Sequence and bioinformatic analysis predicts that PtTamH comprises an N-terminal, pyridoxal 5′-phosphate (PLP)-dependent
transaminase (TA) domain fused to a NADH-dependent C-terminal thioester
reductase (TR) domain. Spectroscopic and chemical analysis revealed
that the TA domain binds PLP, utilizes l-Glu as an amine
donor, accepts a range of fatty aldehydes (C7–C14 with a preference for C12), and produces the
corresponding amines. The previously characterized PtTamA from the “tam” BGC is an ATP-dependent, di-domain
enzyme comprising a class I adenylation domain fused to an acyl carrier
protein (ACP). Since recombinant PtTamA catalyzes
the activation and thioesterification of C12 acid to the holo-ACP domain, we hypothesized that C12 ACP
is the natural substrate for PtTamH. PtTamA and PtTamH were successfully coupled together
in a biocatalytic cascade that converts fatty acids (FAs) to amines
in one pot. Moreover, a structural model of PtTamH
provides insights into how the TA and TR domains are organized. This
work not only characterizes the formation of the tambjamine YP1 tail
but also suggests that PtTamA and PtTamH could be useful biocatalysts for FA to amine functional group
conversion.
Collapse
Affiliation(s)
- Shona M. Richardson
- School of Chemistry, The University of Edinburgh, David Brewster Road, EdinburghEH9 3FJ, U.K
| | - Piera M. Marchetti
- School of Chemistry, The University of Edinburgh, David Brewster Road, EdinburghEH9 3FJ, U.K
| | - Michael A. Herrera
- School of Chemistry, The University of Edinburgh, David Brewster Road, EdinburghEH9 3FJ, U.K
| | - Dominic J. Campopiano
- School of Chemistry, The University of Edinburgh, David Brewster Road, EdinburghEH9 3FJ, U.K
| |
Collapse
|
30
|
Scott TA, Verest M, Farnung J, Forneris CC, Robinson SL, Ji X, Hubrich F, Chepkirui C, Richter DU, Huber S, Rust P, Streiff AB, Zhang Q, Bode JW, Piel J. Widespread microbial utilization of ribosomal β-amino acid-containing peptides and proteins. Chem 2022. [DOI: 10.1016/j.chempr.2022.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
31
|
Tittes YU, Herbst DA, Martin SFX, Munoz-Hernandez H, Jakob RP, Maier T. The structure of a polyketide synthase bimodule core. SCIENCE ADVANCES 2022; 8:eabo6918. [PMID: 36129979 PMCID: PMC9491710 DOI: 10.1126/sciadv.abo6918] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Polyketide synthases (PKSs) are predominantly microbial biosynthetic enzymes. They assemble highly potent bioactive natural products from simple carboxylic acid precursors. The most versatile families of PKSs are organized as assembly lines of functional modules. Each module performs one round of precursor extension and optional modification, followed by directed transfer of the intermediate to the next module. While enzymatic domains and even modules of PKSs are well understood, the higher-order modular architecture of PKS assembly lines remains elusive. Here, we visualize a PKS bimodule core using cryo-electron microscopy and resolve a two-dimensional meshwork of the bimodule core formed by homotypic interactions between modules. The sheet-like organization provides the framework for efficient substrate transfer and for sequestration of trans-acting enzymes required for polyketide production.
Collapse
|
32
|
Clark KA, Seyedsayamdost MR. Bioinformatic Atlas of Radical SAM Enzyme-Modified RiPP Natural Products Reveals an Isoleucine-Tryptophan Crosslink. J Am Chem Soc 2022; 144:17876-17888. [PMID: 36128669 DOI: 10.1021/jacs.2c06497] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a growing family of natural products with diverse activities and structures. RiPP classes are defined by the tailoring enzyme, which can introduce a narrow range of modifications or a diverse set of alterations. In the latter category, RiPPs synthesized by radical S-adenosylmethionine (SAM) enzymes, known as RaS-RiPPs, have emerged as especially divergent. A map of all RaS-RiPP gene clusters does not yet exist. Moreover, precursor peptides remain difficult to predict using computational methods. Herein, we have addressed these challenges and reported a bioinformatic atlas of RaS-RiPP gene clusters in available microbial genome sequences. Using co-occurrence of RaS enzymes and transporters from varied families as a bioinformatic hook in conjunction with an in-house code to identify precursor peptides, we generated a map of ∼15,500 RaS-RiPP gene clusters, which reveal a remarkable diversity of syntenies pointing to a tremendous range of enzymatic and natural product chemistries that remain to be explored. To assess its utility, we examined one family of gene clusters encoding a YcaO enzyme and a RaS enzyme. We find the former is noncanonical, contains an iron-sulfur cluster, and installs a novel modification, a backbone amidine into the precursor peptide. The RaS enzyme was also found to install a new modification, a C-C crosslink between the unactivated terminal δ-methyl group of Ile and a Trp side chain. The co-occurrence search can be applied to other families of RiPPs, as we demonstrate with the emerging DUF692 di-iron enzyme superfamily.
Collapse
|
33
|
Martins T, Glasser NR, Kountz DJ, Oliveira P, Balskus EP, Leão PN. Biosynthesis of the Unusual Carbon Skeleton of Nocuolin A. ACS Chem Biol 2022; 17:2528-2537. [PMID: 36044983 PMCID: PMC9486936 DOI: 10.1021/acschembio.2c00464] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/15/2022] [Indexed: 11/28/2022]
Abstract
Nocuolin A is a cytotoxic cyanobacterial metabolite that is proposed to be produced by enzymes of the noc biosynthetic gene cluster. Nocuolin A features a 1,2,3-oxadiazine moiety, a structural feature unique among natural products and, so far, inaccessible through organic synthesis, suggesting that novel enzymatic chemistry might be involved in its biosynthesis. This heterocycle is substituted with two alkyl chains and a 3-hydroxypropanoyl moiety. We report here our efforts to elucidate the origin of the carbon skeleton of nocuolin A. Supplementation of cyanobacterial cultures with stable isotope-labeled fatty acids revealed that the central C13 chain is assembled from two medium-chain fatty acids, hexanoic and octanoic acids. Using biochemical assays, we show that a fatty acyl-AMP ligase, NocH, activates both fatty acids as acyl adenylates, which are loaded onto an acyl carrier protein domain and undergo a nondecarboxylative Claisen condensation catalyzed by the ketosynthase NocG. This enzyme is part of a phylogenetically well-defined clade within similar genomic contexts. NocG presents a unique combination of characteristics found in other ketosynthases, namely in terms of substrate specificity and reactivity. Further supplementation experiments indicate that the 3-hydroxypropanoyl moiety of 1 originates from methionine, through an as-yet-uncharacterized mechanism. This work provides ample biochemical evidence connecting the putative noc biosynthetic gene cluster to nocuolin A and identifies the origin of all its carbon atoms, setting the stage for elucidation of its unusual biosynthetic chemistry.
Collapse
Affiliation(s)
- Teresa
P. Martins
- CIIMAR
− Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal
- ICBAS
− Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| | - Nathaniel R. Glasser
- Department
of Chemistry and Chemical Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Duncan J. Kountz
- Department
of Chemistry and Chemical Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Paulo Oliveira
- i3S
− Institute for Research and Innovation in Health, University of Porto, 4200-135 Porto, Portugal
- IBMC
− Institute of Molecular and Cell Biology, University of Porto, 4200-135 Porto, Portugal
- Department
of Biology, Faculty of Sciences, University
of Porto, 4169-00 Porto, Portugal
| | - Emily P. Balskus
- Department
of Chemistry and Chemical Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Pedro N. Leão
- CIIMAR
− Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal
| |
Collapse
|
34
|
Avalon NE, Murray AE, Baker BJ. Integrated Metabolomic-Genomic Workflows Accelerate Microbial Natural Product Discovery. Anal Chem 2022; 94:11959-11966. [PMID: 35994737 PMCID: PMC9453739 DOI: 10.1021/acs.analchem.2c02245] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The pairing of analytical chemistry with genomic techniques represents a new wave in natural product chemistry. With an increase in the availability of sequencing and assembly of microbial genomes, interrogation into the biosynthetic capability of producers with valuable secondary metabolites is possible. However, without the development of robust, accessible, and medium to high throughput tools, the bottleneck in pairing metabolic potential and compound isolation will continue. Several innovative approaches have proven useful in the nascent stages of microbial genome-informed drug discovery. Here, we consider a number of these approaches which have led to prioritization of strain targets and have mitigated rediscovery rates. Likewise, we discuss integration of principles of comparative evolutionary studies and retrobiosynthetic predictions to better understand biosynthetic mechanistic details and link genome sequence to structure. Lastly, we discuss advances in engineering, chemistry, and molecular networking and other computational approaches that are accelerating progress in the field of omic-informed natural product drug discovery. Together, these strategies enhance the synergy between cutting edge omics, chemical characterization, and computational technologies that pitch the discovery of natural products with pharmaceutical and other potential applications to the crest of the wave where progress is ripe for rapid advances.
Collapse
Affiliation(s)
- Nicole E Avalon
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Alison E Murray
- Division of Earth and Ecosystem Sciences, Desert Research Institute, Reno, Nevada 89512, United States
| | - Bill J Baker
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| |
Collapse
|
35
|
Clark KA, Bushin LB, Seyedsayamdost MR. RaS-RiPPs in Streptococci and the Human Microbiome. ACS BIO & MED CHEM AU 2022; 2:328-339. [PMID: 35996476 PMCID: PMC9389541 DOI: 10.1021/acsbiomedchemau.2c00004] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
Radical S-adenosylmethionine (RaS) enzymes have
quickly advanced to one of the most abundant and versatile enzyme
superfamilies known. Their chemistry is predicated upon reductive
homolytic cleavage of a carbon–sulfur bond in cofactor S-adenosylmethionine forming an oxidizing carbon-based radical,
which can initiate myriad radical transformations. An emerging role
for RaS enzymes is their involvement in the biosynthesis of ribosomally
synthesized and post-translationally modified peptides (RiPPs), a
natural product family that has become known as RaS-RiPPs. These metabolites
are especially prevalent in human and mammalian microbiomes because
the complex chemistry of RaS enzymes gives rise to correspondingly
complex natural products with minimal cellular energy and genomic
fingerprint, a feature that is advantageous in microbes with small,
host-adapted genomes in competitive environments. Herein, we review
the discovery and characterization of RaS-RiPPs from the human microbiome
with a focus on streptococcal bacteria. We discuss the varied chemical
modifications that RaS enzymes introduce onto their peptide substrates
and the diverse natural products that they give rise to. The majority
of RaS-RiPPs remain to be discovered, providing an intriguing avenue
for future investigations at the intersection of metalloenzymology,
chemical ecology, and the human microbiome.
Collapse
Affiliation(s)
- Kenzie A Clark
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Leah B Bushin
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Mohammad R Seyedsayamdost
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States.,Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
36
|
Shi YM, Hirschmann M, Shi YN, Bode HB. Cleavage Off-Loading and Post-assembly-Line Conversions Yield Products with Unusual Termini during Biosynthesis. ACS Chem Biol 2022; 17:2221-2228. [PMID: 35860925 PMCID: PMC9396620 DOI: 10.1021/acschembio.2c00367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Piscibactins and photoxenobactins are metallophores and
virulence
factors, whose biosynthetic gene cluster, termed pxb, is the most prevalent polyketide synthase/non-ribosomal peptide
synthetase hybrid cluster across entomopathogenic bacteria. They are
structurally similar to yersiniabactin, which contributes to the virulence
of the human pathogen Yersinia pestis. However, the pxb-derived products feature various
chain lengths and unusual carboxamide, thiocarboxylic acid, and dithioperoxoate
termini, which are rarely found in thiotemplated biosyntheses. Here,
we characterize the pxb biosynthetic logic by gene
deletions, site-directed mutagenesis, and isotope labeling experiments.
Notably, we propose that it involves (1) heterocyclization domains
with various catalytic efficiencies catalyzing thiazoline and amide/thioester
bond formation and (2) putative C–N and C–S bond cleavage
off-loading manners, which lead to products with different chain lengths
and usual termini. Additionally, the post-assembly-line spontaneous
conversions of the biosynthetic end product contribute to production
titers of the other products in the culture medium. This study broadens
our knowledge of thiotemplated biosynthesis and how bacterial host
generate a chemical arsenal.
Collapse
Affiliation(s)
- Yi-Ming Shi
- Department of Natural Products in Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany.,Molecular Biotechnology, Department of Biosciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Merle Hirschmann
- Molecular Biotechnology, Department of Biosciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Yan-Ni Shi
- Department of Natural Products in Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany.,Molecular Biotechnology, Department of Biosciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Helge B Bode
- Department of Natural Products in Organismic Interactions, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany.,Molecular Biotechnology, Department of Biosciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany.,Chemical Biology, Department of Chemistry, Philipps University Marburg, 35043 Marburg, Germany.,Senckenberg Gesellschaft für Naturforschung, 60325 Frankfurt am Main, Germany
| |
Collapse
|
37
|
García-Domínguez P, Areal A, Alvarez R, de Lera AR. Chemical synthesis in competition with global genome mining and heterologous expression for the preparation of dimeric tryptophan-derived 2,5-dioxopiperazines. Nat Prod Rep 2022; 39:1172-1225. [PMID: 35470828 DOI: 10.1039/d2np00006g] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: up to the end of 2021Within the 2,5-dioxopiperazines-containing natural products, those generated from tryptophan allow further structural diversification due to the rich chemical reactivity of the indole heterocycle. The great variety of natural products, ranging from simple dimeric bispyrrolidinoindoline dioxopiperazines and tryptophan-derived dioxopiperazine/pyrrolidinoindoline dioxopiperazine analogs to complex polycyclic downstream metabolites containing transannular connections between the subunits, will be covered. These natural products are constructed by Nature using hybrid polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) assembly lines. Mining of microbial genome sequences has more recently allowed the study of the metabolic routes and the discovery of their hidden biosynthetic potential. The competition (ideally, also the combined efforts) between their isolation from the cultures of the producing microorganisms after global genome mining and heterologous expression and the synthetic campaigns, has more recently allowed the successful generation and structural confirmation of these natural products. Their biological activities as well as their proposed biogenetic routes and computational studies on biogenesis will also be covered.
Collapse
Affiliation(s)
| | - Andrea Areal
- CINBIO and Universidade de Vigo, 36310 Vigo, Spain.
| | | | | |
Collapse
|
38
|
He HY, Niikura H, Du YL, Ryan KS. Synthetic and biosynthetic routes to nitrogen-nitrogen bonds. Chem Soc Rev 2022; 51:2991-3046. [PMID: 35311838 DOI: 10.1039/c7cs00458c] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The nitrogen-nitrogen bond is a core feature of diverse functional groups like hydrazines, nitrosamines, diazos, and pyrazoles. Such functional groups are found in >300 known natural products. Such N-N bond-containing functional groups are also found in significant percentage of clinical drugs. Therefore, there is wide interest in synthetic and enzymatic methods to form nitrogen-nitrogen bonds. In this review, we summarize synthetic and biosynthetic approaches to diverse nitrogen-nitrogen-bond-containing functional groups, with a focus on biosynthetic pathways and enzymes.
Collapse
Affiliation(s)
- Hai-Yan He
- Department of Chemistry, University of British Columbia, Vancouver, Canada. .,Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Haruka Niikura
- Department of Chemistry, University of British Columbia, Vancouver, Canada.
| | - Yi-Ling Du
- Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, China
| | - Katherine S Ryan
- Department of Chemistry, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
39
|
Tan Y, Wang M, Chen Y. Reprogramming the Biosynthesis of Precursor Peptide to Create a Selenazole-Containing Nosiheptide Analogue. ACS Synth Biol 2022; 11:85-91. [PMID: 35006674 DOI: 10.1021/acssynbio.1c00578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nosiheptide (NOS), a potent bactericidal thiopeptide, belongs to a class of natural products produced by ribosomal synthesis and post-translational modifications, and its biosynthetic pathway has largely been elucidated. However, the central trithiazolylpyridine structure of NOS remains inaccessible to structural changes. Here we report the creation of a NOS analogue containing a unique selenazole ring by the construction of an artificial system in Streptomyces actuosus ATCC25421, where the genes responsible for the biosynthesis of selenoprotein from Escherichia coli and the biosynthetic gene cluster of NOS were rationally integrated to produce a selenazole-containing analogue of NOS. The thiazole at the fifth position in NOS was specifically replaced by a selenazole to afford the first selenazole-containing "unnatural" natural product. The present strategy is useful for structural manipulation of various RiPP natural products.
Collapse
Affiliation(s)
- Yingzi Tan
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, P. R. China
| | - Miao Wang
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, P. R. China
| | - Yijun Chen
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu 211198, P. R. China
| |
Collapse
|
40
|
Hubrich F, Bösch NM, Chepkirui C, Morinaka BI, Rust M, Gugger M, Robinson SL, Vagstad AL, Piel J. Ribosomally derived lipopeptides containing distinct fatty acyl moieties. Proc Natl Acad Sci U S A 2022; 119:e2113120119. [PMID: 35027450 PMCID: PMC8784127 DOI: 10.1073/pnas.2113120119] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 11/30/2021] [Indexed: 11/18/2022] Open
Abstract
Lipopeptides represent a large group of microbial natural products that include important antibacterial and antifungal drugs and some of the most-powerful known biosurfactants. The vast majority of lipopeptides comprise cyclic peptide backbones N-terminally equipped with various fatty acyl moieties. The known compounds of this type are biosynthesized by nonribosomal peptide synthetases, giant enzyme complexes that assemble their products in a non-gene-encoded manner. Here, we report the genome-guided discovery of ribosomally derived, fatty-acylated lipopeptides, termed selidamides. Heterologous reconstitution of three pathways, two from cyanobacteria and one from an arctic, ocean-derived alphaproteobacterium, allowed structural characterization of the probable natural products and suggest that selidamides are widespread over various bacterial phyla. The identified representatives feature cyclic peptide moieties and fatty acyl units attached to (hydroxy)ornithine or lysine side chains by maturases of the GCN5-related N-acetyltransferase superfamily. In contrast to nonribosomal lipopeptides that are usually produced as congener mixtures, the three selidamides are selectively fatty acylated with C10, C12, or C16 fatty acids, respectively. These results highlight the ability of ribosomal pathways to emulate products with diverse, nonribosomal-like features and add to the biocatalytic toolbox for peptide drug improvement and targeted discovery.
Collapse
Affiliation(s)
- Florian Hubrich
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, 8093 Zürich, Switzerland
| | - Nina M Bösch
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, 8093 Zürich, Switzerland
| | - Clara Chepkirui
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, 8093 Zürich, Switzerland
| | - Brandon I Morinaka
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, 8093 Zürich, Switzerland
- Department of Pharmacy, National University of Singapore, 117543 Singapore, Singapore
| | - Michael Rust
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, 8093 Zürich, Switzerland
| | - Muriel Gugger
- Collection of Cyanobacteria, Institut Pasteur, 75724 Paris, France
| | - Serina L Robinson
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, 8093 Zürich, Switzerland
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Anna L Vagstad
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, 8093 Zürich, Switzerland;
| | - Jörn Piel
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, 8093 Zürich, Switzerland;
| |
Collapse
|
41
|
Robinson SL, Piel J, Sunagawa S. A roadmap for metagenomic enzyme discovery. Nat Prod Rep 2021; 38:1994-2023. [PMID: 34821235 PMCID: PMC8597712 DOI: 10.1039/d1np00006c] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Indexed: 12/13/2022]
Abstract
Covering: up to 2021Metagenomics has yielded massive amounts of sequencing data offering a glimpse into the biosynthetic potential of the uncultivated microbial majority. While genome-resolved information about microbial communities from nearly every environment on earth is now available, the ability to accurately predict biocatalytic functions directly from sequencing data remains challenging. Compared to primary metabolic pathways, enzymes involved in secondary metabolism often catalyze specialized reactions with diverse substrates, making these pathways rich resources for the discovery of new enzymology. To date, functional insights gained from studies on environmental DNA (eDNA) have largely relied on PCR- or activity-based screening of eDNA fragments cloned in fosmid or cosmid libraries. As an alternative, shotgun metagenomics holds underexplored potential for the discovery of new enzymes directly from eDNA by avoiding common biases introduced through PCR- or activity-guided functional metagenomics workflows. However, inferring new enzyme functions directly from eDNA is similar to searching for a 'needle in a haystack' without direct links between genotype and phenotype. The goal of this review is to provide a roadmap to navigate shotgun metagenomic sequencing data and identify new candidate biosynthetic enzymes. We cover both computational and experimental strategies to mine metagenomes and explore protein sequence space with a spotlight on natural product biosynthesis. Specifically, we compare in silico methods for enzyme discovery including phylogenetics, sequence similarity networks, genomic context, 3D structure-based approaches, and machine learning techniques. We also discuss various experimental strategies to test computational predictions including heterologous expression and screening. Finally, we provide an outlook for future directions in the field with an emphasis on meta-omics, single-cell genomics, cell-free expression systems, and sequence-independent methods.
Collapse
Affiliation(s)
| | - Jörn Piel
- Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland.
| | | |
Collapse
|
42
|
Rebuffat S. Ribosomally synthesized peptides, foreground players in microbial interactions: recent developments and unanswered questions. Nat Prod Rep 2021; 39:273-310. [PMID: 34755755 DOI: 10.1039/d1np00052g] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
It is currently well established that multicellular organisms live in tight association with complex communities of microorganisms including a large number of bacteria. These are immersed in complex interaction networks reflecting the relationships established between them and with host organisms; yet, little is known about the molecules and mechanisms involved in these mutual interactions. Ribosomally synthesized peptides, among which bacterial antimicrobial peptides called bacteriocins and microcins have been identified as contributing to host-microbe interplays, are either unmodified or post-translationally modified peptides. This review will unveil current knowledge on these ribosomal peptide-based natural products, their interplay with the host immune system, and their roles in microbial interactions and symbioses. It will include their major structural characteristics and post-translational modifications, the main rules of their maturation pathways, and the principal ecological functions they ensure (communication, signalization, competition), especially in symbiosis, taking select examples in various organisms. Finally, we address unanswered questions and provide a framework for deciphering big issues inspiring future directions in the field.
Collapse
Affiliation(s)
- Sylvie Rebuffat
- Laboratory Molecules of Communication and Adaptation of Microorganisms (MCAM, UMR 7245 CNRS-MNHN), National Museum of Natural History (MNHN), National Centre of Scientific Research (CNRS), CP 54, 57 rue Cuvier 75005, Paris, France.
| |
Collapse
|
43
|
Amiri Moghaddam J, Jautzus T, Alanjary M, Beemelmanns C. Recent highlights of biosynthetic studies on marine natural products. Org Biomol Chem 2021; 19:123-140. [PMID: 33216100 DOI: 10.1039/d0ob01677b] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Marine bacteria are excellent yet often underexplored sources of structurally unique bioactive natural products. In this review we cover the diversity of marine bacterial biomolecules and highlight recent studies on structurally novel natural products. We include different compound classes and discuss the latest progress related to their biosynthetic pathway analysis and engineering: examples range from fatty acids over terpenes to PKS, NRPS and hybrid PKS-NRPS biomolecules.
Collapse
Affiliation(s)
- Jamshid Amiri Moghaddam
- Junior Research Group Chemical Biology of Microbe-Host Interactions, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745 Jena, Germany.
| | | | | | | |
Collapse
|
44
|
de Rond T, Asay JE, Moore BS. Co-occurrence of enzyme domains guides the discovery of an oxazolone synthetase. Nat Chem Biol 2021; 17:794-799. [PMID: 34099916 PMCID: PMC8238888 DOI: 10.1038/s41589-021-00808-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 04/29/2021] [Indexed: 02/04/2023]
Abstract
Multidomain enzymes orchestrate two or more catalytic activities to carry out metabolic transformations with increased control and speed. Here, we report the design and development of a genome-mining approach for targeted discovery of biochemical transformations through the analysis of co-occurring enzyme domains (CO-ED) in a single protein. CO-ED was designed to identify unannotated multifunctional enzymes for functional characterization and discovery based on the premise that linked enzyme domains have evolved to function collaboratively. Guided by CO-ED, we targeted an unannotated predicted ThiF-nitroreductase di-domain enzyme found in more than 50 proteobacteria. Through heterologous expression and biochemical reconstitution, we discovered a series of natural products containing the rare oxazolone heterocycle and characterized their biosynthesis. Notably, we identified the di-domain enzyme as an oxazolone synthetase, validating CO-ED-guided genome mining as a methodology with potential broad utility for both the discovery of unusual enzymatic transformations and the functional annotation of multidomain enzymes.
Collapse
Affiliation(s)
- Tristan de Rond
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093
| | - Julia E. Asay
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093
| | - Bradley S. Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92093,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093
| |
Collapse
|
45
|
Strategies for Natural Products Discovery from Uncultured Microorganisms. Molecules 2021; 26:molecules26102977. [PMID: 34067778 PMCID: PMC8156983 DOI: 10.3390/molecules26102977] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 12/12/2022] Open
Abstract
Microorganisms are highly regarded as a prominent source of natural products that have significant importance in many fields such as medicine, farming, environmental safety, and material production. Due to this, only tiny amounts of microorganisms can be cultivated under standard laboratory conditions, and the bulk of microorganisms in the ecosystems are still unidentified, which restricts our knowledge of uncultured microbial metabolism. However, they could hypothetically provide a large collection of innovative natural products. Culture-independent metagenomics study has the ability to address core questions in the potential of NP production by cloning and analysis of microbial DNA derived directly from environmental samples. Latest advancements in next generation sequencing and genetic engineering tools for genome assembly have broadened the scope of metagenomics to offer perspectives into the life of uncultured microorganisms. In this review, we cover the methods of metagenomic library construction, and heterologous expression for the exploration and development of the environmental metabolome and focus on the function-based metagenomics, sequencing-based metagenomics, and single-cell metagenomics of uncultured microorganisms.
Collapse
|
46
|
Sukmarini L. Recent Advances in Discovery of Lead Structures from Microbial Natural Products: Genomics- and Metabolomics-Guided Acceleration. Molecules 2021; 26:molecules26092542. [PMID: 33925414 PMCID: PMC8123854 DOI: 10.3390/molecules26092542] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 01/17/2023] Open
Abstract
Natural products (NPs) are evolutionarily optimized as drug-like molecules and remain the most consistently successful source of drugs and drug leads. They offer major opportunities for finding novel lead structures that are active against a broad spectrum of assay targets, particularly those from secondary metabolites of microbial origin. Due to traditional discovery approaches’ limitations relying on untargeted screening methods, there is a growing trend to employ unconventional secondary metabolomics techniques. Aided by the more in-depth understanding of different biosynthetic pathways and the technological advancement in analytical instrumentation, the development of new methodologies provides an alternative that can accelerate discoveries of new lead-structures of natural origin. This present mini-review briefly discusses selected examples regarding advancements in bioinformatics and genomics (focusing on genome mining and metagenomics approaches), as well as bioanalytics (mass-spectrometry) towards the microbial NPs-based drug discovery and development. The selected recent discoveries from 2015 to 2020 are featured herein.
Collapse
Affiliation(s)
- Linda Sukmarini
- Research Center for Biotechnology, Indonesian Institute of Sciences (LIPI), Cibinong, Bogor 16911, West Java, Indonesia
| |
Collapse
|
47
|
Alam K, Hao J, Zhang Y, Li A. Synthetic biology-inspired strategies and tools for engineering of microbial natural product biosynthetic pathways. Biotechnol Adv 2021; 49:107759. [PMID: 33930523 DOI: 10.1016/j.biotechadv.2021.107759] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/28/2021] [Accepted: 04/23/2021] [Indexed: 02/08/2023]
Abstract
Microbial-derived natural products (NPs) and their derivative products are of great importance and used widely in many fields, especially in pharmaceutical industries. However, there is an immediate need to establish innovative approaches, strategies, and techniques to discover new NPs with novel or enhanced biological properties, due to the less productivity and higher cost on traditional drug discovery pipelines from natural bioresources. Revealing of untapped microbial cryptic biosynthetic gene clusters (BGCs) using DNA sequencing technology and bioinformatics tools makes genome mining possible for NP discovery from microorganisms. Meanwhile, new approaches and strategies in the area of synthetic biology offer great potentials for generation of new NPs by engineering or creating synthetic systems with improved and desired functions. Development of approaches, strategies and tools in synthetic biology can facilitate not only exploration and enhancement in supply, and also in the structural diversification of NPs. Here, we discussed recent advances in synthetic biology-inspired strategies, including bioinformatics and genetic engineering tools and approaches for identification, cloning, editing/refactoring of candidate biosynthetic pathways, construction of heterologous expression hosts, fitness optimization between target pathways and hosts and detection of NP production.
Collapse
Affiliation(s)
- Khorshed Alam
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China.
| | - Jinfang Hao
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Youming Zhang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China.
| | - Aiying Li
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
48
|
Figueiredo SAC, Preto M, Moreira G, Martins TP, Abt K, Melo A, Vasconcelos VM, Leão PN. Discovery of Cyanobacterial Natural Products Containing Fatty Acid Residues**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202015105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sandra A. C. Figueiredo
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR) University of Porto Avenida General Norton de Matos, s/n 4450-208 Matosinhos Portugal
| | - Marco Preto
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR) University of Porto Avenida General Norton de Matos, s/n 4450-208 Matosinhos Portugal
| | - Gabriela Moreira
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR) University of Porto Avenida General Norton de Matos, s/n 4450-208 Matosinhos Portugal
| | - Teresa P. Martins
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR) University of Porto Avenida General Norton de Matos, s/n 4450-208 Matosinhos Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS) University of Porto Rua de Jorge Viterbo Ferreira, 228 4050-313 Porto Portugal
| | - Kathleen Abt
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR) University of Porto Avenida General Norton de Matos, s/n 4450-208 Matosinhos Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS) University of Porto Rua de Jorge Viterbo Ferreira, 228 4050-313 Porto Portugal
| | - André Melo
- LAQV@REQUIMTE/Department of Chemistry and Biochemistry Faculty of Sciences University of Porto Rua do Campo Alegre 4169-007 Porto Portugal
| | - Vitor M. Vasconcelos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR) University of Porto Avenida General Norton de Matos, s/n 4450-208 Matosinhos Portugal
- Department of Biology Faculty of Sciences University of Porto Rua do Campo Alegre 4169-007 Porto Portugal
| | - Pedro N. Leão
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR) University of Porto Avenida General Norton de Matos, s/n 4450-208 Matosinhos Portugal
| |
Collapse
|
49
|
Figueiredo SAC, Preto M, Moreira G, Martins TP, Abt K, Melo A, Vasconcelos VM, Leão PN. Discovery of Cyanobacterial Natural Products Containing Fatty Acid Residues*. Angew Chem Int Ed Engl 2021; 60:10064-10072. [PMID: 33599093 PMCID: PMC8252387 DOI: 10.1002/anie.202015105] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Indexed: 12/16/2022]
Abstract
In recent years, extensive sequencing and annotation of bacterial genomes has revealed an unexpectedly large number of secondary metabolite biosynthetic gene clusters whose products are yet to be discovered. For example, cyanobacterial genomes contain a variety of gene clusters that likely incorporate fatty acid derived moieties, but for most cases we lack the knowledge and tools to effectively predict or detect the encoded natural products. Here, we exploit the apparent absence of a functional β-oxidation pathway in cyanobacteria to achieve efficient stable-isotope-labeling of their fatty acid derived lipidome. We show that supplementation of cyanobacterial cultures with deuterated fatty acids can be used to easily detect natural product signatures in individual strains. The utility of this strategy is demonstrated in two cultured cyanobacteria by uncovering analogues of the multidrug-resistance reverting hapalosin, and novel, cytotoxic, lactylate-nocuolin A hybrids-the nocuolactylates.
Collapse
Affiliation(s)
- Sandra A. C. Figueiredo
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR)University of PortoAvenida General Norton de Matos, s/n4450-208MatosinhosPortugal
| | - Marco Preto
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR)University of PortoAvenida General Norton de Matos, s/n4450-208MatosinhosPortugal
| | - Gabriela Moreira
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR)University of PortoAvenida General Norton de Matos, s/n4450-208MatosinhosPortugal
| | - Teresa P. Martins
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR)University of PortoAvenida General Norton de Matos, s/n4450-208MatosinhosPortugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS)University of PortoRua de Jorge Viterbo Ferreira, 2284050-313PortoPortugal
| | - Kathleen Abt
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR)University of PortoAvenida General Norton de Matos, s/n4450-208MatosinhosPortugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS)University of PortoRua de Jorge Viterbo Ferreira, 2284050-313PortoPortugal
| | - André Melo
- LAQV@REQUIMTE/Department of Chemistry and BiochemistryFaculty of SciencesUniversity of PortoRua do Campo Alegre4169-007PortoPortugal
| | - Vitor M. Vasconcelos
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR)University of PortoAvenida General Norton de Matos, s/n4450-208MatosinhosPortugal
- Department of BiologyFaculty of SciencesUniversity of PortoRua do Campo Alegre4169-007PortoPortugal
| | - Pedro N. Leão
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR)University of PortoAvenida General Norton de Matos, s/n4450-208MatosinhosPortugal
| |
Collapse
|
50
|
Kalkreuter E, Bingham KS, Keeler AM, Lowell AN, Schmidt JJ, Sherman DH, Williams GJ. Computationally-guided exchange of substrate selectivity motifs in a modular polyketide synthase acyltransferase. Nat Commun 2021; 12:2193. [PMID: 33850151 PMCID: PMC8044089 DOI: 10.1038/s41467-021-22497-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 02/26/2021] [Indexed: 11/28/2022] Open
Abstract
Polyketides, one of the largest classes of natural products, are often clinically relevant. The ability to engineer polyketide biosynthesis to produce analogs is critically important. Acyltransferases (ATs) of modular polyketide synthases (PKSs) catalyze the installation of malonyl-CoA extenders into polyketide scaffolds. ATs have been targeted extensively to site-selectively introduce various extenders into polyketides. Yet, a complete inventory of AT residues responsible for substrate selection has not been established, limiting the scope of AT engineering. Here, molecular dynamics simulations are used to prioritize ~50 mutations within the active site of EryAT6 from erythromycin biosynthesis, leading to identification of two previously unexplored structural motifs. Exchanging both motifs with those from ATs with alternative extender specificities provides chimeric PKS modules with expanded and inverted substrate specificity. Our enhanced understanding of AT substrate selectivity and application of this motif-swapping strategy are expected to advance our ability to engineer PKSs towards designer polyketides.
Collapse
Affiliation(s)
- Edward Kalkreuter
- Department of Chemistry, NC State University, Raleigh, NC, USA
- Comparative Medicine Institute, NC State University, Raleigh, NC, USA
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, USA
| | - Kyle S Bingham
- Department of Chemistry, NC State University, Raleigh, NC, USA
- UNC Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Aaron M Keeler
- Department of Chemistry, NC State University, Raleigh, NC, USA
| | - Andrew N Lowell
- Life Sciences Institute, Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
- Department of Chemistry, Virginia Tech, Blacksburg, VA, USA
| | - Jennifer J Schmidt
- Life Sciences Institute, Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - David H Sherman
- Life Sciences Institute, Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
- Department of Chemistry, Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Gavin J Williams
- Department of Chemistry, NC State University, Raleigh, NC, USA.
- Comparative Medicine Institute, NC State University, Raleigh, NC, USA.
| |
Collapse
|