1
|
Su PJ, Leung W, Shen CJ, Chen MH, Lai YH. Quantitative native speciation of ppb-level metals in semiconductor-manufacturing-used strong acids and a base. Talanta 2025; 291:127819. [PMID: 40043377 DOI: 10.1016/j.talanta.2025.127819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/13/2025] [Accepted: 02/24/2025] [Indexed: 03/24/2025]
Abstract
The presence of metal species in solvents significantly impacts production yields in the semiconductor industry, particularly as the dimensions of integrated circuits continue to decrease. Therefore, it is imperative to control metal concentrations in solvents to levels as low as a few parts per billion (ppb) throughout fabrication processes. Effective purification methods are essential for removing various levels of contamination, and understanding the speciation of metals is crucial for achieving efficient purification. Conventional methods for the speciation of solution-phase metals include ion chromatography (IC) and ultraviolet-visible (UV-Vis) absorption spectroscopy. However, these techniques present limitations; for instance, IC can inadvertently alter species during the elution process, while the requirement for high-purity parts per million (ppm) concentrations of metals obscures the speciation of trace mixed samples using UV-Vis absorption spectroscopy. In this study, we present a quantitative speciation method for metals in their native states within strong acids and a base, utilizing the breakthrough curve (BTC) theory in conjunction with inductively coupled plasma-mass spectrometry (ICP-MS). Sodium, potassium, magnesium, calcium, iron, and copper serve as model systems for our investigations. The combination of BTC and ICP-MS provides insights into the species present and their respective abundances. Our findings indicate that breakthrough time (tBT) is predominantly influenced by the charge states and binding selectivity of the metal species and the concentrations of competing binding species. For scenarios where the product of the adsorption equilibrium constant (K) and the concentrations of a species at equilibrium (C) is significantly less than one (KC ≪ 1), tBT serves as a critical metric for assessing metal species at trace levels. Taking sodium (I) and potassium (I) at 10 ppb as representative examples, we discovered that tBT was accelerated by a factor of 5.7 when the concentration of the competing binding species ([H]+ in this study) was increased five-fold from 0.02 M to 0.1 M nitric acid (HNO3). Specifically, the tBT for sodium (I) decreased from 23 min to 4 min, while for potassium (I), it dropped from 114 min to 20 min. Furthermore, in the cases of magnesium (II) and copper (II) at 10 ppb, tBT was expedited by a factor of approximately 25; the tBT for magnesium (II) fell from 100 min to 4 min, and for copper (II), it decreased from 157 min to 6 min when the [H]+ concentration was increased five-fold from 0.1 M to 0.5 M HNO3. Additionally, we observed distinct species transformations for iron and copper, evidenced by markedly altered tBT in 0.1 M choline hydroxide solutions, which was observed to be less than 10 min. Anionic iron complexes and neutral copper particles were inferred, supported by ion exchange and UV-Vis absorption spectroscopic measurements. Furthermore, copper particles, potentially identified as copper (II) hydroxide or copper (II) oxide, exhibited a size distribution ranging from 200 to 400 nm with a peak at 300 nm, as characterized using particle analyzers. The advantages of the BTC theory-facilitated native quantitative speciation are anticipated to enhance informed decision-making for optimizing purification processes within the semiconductor industry.
Collapse
Affiliation(s)
- Po-Jui Su
- Department of Chemical Engineering, National United University, Miaoli, 360302, Taiwan, ROC
| | - Will Leung
- Department of Chemical Engineering, National United University, Miaoli, 360302, Taiwan, ROC
| | - Chih-Jung Shen
- Department of Chemical Engineering, National United University, Miaoli, 360302, Taiwan, ROC
| | - Min-Hua Chen
- Department of Chemical Engineering, National United University, Miaoli, 360302, Taiwan, ROC
| | - Yin-Hung Lai
- Department of Chemical Engineering, National United University, Miaoli, 360302, Taiwan, ROC; Institute of Food Safety and Health Risk Assessment, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan, ROC.
| |
Collapse
|
2
|
Yang G, Blechschmidt L, Zedler L, Zens C, Witas K, Schmidt M, Esser B, Rau S, Shillito GE, Dietzek-Ivanšić B, Kupfer S. Excited State Branching Processes in a Ru(II)-Based Donor-Acceptor-Donor System. Chemistry 2025:e202404671. [PMID: 40317779 DOI: 10.1002/chem.202404671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 04/10/2025] [Accepted: 04/22/2025] [Indexed: 05/07/2025]
Abstract
Excited state properties such as excitation energy, accessibility of the respective excited state either by direct or indirect population transfer, and its lifetime govern the application of these excited states in light-driven reactions, for example, photocatalysis using transition metal complexes. Compared with triplet metal-to-ligand charge transfer (3MLCT) states, charge-separated (3CS) excited states involving organic moieties, such as triplet intra-ligand or ligand-to-ligand charge transfer (3ILCT and 3LLCT) states, tend to possess longer-lived excited states due to the weak spin-orbit coupling with the closed-shell ground state. Thus, the combination of inorganic and organic chromophores enables isolating the triplet states onto the organic chromophore. In this study, we aim to elucidate the excited-state relaxation processes in a Ru(II)-terpyridyl donor-acceptor-donor system (RuCl) in a joint spectroscopic-theoretical approach combining steady-state and time-resolved spectroscopy as well as quantum chemical simulations and dissipative quantum dynamics. The electron transfer (ET) processes involving the low-lying 3MLCT, 3ILCT, and 3LLCT excited states were investigated experimentally and computationally within a semiclassical Marcus picture. Finally, dissipative quantum dynamical simulations-capable of describing incomplete ET processes involving all three states-enabled us to unravel the competitive relaxation channels at short and long timescales among the strongly coupled 3MLCT-3ILCT states and weakly coupled 3MLCT-3LLCT and 3ILCT-3LLCT states.
Collapse
Affiliation(s)
- Guangjun Yang
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Louis Blechschmidt
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
- Department Spectroscopy and Imaging - Work group Photophysics and Photochemistry of Functional Interfaces, Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Linda Zedler
- Department Spectroscopy and Imaging - Work group Photophysics and Photochemistry of Functional Interfaces, Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Clara Zens
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Kamil Witas
- Institute for Inorganic Chemistry 1, Ulm University, 89081, Ulm, Germany
| | - Maximilian Schmidt
- Institute of Organic Chemistry II and Advanced Materials, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Birgit Esser
- Institute of Organic Chemistry II and Advanced Materials, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Sven Rau
- Institute for Inorganic Chemistry 1, Ulm University, 89081, Ulm, Germany
| | - Georgina E Shillito
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Benjamin Dietzek-Ivanšić
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
- Department Spectroscopy and Imaging - Work group Photophysics and Photochemistry of Functional Interfaces, Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Stephan Kupfer
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| |
Collapse
|
3
|
Yusoh NA, Gill MR, Tian X. Advancing super-resolution microscopy with metal complexes: functional imaging agents for nanoscale visualization. Chem Soc Rev 2025; 54:3616-3646. [PMID: 39981712 DOI: 10.1039/d4cs01193g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Super-resolution microscopy (SRM) has transformed biological imaging by overcoming the diffraction limit, offering nanoscale visualization of cellular structures and processes. However, the widespread use of organic fluorescent probes is often hindered by limitations such as photobleaching, short photostability, and inadequate performance in deep-tissue imaging. Metal complexes, with their superior photophysical properties, including exceptional photostability, tuneable luminescence, and extended excited-state lifetimes, address these challenges, enabling precise subcellular targeting and long-term imaging. Beyond imaging, their theranostic potential unlocks real-time diagnostics and treatments for diseases such as cancer and bacterial infections. This review explores recent advancements in applying metal complexes for SRM, focusing on their utility in visualizing intricate subcellular structures, capturing temporal dynamics in live cells and elucidating in vivo spatial organization. We emphasize how rational design strategies optimize biocompatibility, organelle specificity, and deep-tissue penetration, expanding their applicability in multiplexed imaging. Furthermore, we discuss the design of various metal nanoparticles (NPs) for SRM, along with emerging hybrid nanoscale probes that integrate metal complexes with gold (Au) scaffolds, offering promising avenues for overcoming current limitations. By highlighting both established successes and potential frontiers, this review provides a roadmap for leveraging metal complexes as versatile tools in advancing SRM applications.
Collapse
Affiliation(s)
- Nur Aininie Yusoh
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan, China.
| | - Martin R Gill
- Department of Chemistry, Faculty of Science and Engineering, Swansea University, Swansea, UK.
| | - Xiaohe Tian
- Department of Radiology, Huaxi MR Research Center (HMRRC), Institution of Radiology and Medical Imaging, West China Hospital of Sichuan University, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
4
|
Liu Z, Yan Y, Yang Y, Yao X, Jiao J, Zhang F, Jia J, Li Y. Decentralized Metal-Metal Bonding in the AuNi(CO) 4- Anion Described Equally Well with Dative Bonding as with Electron-Sharing Bonding. J Phys Chem A 2025; 129:2998-3006. [PMID: 40127240 DOI: 10.1021/acs.jpca.4c08149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
The heterodinuclear AuNi(CO)4- complex is scrutinized in the gas phase by using mass-selected anionic photoelectron velocity-map imaging spectroscopy in conjunction with theoretical computations. The ground state of AuNi(CO)4- is characterized to have an Au-Ni bonded structure, consisting of an AuCO fragment attached to the Ni center of the Ni(CO)3 fragment. Comprehensive quantum chemical studies reveal that the AuNi(CO)4- complex at equilibrium structure features a decentralized bonding scenario, where the exotic metal-metal σ bonding may be equally well described with dative bonding as with electron-sharing bonding between two fragments.
Collapse
Affiliation(s)
- Zhiling Liu
- School of Chemical and Material Science, Key Laboratory of Magnetic Molecules & Magnetic Information Materials, the Ministry of Education, Shanxi Normal University, No. 339, Taiyu Road, Taiyuan, Shanxi 030031, China
| | - Yonghong Yan
- School of Chemical and Material Science, Key Laboratory of Magnetic Molecules & Magnetic Information Materials, the Ministry of Education, Shanxi Normal University, No. 339, Taiyu Road, Taiyuan, Shanxi 030031, China
| | - Yufeng Yang
- School of Chemical and Material Science, Key Laboratory of Magnetic Molecules & Magnetic Information Materials, the Ministry of Education, Shanxi Normal University, No. 339, Taiyu Road, Taiyuan, Shanxi 030031, China
| | - Xiaoyue Yao
- School of Chemical and Material Science, Key Laboratory of Magnetic Molecules & Magnetic Information Materials, the Ministry of Education, Shanxi Normal University, No. 339, Taiyu Road, Taiyuan, Shanxi 030031, China
| | - Jingmei Jiao
- School of Chemical and Material Science, Key Laboratory of Magnetic Molecules & Magnetic Information Materials, the Ministry of Education, Shanxi Normal University, No. 339, Taiyu Road, Taiyuan, Shanxi 030031, China
| | - Fuqiang Zhang
- School of Chemical and Material Science, Key Laboratory of Magnetic Molecules & Magnetic Information Materials, the Ministry of Education, Shanxi Normal University, No. 339, Taiyu Road, Taiyuan, Shanxi 030031, China
| | - Jianfeng Jia
- School of Chemical and Material Science, Key Laboratory of Magnetic Molecules & Magnetic Information Materials, the Ministry of Education, Shanxi Normal University, No. 339, Taiyu Road, Taiyuan, Shanxi 030031, China
| | - Ya Li
- School of Geographical Sciences, Shanxi Normal University, No. 339, Taiyu Road, Taiyuan, Shanxi 030031, China
| |
Collapse
|
5
|
Li J, Shi Y, Cui C, Li Y, Ruan C, Cheng T. Unveiling Quantum Coherence Effects in Modulating Electron Transfer in Platinum (II) Donor-Acceptor-Donor Systems. Chemistry 2025; 31:e202404512. [PMID: 39929777 DOI: 10.1002/chem.202404512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/10/2025] [Indexed: 02/20/2025]
Abstract
Quantum coherence effects (QCEs), arising from the interference of wave-like amplitudes, are crucial in controlling the electron transfer function of molecular systems. Here, we report a coherence phenomenon associated with charge separation (CS) in a range of Pt (II) cis-acetylide donor-acceptor-donor (D-A-D) systems, where the photogenerated Pt (III) center acts as an acceptor connecting two (R)phenothiazine (R = H or tBu) donors. Femtosecond transient absorption spectroscopy revealed that CS rates in D-A-D systems with double CS paths were accelerated by 4-8 times compared to their donor-acceptor (D-A) counterparts with a single path. An enhancement factor of 2-3 in electronic coupling, within the context of interference between CS paths, is derived, providing a clear signature of QCEs. This enhancementin CS processes closely correlates with the strength of coupling between donors. This study highlights the significant impact of QCEs on the photophysical properties of molecular systems and offers insights into charge and energy transport mechanisms in both natural and artificial systems.
Collapse
Affiliation(s)
- Juanjuan Li
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Yuqing Shi
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Can Cui
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Yefan Li
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Chenluwei Ruan
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Tao Cheng
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| |
Collapse
|
6
|
Zuffa C, Veclani D, Marchini M, Monti F, Cappuccino C, Maini L, Ventura B. Rationalization of the structural, electronic and photophysical properties of silver(I) halide n-picolylamine hybrid coordination polymers. Dalton Trans 2025; 54:2799-2811. [PMID: 39804218 DOI: 10.1039/d4dt03003f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2025]
Abstract
Hybrid coordination polimers based on AgX (with X = Cl, Br) and 2-, 3-, 4-picolylamine ligands, obtained by means of solvent-free methods, show peculiar luminescence properties that are strongly influenced by their structural motif, which in turn is defined by the adopted isomer of the ligand. A comprehensive study, combining photophysical methods and DFT calculations, allowed to rationalize the emissive behaviour of such hybrid coordination polymers in relation to their crystal structures and electronic properties. By means of luminescence measurements at variable temperatures, the nature of the emissive excited states and their deactivation dynamics was interpreted, revealing XMLCT transitions in the [(AgX)(2-pica)]n compounds, a TADF behaviour in the case of 3-pica derivatives, and a dual emission at room temperature for the [(AgX)(4-pica)]n family. The presence of low energy CC states, permitted by argentophilic interactions, is also considered in [(AgX)(2-pica)]n, whose structures are characterized by single/double inorganic chains, and in [(AgX)(4-pica)]n, where discrete dimeric Ag2X2 units are present. These findings open new avenues for the design and application of luminescent AgX-based hybrid materials.
Collapse
Affiliation(s)
- Caterina Zuffa
- Università di Bologna, Dipartimento di Chimica "Giacomo Ciamician", Via F. Selmi 2, , 40126, Bologna, Italy.
| | - Daniele Veclani
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività (CNR-ISOF), Via Piero Gobetti 101, 40129 Bologna, Italy.
| | - Marianna Marchini
- Università di Bologna, Dipartimento di Chimica "Giacomo Ciamician", Via F. Selmi 2, , 40126, Bologna, Italy.
| | - Filippo Monti
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività (CNR-ISOF), Via Piero Gobetti 101, 40129 Bologna, Italy.
| | - Chiara Cappuccino
- Università di Bologna, Dipartimento di Chimica "Giacomo Ciamician", Via F. Selmi 2, , 40126, Bologna, Italy.
| | - Lucia Maini
- Università di Bologna, Dipartimento di Chimica "Giacomo Ciamician", Via F. Selmi 2, , 40126, Bologna, Italy.
| | - Barbara Ventura
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività (CNR-ISOF), Via Piero Gobetti 101, 40129 Bologna, Italy.
| |
Collapse
|
7
|
Luginin M, Snetkov D, Sizova A, Paderina A, Sizov V, Grachova E. Cyclometalated Au(III) complexes with alkynylphosphine oxide ligands: synthesis and photophysical properties. Dalton Trans 2025; 54:2950-2963. [PMID: 39804331 DOI: 10.1039/d4dt03250k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2025]
Abstract
A series of cyclometalated Au(III) complexes [Au(C^N^C)(C2-L-P(O)Ph2)] with C^N^C = 2,6-diphenylpyridine and alkynylphosphine oxide ligands (L = no linker, Au1; phenyl, Au2; biphenyl, Au3; naphthyl, Au4; anthracenyl, Au5) were synthesized and fully characterized by spectroscopic methods and single crystal XRD analysis. The complexes obtained exhibit triplet (Au1-Au3) and dual (Au4, Au5) emissions in solution, in the solid phase and in the PMMA film, whose characteristics depend on the linker's nature of the alkynylphosphine oxide ligand. The description of electronic transitions responsible for energy absorption and emission in Au(III) complexes was made on the basis of a detailed analysis of the results of DFT calculations and has shown to involve ILCT, LLCT and MLCT transitions of singlet and triplet nature. It was demonstrated that packing in the crystal affects the solid-state emission of Au(III) complexes, which differs from that in solution. Based on DFT calculations for the supramolecular dimer for Au1, it was shown that this phenomenon is the result of packing of the complex molecules in the crystal.
Collapse
Affiliation(s)
- Maksim Luginin
- Institute of Chemistry, St Petersburg University, Universitetskii pr. 26, 198504 St. Petersburg, Russia.
| | - Dmitry Snetkov
- Institute of Chemistry, St Petersburg University, Universitetskii pr. 26, 198504 St. Petersburg, Russia.
| | - Anastasia Sizova
- Institute of Chemistry, St Petersburg University, Universitetskii pr. 26, 198504 St. Petersburg, Russia.
| | - Aleksandra Paderina
- Institute of Chemistry, St Petersburg University, Universitetskii pr. 26, 198504 St. Petersburg, Russia.
| | - Vladimir Sizov
- Institute of Chemistry, St Petersburg University, Universitetskii pr. 26, 198504 St. Petersburg, Russia.
| | - Elena Grachova
- Institute of Chemistry, St Petersburg University, Universitetskii pr. 26, 198504 St. Petersburg, Russia.
| |
Collapse
|
8
|
Fortier L, Lefebvre C, Hoffmann N. Red light excitation: illuminating photocatalysis in a new spectrum. Beilstein J Org Chem 2025; 21:296-326. [PMID: 39931681 PMCID: PMC11809576 DOI: 10.3762/bjoc.21.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/31/2025] [Indexed: 02/13/2025] Open
Abstract
Red-light-activated photocatalysis has become a powerful approach for achieving sustainable chemical transformations, combining high efficiency with energy-saving, mild conditions. By harnessing the deeper penetration and selectivity of red and near-infrared light, this method minimizes the side reactions typical of higher-energy sources, making it particularly suited for large-scale applications. Recent advances highlight the unique advantages of both metal-based and metal-free catalysts under red-light irradiation, broadening the range of possible reactions, from selective oxidations to complex polymerizations. In biological contexts, red-light photocatalysis enables innovative applications in phototherapy and controlled drug release, exploiting its tissue penetration and low cytotoxicity. Together, these developments underscore the versatility and impact of red-light photocatalysis, positioning it as a cornerstone of green organic chemistry with significant potential in synthetic and biomedical fields.
Collapse
Affiliation(s)
- Lucas Fortier
- Unité de Catalyse et de Chimie du Solide (UCCS), University of Lille, CNRS, University of Artois UMR 8181, Avenue Mendeleiev, 59655 Villeneuve d’Ascq CEDEX, France
| | - Corentin Lefebvre
- Laboratory of Glycochemistry and Agroressources of Amiens (LG2A), University of Picardie Jules Verne UR 7378, 10 rue Baudelocque, 80000 Amiens, France
| | - Norbert Hoffmann
- Institute of Physics and Chemistry of Materials of Strasbourg (IPCMS), University of Strasbourg UMR 7504, 23 rue du Loess, BP 43, 67034 Strasbourg CEDEX 2, France
| |
Collapse
|
9
|
Jin JL, Zhang SF, Fang JJ, Shen YL, Xie YP, Lu X. Assembly of silver(I)-copper(I) bimetallic thiolate complexes assisted by phenylacetylene stabilizers. Dalton Trans 2025; 54:1270-1275. [PMID: 39624945 DOI: 10.1039/d4dt02753a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
AgI/CuI bimetallic clusters have been widely reported, but synthesis of such clusters via simple self-assembly of heterometallic ions in air remains challenging due to the susceptibility of CuI ions to oxidation. In this study, protected by the phenylacetylene auxiliary ligand, we utilized [Cu(CH3CN)4]PF6 in conjunction with the (iPrSAg)n polymer to form Ag(I)-Cu(I) oligomer precursors, serving as the starting point for constructing a new [Ag11-xCux(iPrS)9(DPPM)3](PF6)2 cluster (DPPM = bis(diphenylphosphino)methane, Ag11-xCux, x = 5-9). When the (iPrSAg)n precursor was replaced by (tBuSAg)n, another cluster [Ag21Cu4S2(tBuS)18(CH3CN)4](CH3OH)2(H3O)(PF6)4 (Ag21Cu4) was obtained. By combining crystallographic data and electrospray ionization mass spectrometry (ESI-MS) results, the compositions and structures of these two new clusters were determined. Additionally, the optical physical properties of the luminescent Ag11-xCux were investigated, showing red phosphorescence emission in both solid-state and solution phases. The solid-state phosphorescence quantum yield (QY) is 8%, with a lifetime of 7.2 μs. These findings suggest that phenylacetylene auxiliary ligands can effectively stabilize CuI ions and guide the assembly of silver-copper bimetallic thiolate motifs into new compounds under ambient conditions.
Collapse
Affiliation(s)
- Jun-Ling Jin
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, China.
| | - Sheng-Fa Zhang
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, China.
| | - Jun-Jie Fang
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Yang-Lin Shen
- School of Materials and Chemical Engineering, Henan International Joint Laboratory of Rare Earth Composite Materials, Henan University of Engineering, Zhengzhou 451191, China
| | - Yun-Peng Xie
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Xing Lu
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
10
|
Arsenyeva KV, Klimashevskaya AV, Maleeva AV, Arsenyev MV, Chegerev MG, Starikova AA, Yakushev IA, Cherkasov AV, Piskunov AV. Bridge-Dependent Donor-Metal-Acceptor-Metal-Donor (D-M-A-M-D) Systems: From Charge Transfer to Electron Transfer in Dioxolene-Ge-Diimine Complexes. Chempluschem 2025; 90:e202400504. [PMID: 39269199 DOI: 10.1002/cplu.202400504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/15/2024]
Abstract
Synthesis and structural characterization of a family of germanium-dioxolene complexes with ditopic N-donor ligands (L1-L5) (L1=1,2-bis(pyridin-2-ylmethylene)hydrazine L2=1,6-bis-(pyridin-2-yl)-2,5-diaza-1,5-hexadiene, L3=N,N-bis(pyridin-2-ylmethylene)-1,4-benzenediamine, L4=N,N-bis(pyridin-2-ylmethylene)-(biphenyl)-4,4-diamine, L5=2,2'-azopyridine) is reported. The reaction of germanium bis-catecholate with bridging ligands L1 - L4, differing by the nature of the linker between pyridine sites gives rise to dinuclear digermanium complexes (36Cat2Ge)2L1-4 (36Cat=dianion of 3,6-di-tert-butylcatechol) 1-4 of DMAMD type (donor-metal-acceptor-metal-donor) with a charge transfer in the UV-Vis region. In opposite, the interaction of the 36Cat2Ge with 2,2'-azopyridine (L5) results in the two-electron transfer from the donor 36Cat2- ligands to the azopyridine bridge forming stable open-shell complex 5 [(36SQ)(36CatGe)]2(L5)2- (36SQ=radical-anionic semiquinonate ligand). Molecular structures of compounds 3 and 5 were determined by single crystal X-ray diffraction analysis. Electronic structures of complexes 1-5 were studied by means of DFT calculations.
Collapse
Affiliation(s)
- Kseniya V Arsenyeva
- Institute of Organometallic Chemistry of, Russian Academy of Sciences, Tropinina str, 49, 603950, Nizhny Novgorod, Russian Federation
| | - Anastasiya V Klimashevskaya
- Institute of Organometallic Chemistry of, Russian Academy of Sciences, Tropinina str, 49, 603950, Nizhny Novgorod, Russian Federation
| | - Arina V Maleeva
- Institute of Organometallic Chemistry of, Russian Academy of Sciences, Tropinina str, 49, 603950, Nizhny Novgorod, Russian Federation
| | - Maxim V Arsenyev
- Institute of Organometallic Chemistry of, Russian Academy of Sciences, Tropinina str, 49, 603950, Nizhny Novgorod, Russian Federation
| | - Maxim G Chegerev
- Institute of Physical and Organic Chemistry at, Southern Federal University, Stachka Avenue 194/2, 344090, Rostov-on-Don, Russian Federation
| | - Alyona A Starikova
- Institute of Physical and Organic Chemistry at, Southern Federal University, Stachka Avenue 194/2, 344090, Rostov-on-Don, Russian Federation
| | - Ilya A Yakushev
- Institute of General and Inorganic Chemistry of Russian Academy of Sciences Institution, Leninsky pr., 31, 119991, Moscow, Russian Federation
| | - Anton V Cherkasov
- Institute of Organometallic Chemistry of, Russian Academy of Sciences, Tropinina str, 49, 603950, Nizhny Novgorod, Russian Federation
| | - Alexandr V Piskunov
- Institute of Organometallic Chemistry of, Russian Academy of Sciences, Tropinina str, 49, 603950, Nizhny Novgorod, Russian Federation
| |
Collapse
|
11
|
Sutar P, Maisuls I, Fernández Z, Strassert CA, Fernández G. Pathway-dependent Metallosupramolecular Polymerization Regulated by Ligand Geometry. Chemistry 2024; 30:e202403287. [PMID: 39317651 DOI: 10.1002/chem.202403287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 09/26/2024]
Abstract
Understanding structure/property correlations in self-assembly is a key but challenging requirement for developing functional materials. Herein, we explore the importance of ligand geometry to fine-tune photophysical properties (MMLCT vs. MLCT excited states) and self-assembly pathways in metallosupramolecular polymerization. To this end, we have designed two hydrophobic Pt(II) complexes, 1 and 2, containing a π-extended bidentate bipyridine ligand with different substitution pattern, resulting in different molecular geometries (linear vs. V-shaped). Detailed comparative studies revealed significant differences for both complexes in terms of their photophysical properties and self-assembly pathways in non-polar media. The V-shaped topology of 1 enables facile face-to-face molecular stacking with a certain curvature leading to luminescent spherical assemblies exhibiting MMLCT states and short Pt⋅⋅⋅Pt contacts via a single-step cooperative pathway. On the other hand, the higher preorganized linear topology of complex 2 induces a two-step competitive self-assembly process leading to the formation of one-dimensional supramolecular polymers with slipped packing and MLCT-originated emission. Our findings broaden the monomer scope for supramolecular polymerization and provide design guidelines for the realization of luminescent supramolecular assemblies.
Collapse
Affiliation(s)
- Papri Sutar
- Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, Münster, 48149, Germany
- Current address: Department of Chemistry, National Institute of Technology Silchar, Assam, 788010, India
| | - Iván Maisuls
- Institut für Anorganische und Analytische Chemie, CeNTech, SoN, CiMIC, Universität Münster, Heisenbergstraße 11, Münster, 48149, Germany
| | - Zulema Fernández
- Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, Münster, 48149, Germany
| | - Cristian A Strassert
- Institut für Anorganische und Analytische Chemie, CeNTech, SoN, CiMIC, Universität Münster, Heisenbergstraße 11, Münster, 48149, Germany
| | - Gustavo Fernández
- Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, Münster, 48149, Germany
| |
Collapse
|
12
|
Huang Y, Liu Y, Yan Y, Gong Y, Zhang Y, Che Y, Zhao J. Metal-free photocatalysts with charge-transfer excited states enable visible light-driven atom transfer radical polymerization. Chem Commun (Camb) 2024. [PMID: 39552579 DOI: 10.1039/d4cc04470c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Metal-free donor-acceptor photocatalysts enable efficient O-ATRP under visible light, allowing for precise control over polymer molecular weight with low dispersity. These photocatalysts achieve sufficient reductive potential to drive the reaction in their charge-transfer (CT) excited state. The reported efficient photocatalytic O-ATRP has significant potential in scalable polymer synthesis and photolithography.
Collapse
Affiliation(s)
- Yuchen Huang
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangxin Liu
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingde Yan
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanjun Gong
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Yifan Zhang
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan, School of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, P. R. China
| | - Yanke Che
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jincai Zhao
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Geng L, Huang J, Fang M, Wang H, Liu J, Wang G, Hu M, Sun J, Guo Y, Sun X. Recent progress of the research of metal-organic frameworks-molecularly imprinted polymers (MOFs-MIPs) in food safety detection field. Food Chem 2024; 458:140330. [PMID: 38970953 DOI: 10.1016/j.foodchem.2024.140330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/23/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
Food safety is an important cornerstone of protecting human health and life. Therefore, it is of great significance to detect possible pollutants in food sensitively and efficiently. Molecularly imprinted polymers (MIPs) and metal-organic frameworks (MOFs) have been widely used in the adsorption and detection of food pollutants. However, traditional MIPs have problems such as uneven loading of the imprinted cavity and slow mass transfer efficiency. While the adsorption of MOFs has low specificity and cannot accurately identify target molecules. Therefore, some researchers have taken advantage of the high specific recognition abilities of MIPs and the large specific surface areas, high porosity and easy functionalization of MOFs to combine MOFs with MIPs, and have achieved a series of important results in the field of food safety detection. This paper reviews the research progress of the application of MOFs-MIPs in the field of food safety detection from 2019 to 2024. It furnishes researchers interested in this domain with a rapid and comprehensive grasp of the latest research status, it also offers them a chance to anticipate future development trends, thereby supporting the continuous advances of MOFs-MIPs in food safety detection.
Collapse
Affiliation(s)
- Lingjun Geng
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Jingcheng Huang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Mingxuan Fang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Haifang Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Jingjing Liu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Guangxian Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Mengjiao Hu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Jiashuai Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China
| | - Yemin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China.
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China.
| |
Collapse
|
14
|
Yu K, Ye G, Zhang J, Fu L, Dong X, Yang H. Facet Engineering Boosts Interfacial Compatibility of Inorganic-Polymer Composites. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405175. [PMID: 39231359 PMCID: PMC11538667 DOI: 10.1002/advs.202405175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/08/2024] [Indexed: 09/06/2024]
Abstract
The interfacial compatibility between inorganic particles and polymer is crucial for ensuring high performance of composites. Current efforts to improve interfacial compatibility preferentially rely on organic modification of inorganic particles, leading to their complex process, high costs, and short lifespans due to aging and decomposition of organic modifiers. However, the fabrication of inorganic particles free from organic modification that is highly compatible in polymer still remains a great challenge. Herein, a novel facet-engineered inorganic particle that exhibit high compatibility with widely used polymer interface without organic modification is reported. Theoretical calculations and experimental results show that (020) and (102) facets of inorganic particles modulate local coordination environment of Ca atoms, which in turn regulate d-orbital electron density of Ca atoms and electron transfer paths at interfaces between polymer and inorganic particles. This difference alters the molecular diffusion, orientation of molecular chains on surface of inorganic particles, further modulating interfacial compatibility of composites. Surprisingly, the facet-engineered inorganic particles show exceptional mechanical properties, especially for tensile strain at break, which increases by 395%, far superior to state-of-the-art composites counterparts. Thus, the method can offer a more benign approach to the general production of high-performance and low-cost polymer-inorganic composites for diverse potential applications.
Collapse
Affiliation(s)
- Kun Yu
- Engineering Research Center of Nano‐Geomaterials of Ministry of Education China University of GeosciencesWuhan430074China
- Faculty of Materials Science and ChemistryChina University of GeosciencesWuhan430074China
- Laboratory of Advanced Mineral MaterialsChina University of GeosciencesWuhan430074China
| | - Guangli Ye
- Hunan Key Laboratory of Mineral Materials and ApplicationSchool of Minerals Processing and BioengineeringCentral South UniversityChangsha410083China
| | - Jun Zhang
- Hunan Key Laboratory of Mineral Materials and ApplicationSchool of Minerals Processing and BioengineeringCentral South UniversityChangsha410083China
| | - Liangjie Fu
- Engineering Research Center of Nano‐Geomaterials of Ministry of Education China University of GeosciencesWuhan430074China
- Faculty of Materials Science and ChemistryChina University of GeosciencesWuhan430074China
- Laboratory of Advanced Mineral MaterialsChina University of GeosciencesWuhan430074China
| | - Xiongbo Dong
- Engineering Research Center of Nano‐Geomaterials of Ministry of Education China University of GeosciencesWuhan430074China
- Faculty of Materials Science and ChemistryChina University of GeosciencesWuhan430074China
- Laboratory of Advanced Mineral MaterialsChina University of GeosciencesWuhan430074China
| | - Huaming Yang
- Engineering Research Center of Nano‐Geomaterials of Ministry of Education China University of GeosciencesWuhan430074China
- Faculty of Materials Science and ChemistryChina University of GeosciencesWuhan430074China
- Laboratory of Advanced Mineral MaterialsChina University of GeosciencesWuhan430074China
- Hunan Key Laboratory of Mineral Materials and ApplicationSchool of Minerals Processing and BioengineeringCentral South UniversityChangsha410083China
| |
Collapse
|
15
|
Xia Q, Li Z, Song J, Chang Y, Lu Z, Zhao J, Zhang C, Hang XC. High-Performance Multicolor Organic Light-Emitting Diodes Based on a Pt(II) Carbene Complex Featuring Hemiligand Interaction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:57491-57500. [PMID: 39378394 DOI: 10.1021/acsami.4c12594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Utilizing a single organic light-emitting diode (OLED) architecture for multicolor emissions can significantly simplify manufacturing progress and broaden applications. Here, we report on a carbene-based Pt(II) complex, designated as Pt(pyiOppy), which exhibits an unusual dimeric packing mode solely by hemiligand π···π stacking. This feature is distinct from the well-known Pt···Pt or Pt···ligand interactions. The dimer persists in new types of orbital combinations, along with its triplet transition state, which are evidenced for the first time. Pt(pyiOppy), under various doping concentrations in a solid matrix, demonstrates multicolor emissions ranging from green to red, all exhibiting high photoluminescent quantum efficiencies (48-97%). The devices incorporating Pt(pyiOppy) can emit green, yellow, orange, and red lights, covering a CIE coordinate range of (0.28-0.65, 0.61-0.34). All the devices also achieve appreciable maximum external quantum efficiencies (9.4-17.2%) and impressive lifetimes of hundreds of hours (LT70 at 1000 cd/m2). These findings showcase a new type of Pt(II) aggregate enabling well-controlled, multicolor high-performance phosphorescent OLEDs.
Collapse
Affiliation(s)
- Qinghua Xia
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
- National Engineering Research Center for Synthesis of Novel Rubber and Plastic Materials, Yanshan Branch of Sinopec Beijing Research Institute of Chemical Industry, No. 15, Fenghuangting Road, Fangshan District, Beijing 102500, China
| | - Zhenchun Li
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Jinyu Song
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Yu Chang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Zhenzhong Lu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Jianfeng Zhao
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Cong Zhang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Xiao-Chun Hang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| |
Collapse
|
16
|
Hua Z, Wang L, Gong S, Tian Y, Fu H. Recent strategies for triplet-state emission regulation toward non-lead organic-inorganic metal halides. Chem Commun (Camb) 2024; 60:7246-7265. [PMID: 38916248 DOI: 10.1039/d4cc01700e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Organic-inorganic metal halides (OIMHs) have strengthened the development of triplet-state emission materials due to their excellent luminescence performance. Due to the inherent toxicity of lead (Pb) significantly limiting its further advancement, numerous studies have been conducted to regulate triplet-state emission of non-Pb OIMHs, and several feasible strategies have been proposed. However, most of the non-Pb OIMHs reported have a relatively short lifetime or a low luminescence efficiency, not in favor of their application. In this review, we provide a summary of recent reports on the regulation of triplet-state emissions in non-Pb OIMHs to provide benefits for the design of innovative luminescent materials. Our focus is primarily on exploring the internal and external factors that influence the triplet-state emission. Starting from the luminescence mechanism, the current strategies for regulating triplet-state emissions are summarized. Moreover, by manipulating these strategies, it becomes feasible to achieve triplet-state emissions that span a range of colors from blue to red, and even extend into the near-infrared spectrum with high luminescence efficiency, while also increasing their lifetimes. This review not only provides fresh insights into the advancement of triplet-state emissions in OIMHs but also integrates experimental and theoretical perspectives to illuminate the trajectory of future research endeavors.
Collapse
Affiliation(s)
- Zhaorui Hua
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China.
| | - Lingyi Wang
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China.
| | - Shuyan Gong
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China.
| | - Yang Tian
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China.
| | - Hongbing Fu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
17
|
Chuncha V, Achary Balahoju S, Dutta S, Giribabu L, Chitta R. Investigating the role of corrole as an excitation energy relay in light-induced processes in closely connected N,N'-bis(biphenyl-4-yl)aniline functionalized corrole donor-acceptor dyad. Photochem Photobiol 2024; 100:1041-1054. [PMID: 38549042 DOI: 10.1111/php.13939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/29/2024] [Accepted: 03/07/2024] [Indexed: 07/30/2024]
Abstract
A photosynthetic antenna-reaction center model, BBA-PFCor comprised of N,N'-bis(biphenyl-4-yl)aniline (BBA) covalently functionalized to bis(pentafluoro)corrole moiety has been prepared and the contribution of the BBA as the photoinduced energy transfer antenna was investigated. UV-visible studies have shown that integrating the electron-rich BBA chromophore into the corrole core has broadened the soret band of the corrole moiety with the absorption spanning from 300 to 700 nm. Electrochemical studies, in corroboration with the computational calculations, revealed that, BBA moiety can act as an electron reservoir and, in the excited state, it would transfer the excited energy to the corrole moiety in the dyad. Steady-state fluorescence studies have demonstrated that, upon photoexcitation of the BBA moiety of BBA-PFCor at 310 nm in solvents of varied polarity, the BBA emission centered at 400 nm was observed to be quenched, with the concomitant appearance of the corrole emission from 500 to 700 nm, indicating the happening of photoinduced energy transfer (PEnT) from 1BBA* to corrole moiety. Parallel control experiments involving the excitation of the corrole moiety at 410 nm did not result in the diminishing of the corrole emission, suggesting that the quenching of the BBA emission in BBA-PFCor is majorly due to intramolecular PEnT from 1BBA* to corrole moiety leading to the formation of singlet excited corrole, that is, 1BBA*-PFCor ➔ BBA-1PFCor*. The free energy changes of PEnT, ΔGEnT, were found to be thermodynamically feasible in all the solvents used for the study. Parallel time-resolved fluorescence studies were congruent with the steady-state fluorescence results and provided further evidence for the occurrence of ultrafast PEnT from 1BBA*➔corrole in the dyad with the rates of energy transfer (kEnT) of ~108 s-1.
Collapse
Affiliation(s)
- Vijaykumar Chuncha
- Artificial Photosynthesis Laboratory, Department of Chemistry, National Institute of Technology Warangal, Telangana, India
| | - Shivaprasad Achary Balahoju
- Polymers & Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| | - Snigdha Dutta
- Artificial Photosynthesis Laboratory, Department of Chemistry, National Institute of Technology Warangal, Telangana, India
| | - Lingamallu Giribabu
- Polymers & Functional Materials Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Raghu Chitta
- Artificial Photosynthesis Laboratory, Department of Chemistry, National Institute of Technology Warangal, Telangana, India
| |
Collapse
|
18
|
Zhang H, Chan MHY, Lam J, Chen Z, Leung MY, Wong EKH, Wu L, Yam VWW. Supramolecular assembly of amphiphilic platinum(ii) Schiff base complexes: diverse spectroscopic changes and nanostructures through rational molecular design and solvent control. Chem Sci 2024; 15:8545-8556. [PMID: 38846386 PMCID: PMC11151868 DOI: 10.1039/d3sc06094b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/15/2024] [Indexed: 06/09/2024] Open
Abstract
A new class of amphiphilic tetradentate platinum(ii) Schiff base complexes has been designed and synthesized. The self-assembly properties by exploiting the potential Pt⋯Pt interactions of amphiphilic platinum(ii) Schiff base complexes in the solution state have been systematically investigated. The presence of Pt⋯Pt interactions has further been supported by computational studies and non-covalent interaction (NCI) analysis of the dimer of the complex. The extent of the non-covalent Pt⋯Pt and π-π interactions could be regulated by a variation of the solvent compositions and the hydrophobicity of the complexes, which is accompanied by attractive spectroscopic and luminescence changes and leads to diverse morphological transformations. The present work represents a rare example of demonstration of directed cooperative assembly of amphiphilic platinum(ii) Schiff base complexes by intermolecular Pt⋯Pt interactions in solution with an in-depth mechanistic investigation, providing guiding principles for the construction of supramolecular structures with desirable properties using platinum(ii) Schiff base building blocks.
Collapse
Affiliation(s)
- Huilan Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 P. R. China
- Institute of Molecular Functional Materials, Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Michael Ho-Yeung Chan
- Institute of Molecular Functional Materials, Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Jonathan Lam
- Institute of Molecular Functional Materials, Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Ziyong Chen
- Institute of Molecular Functional Materials, Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Ming-Yi Leung
- Institute of Molecular Functional Materials, Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Eric Ka-Ho Wong
- Institute of Molecular Functional Materials, Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 P. R. China
| | - Vivian Wing-Wah Yam
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 P. R. China
- Institute of Molecular Functional Materials, Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong SAR P. R. China
| |
Collapse
|
19
|
Riesebeck T, Strassner T. Phosphorescent Platinum(II) Complexes with a Spiro-fused Xanthene Unit: Synthesis and Photophysical Properties. Chemistry 2024; 30:e202304263. [PMID: 38450788 DOI: 10.1002/chem.202304263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Indexed: 03/08/2024]
Abstract
Novel platinum(II) complexes, derived from the spiro[fluorene-9,9'-xanthene] (SFX) motif, were synthesized and combined with different auxiliary ligands such as acetylacetonate (acac), bis(2,4,6-trimethylphenyl)propane-1,3-dionate (mesacac) and dihydrobis(3,5-dimethylpyrazole-1-yl) borate. The final products were obtained in yields of up to 36 % and characterized by NMR, X-ray and combustion analysis. These complexes have structured green-blue emission spectra with Commission Internationale de l'Éclairage (CIExy) coordinates of (0.21;0.46). Excellent photoluminescence quantum yields (PLQYs) ranging from 87 %-91 % were found. The emission lifetimes vary from 33 μs to 43 μs. Calculations on the B3LYP/6-311++G** level of theory reveal, that the nature of the emissive state is dependent on the positional regioisomerism of the SFX motif. The 2-SFX complexes demonstrate ligand-centered (3LC) emission, while the 2'-SFX regioisomer with the mesacac ligand shows a strong 3MLCT character.
Collapse
Affiliation(s)
- Tim Riesebeck
- Physikalische Organische Chemie, Technische Universität Dresden, Bergstraße 66, 01069, Dresden, Germany
| | - Thomas Strassner
- Physikalische Organische Chemie, Technische Universität Dresden, Bergstraße 66, 01069, Dresden, Germany
| |
Collapse
|
20
|
Miao Q, Wang Z. Tunable Ultralong Room Temperature Phosphorescence Based on Zn(II)-Niacin Metal-Organic Complex: Accessible and Low-Cost. Inorg Chem 2024; 63:6683-6691. [PMID: 38554088 DOI: 10.1021/acs.inorgchem.3c04618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2024]
Abstract
Long persistent luminescence (LPL) materials open up a new avenue for information security, anticounterfeiting technology, and bioimaging thanks to their unique luminescence characteristics like ultralong exciton migration distances and multiple-colored light emission. As materials that have value for commercial applications, they attract much attention. In this paper, inexpensive, accessible, and eco-friendly niacin is used as a ligand to combine with the universally used metal ion Zn(II) to form a crystallized metal-organic complex dubbed Zn-NA. The named material possesses an ultralong room-temperature phosphorescence (RTP) with a lifetime of up to 265 ms under the atmosphere and up to 446 ms at 77 K. Notably, it exhibits a bright and multimode (excitation- and temperature-dependent) color-tunable LPL that changes from blue to cyan and then to yellow-green upon removal of the irradiation sources. Depending on its photoluminescence and theoretical calculations, the observed long-lived RTP of Zn-NA can be attributed to the coexistence of a single-molecule state induced by the heavy atom effect and an aggregated state within a dense crystalline structure.
Collapse
Affiliation(s)
- Qing Miao
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zheng Wang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
21
|
Yuan L, Yao H, Shen Y, Zhang Y. A cyclometalated Pt(II)-Pt(II) clamshell dimer with a triplet emission at 887 nm. Dalton Trans 2024; 53:5125-5132. [PMID: 38379520 DOI: 10.1039/d3dt04335e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Here, a cyclometalated Pt(II) clamshell dimer (complex 2) has been synthesized with the primary ligand of dibenzo(f,h)quinoxaline and an ancillary ligand of N,N'-diphenylformamidine. In addition, a mononuclear Pt(II) complex 1a and a binuclear Pt(II) complex 1b were also prepared. Complex 1a was coordinated by one cyclometalated ligand of dibenzo(f,h)quinoxaline, one chloride ion, and one N,N'-diphenylformamidine. Complex 1b was coordinated by one cyclometalated ligand of dibenzo(f,h)quinoxaline, two chloride ions, and two N,N'-diphenylformamidines. All of these three complexes were characterized by nuclear magnetic resonance (NMR) spectroscopy, high-resolution mass spectrometry (HRMS), elemental analyses, and single-crystal X-ray diffraction (XRD). The Pt-Pt distance in complex 2 was 2.8439(2) Å. It also exhibited a near-infrared (near-IR) emission at 887 nm in the pure solid state. On the other hand, complexes 1a and 1b exhibited triplet emission at 589 and 660 nm, respectively, in the pure solid state. Furthermore, in 2 wt% poly(Me methacrylate) (PMMA) films, complex 1a showed a triplet emission at 548 nm (with Φ = 84% and τ = 5.53 μs) and complex 1b showed an emission at 627 nm (with Φ = 79% and τ = 4.07 μs). Due to its great photophysical properties, complex 1b was deposited onto quartz plates for the detection of organic solvent vapors and it showed unique emission quenching for the vapor of tetrahydrofuran.
Collapse
Affiliation(s)
- Lequn Yuan
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, Guangxi, China.
| | - Haibo Yao
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, Guangxi, China.
- Engineering Research Center for Industrial Wastewater Treatment and Reuse of Shandong Province, School of Chemical Engineering and Safety, Binzhou University, Binzhou 256603, Shandong, China
| | - Yunjun Shen
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, Guangxi, China.
| | - Yuzhen Zhang
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, Guangxi, China.
| |
Collapse
|
22
|
Mendizabal F, Ceron ML, Lara D, Miranda-Rojas S. Closed-shell d 10-d 10 mechanochromic [AuPh(CNPh)] n complex: quantum chemistry electronic and optical properties. RSC Adv 2024; 14:5638-5647. [PMID: 38352689 PMCID: PMC10863605 DOI: 10.1039/d3ra08935e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024] Open
Abstract
The electronic structure, spectroscopic properties, and solid state chemistry of monomer and dimers of [AuPh(CNPh)] complex were studied at post-Hartree-Fock (MP2, SCS-MP2, and CC2) and density functional theory levels. The absorption spectra of these complexes were calculated using single excitation time-dependent (TD) methods at DFT, CC2, and SCS-CC2 levels. The influences of the bulk are accounted for at the PBE-D3 level, incorporating dispersion effects. The calculated values agree with the experimental range, where absorption and emission energies reproduce experimental trends with large Stokes shifts. The aurophilic interaction is identified as a key factor influencing the spectroscopic and structural properties of these complexes. The intermetallic interactions were found as the main factor responsible for MMCT electronic transitions in the models studied.
Collapse
Affiliation(s)
- Fernando Mendizabal
- Departamento de Química, Facultad de Ciencias, Universidad de Chile Casilla 653 Santiago Chile
| | - María Luisa Ceron
- Facultad de Ingeniería, Universidad Finis Terrae Av. Pedro de Valdivia 1509, Providencia Santiago Chile
| | - Dina Lara
- Departamento de Química, Facultad de Ciencias, Universidad de Chile Casilla 653 Santiago Chile
| | - Sebastián Miranda-Rojas
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andrés Bello Avenida República 275 Santiago Chile
- Universidad Andrés Bello, Centro de Química Teórica & Computacional (CQT&C), Facultad de Ciencias Exactas, Departamento de Ciencias Químicas Avenida República 275 8370146 Santiago de Chile Chile
| |
Collapse
|
23
|
Chan AKH, Chau MH, Ren Y, Jiang JJ, Wong MK, Leung FKC. Controlled Supramolecular Assemblies of Chiral Cyclometalated Gold (III) Amphiphiles in Aqueous Media. Chempluschem 2024; 89:e202300316. [PMID: 37493184 DOI: 10.1002/cplu.202300316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 07/27/2023]
Abstract
Gold (III) cyclometalated based amphiphiles in aqueous media have been revealed with excellent supramolecular transformations to external stimuli to open new pathways for soft functional material fabrications. Herein, we report a new chiral cyclometalated gold (III) amphiphile (GA) assembling into lamellar nanostructures in aqueous media confirmed with transmission electron microscopy (TEM). Counterion exchange with D-, L-, or racemic-camphorsulfonates features the significant supramolecular helicity enhancements, enabling transformations of GA from lamellar structure to vesicles and to nanotubes with multi-equivalents of counterion. The limited cytotoxicity of GA in aqueous media exhibits good biocompatibility.
Collapse
Affiliation(s)
- Aries Kwok-Heung Chan
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
- Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, China
| | - Ming-Hin Chau
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yikun Ren
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jia-Jun Jiang
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Man-Kin Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
- Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, China
| | - Franco King-Chi Leung
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
24
|
Chen W, Wang D, Wang W, Kang Y, Liu X, Fang S, Li L, Luo Y, Liang K, Liu Y, Luo D, Memon MH, Yu H, Gu W, Liu Z, Hu W, Sun H. Manipulating Surface Band Bending of III-Nitride Nanowires with Ambipolar Charge-Transfer Characteristics: A Pathway Toward Advanced Photoswitching Logic Gates and Encrypted Optical Communication. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307779. [PMID: 38009587 DOI: 10.1002/adma.202307779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/15/2023] [Indexed: 11/29/2023]
Abstract
The operational principle of semiconductor devices critically relies on the band structures that ultimately govern their charge-transfer characteristics. Indeed, the precise orchestration of band structure within semiconductor devices, notably at the semiconductor surface and corresponding interface, continues to pose a perennial conundrum. Herein, for the first time, this work reports a novel postepitaxy method: thickness-tunable carbon layer decoration to continuously manipulate the surface band bending of III-nitride semiconductors. Specifically, the surface band bending of p-type aluminum-gallium-nitride (p-AlGaN) nanowires grown on n-Si can be precisely controlled by depositing different carbon layers as guided by theoretical calculations, which eventually regulate the ambipolar charge-transfer behavior between the p-AlGaN/electrolyte and p-AlGaN/n-Si interface in an electrolyte environment. Enabled by the accurate modulation of the thickness of carbon layers, a spectrally distinctive bipolar photoresponse with a controllable polarity-switching-point over a wide spectrum range can be achieved, further demonstrating reprogrammable photoswitching logic gates "XOR", "NAND", "OR", and "NOT" in a single device. Finally, this work constructs a secured image transmission system where the optical signals are encrypted through the "XOR" logic operations. The proposed continuous surface band tuning strategy provides an effective avenue for the development of multifunctional integrated-photonics systems implemented with nanophotonics.
Collapse
Affiliation(s)
- Wei Chen
- School of Microelectronics, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Danhao Wang
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Weiyi Wang
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, 230027, P. R. China
| | - Yang Kang
- School of Microelectronics, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Xin Liu
- School of Microelectronics, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Shi Fang
- School of Microelectronics, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Liuan Li
- School of Microelectronics, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Yuanmin Luo
- School of Microelectronics, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Kun Liang
- School of Microelectronics, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Yuying Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230027, P. R. China
| | - Dongyang Luo
- School of Microelectronics, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Muhammad Hunain Memon
- School of Microelectronics, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Huabin Yu
- School of Microelectronics, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Wengang Gu
- School of Microelectronics, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Zhenghui Liu
- Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences Chinese Academy of Sciences (CAS), Suzhou, 215123, P. R. China
| | - Wei Hu
- Hefei National Laboratory for Physical Science at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, 230027, P. R. China
| | - Haiding Sun
- School of Microelectronics, University of Science and Technology of China, Hefei, 230029, P. R. China
- Key Laboratory of Wireless-Optical Communications, Chinese Academy of Sciences, University of Science and Technology of China, Hefei, 230029, P. R. China
| |
Collapse
|
25
|
Liu XY, Chen WK, Fang WH, Cui G. Nonadiabatic Dynamics Simulations for Photoinduced Processes in Molecules and Semiconductors: Methodologies and Applications. J Chem Theory Comput 2023. [PMID: 37984502 DOI: 10.1021/acs.jctc.3c00960] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Nonadiabatic dynamics (NAMD) simulations have become powerful tools for elucidating complicated photoinduced processes in various systems from molecules to semiconductor materials. In this review, we present an overview of our recent research on photophysics of molecular systems and periodic semiconductor materials with the aid of ab initio NAMD simulation methods implemented in the generalized trajectory surface-hopping (GTSH) package. Both theoretical backgrounds and applications of the developed NAMD methods are presented in detail. For molecular systems, the linear-response time-dependent density functional theory (LR-TDDFT) method is primarily used to model electronic structures in NAMD simulations owing to its balanced efficiency and accuracy. Moreover, the efficient algorithms for calculating nonadiabatic coupling terms (NACTs) and spin-orbit couplings (SOCs) have been coded into the package to increase the simulation efficiency. In combination with various analysis techniques, we can explore the mechanistic details of the photoinduced dynamics of a range of molecular systems, including charge separation and energy transfer processes in organic donor-acceptor structures, ultrafast intersystem crossing (ISC) processes in transition metal complexes (TMCs), and exciton dynamics in molecular aggregates. For semiconductor materials, we developed the NAMD methods for simulating the photoinduced carrier dynamics within the framework of the Kohn-Sham density functional theory (KS-DFT), in which SOC effects are explicitly accounted for using the two-component, noncollinear DFT method. Using this method, we have investigated the photoinduced carrier dynamics at the interface of a variety of van der Waals (vdW) heterojunctions, such as two-dimensional transition metal dichalcogenides (TMDs), carbon nanotubes (CNTs), and perovskites-related systems. Recently, we extended the LR-TDDFT-based NAMD method for semiconductor materials, allowing us to study the excitonic effects in the photoinduced energy transfer process. These results demonstrate that the NAMD simulations are powerful tools for exploring the photodynamics of molecular systems and semiconductor materials. In future studies, the NAMD simulation methods can be employed to elucidate experimental phenomena and reveal microscopic details as well as rationally design novel photofunctional materials with desired properties.
Collapse
Affiliation(s)
- Xiang-Yang Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu 610068, P. R. China
| | - Wen-Kai Chen
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Hefei National Laboratory, Hefei 230088, P. R. China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
- Hefei National Laboratory, Hefei 230088, P. R. China
| |
Collapse
|
26
|
Jin JL, Zhang SF, Zhao P, Shen YL, Fang JJ, Liu Z, Ehara M, Mi LW, Xie YP, Lu X. Ag 6 Cu 8 (C=CAr) 14 (DPPB) 2 : A Rigid Ligand Co-Protected Bimetallic Silver(I)-Copper(I) Cluster with Room-Temperature Luminescence. Chem Asian J 2023; 18:e202300844. [PMID: 37753735 DOI: 10.1002/asia.202300844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 09/28/2023]
Abstract
Metal clusters have become increasingly important in various applications, with ligands playing a crucial role in their construction. In this study, we synthesized a bimetallic cluster, Ag6 Cu8 (C=CAr)14 (DPPB)2 (Ag6 Cu8 ), using a rigid acetylene ligand, 3,5-bis(trifluoromethyl)phenylacetylide. Through single-crystal structure characterization, we discovered that the butterfly-shaped Ag2 Cu2 motifs were subject to distortion due to steric hindrance imposed by the rigid ligand. These motifs assembled together through shared vertices and edges. Mass spectrometry analysis revealed that the primary fragments detected during electrospray ionization (ESI) testing corresponded to the Ag2 Cu2 motifs. Furthermore, we conducted a comprehensive investigation of the cluster's solution properties employing 31 P NMR, UV-vis absorption, and photoluminescent measurements. In contrast to previously reported Ag/Cu bimetallic clusters protected by flexible ligands, Ag6 Cu8 protected by rigid ligands exhibited intriguing room temperature fluorescence properties alongside excellent thermal stability. DFT calculations on Ag6 Cu8 and Ag6 Cu8 with the rigid aromatic ring removed revealed that the presence of the rigid aromatic ring can lower the electronic energy levels of the cluster, and reduce the energy gap from 4.05 eV to 3.45 eV. Moreover, the rigid ligand further suppressed the non-radiative transition process, leading to room temperature fluorescence emission.
Collapse
Affiliation(s)
- Jun-Ling Jin
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou4, 50007, China
| | - Sheng-Fa Zhang
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou4, 50007, China
| | - Pei Zhao
- Center for Computational Science, Institute for Molecular Science, Okazaki, 444-8585, Japan
| | - Yang-Lin Shen
- School of Materials and Chemical Engineering, Henan International Joint Laboratory of Rare Earth Composite Materials, Henan University of Engineering, Zhengzhou, 451191, China
| | - Jun-Jie Fang
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zheng Liu
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Masahiro Ehara
- Center for Computational Science, Institute for Molecular Science, Okazaki, 444-8585, Japan
| | - Li-Wei Mi
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou4, 50007, China
| | - Yun-Peng Xie
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xing Lu
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
27
|
Bai J, Wang J, Zheng H, Zhao X, Wu P, Pei L, Wang J. Modulating Photoinduced Electron Transfer between Photosensitive MOF and Co(II) Proton Reduction Sites for Boosting Photocatalytic Hydrogen Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2305024. [PMID: 37533371 DOI: 10.1002/smll.202305024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/27/2023] [Indexed: 08/04/2023]
Abstract
Photocatalytic hydrogen production via water splitting is the subject of intense research. Photoinduced electron transfer (PET) between a photosensitizer (PS) and a proton reduction catalyst is a prerequisite step and crucial to affecting hydrogen production efficiency. Herein, three photoactive metal-organic framework (MOF) systems having two different PET processes where PS and Co(II) centers are either covalently bonded or coexisting to drive photocatalytic H2 production are built. Compared to these two intramolecular PET systems including CoII -Zn-PDTP prepared from the post-synthetic metalation toward uncoordinated pyridine N sites of Zn-PDTP and sole cobalt-based MOF Co-PDTP, the CoII (bpy)3 @Zn-PDTP system impregnated by molecular cocatalyst possessing intermolecular PET process achieves the highest H2 evolution rate of 116.8 mmol g-1 h-1 over a period of 10 h, about 7.5 and 9.3 times compared to CoII -Zn-PDTP and Co-PDTP in visible-light-driven H2 evolution, respectively. Further studies reveal that the enhanced photoactivity in CoII (bpy)3 @Zn-PDTP can be ascribed to the high charge-separation efficiency of Zn-PDTP and the synergistic intermolecular interaction between Zn-PDTP and cobalt complexes. The present work demonstrates that the rational design of PET process between MOFs and catalytic metal sites can be a viable strategy for the development of highly efficient photocatalysts with enhanced photocatalytic activities.
Collapse
Affiliation(s)
- Jianguo Bai
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, P. R. China
| | - Jun Wang
- School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou, Zhejiang, 310023, P. R. China
| | - Hao Zheng
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, P. R. China
| | - Xiaoli Zhao
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, P. R. China
| | - Pengyan Wu
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, P. R. China
| | - Li Pei
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, P. R. China
| | - Jian Wang
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, P. R. China
| |
Collapse
|
28
|
Han H, Sun Z, Zhao X, Yang S, Wang G. Viologen Guest-Mediated Luminescence Emission Tuning and Photochromic Behavior by a Series of Viologen@Zn-MOF Materials. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37883789 DOI: 10.1021/acsami.3c12012] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The encapsulation of various guest molecules into the pores of metal-organic frameworks (MOFs) to form hybrid materials has attracted significant attention due to their unique spatial distribution and certain preferential geometry of the guests inside the MOFs. This arrangement often results in the guests exhibiting unique physical and chemical properties due to their intramolecular interactions with the host. In this article, five viologen derivatives were introduced as guests in a Zn-MOF with different benzene ring lengths, resulting in the formation of host-guest three-dimensional (3D) MOFs. The five compounds exhibited guest-dependent emission wavelength, color, and excellent photochromic behavior upon ultraviolet (UV) light radiation due to the distinct electronic transfer and π···π stacking interactions between the viologen guests and the host framework. This study provides a host-guest strategy for designing color-tunable luminescent and highly sensitive photochromic materials.
Collapse
Affiliation(s)
- Haitao Han
- College of Medical Engineering & the Key Laboratory for Medical Functional Nanomaterials, Jining Medical University, Jining 272067, China
| | - Zheng Sun
- College of Medical Engineering & the Key Laboratory for Medical Functional Nanomaterials, Jining Medical University, Jining 272067, China
| | - Xia Zhao
- College of Medical Engineering & the Key Laboratory for Medical Functional Nanomaterials, Jining Medical University, Jining 272067, China
| | - Shujuan Yang
- College of Medical Engineering & the Key Laboratory for Medical Functional Nanomaterials, Jining Medical University, Jining 272067, China
| | - Guannan Wang
- School of Pharmacy, Shenyang Medical University, Shenyang 110034, China
| |
Collapse
|
29
|
Song C, An L, Wang Q, Zhang H, Li G. Unraveling the Marked Differences of the Excited-State Properties of Arylgold(III) Complexes with C ∧N ∧C Tridentate Ligands. Inorg Chem 2023; 62:15382-15391. [PMID: 37700580 DOI: 10.1021/acs.inorgchem.3c01071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Three structurally similar gold(III) complexes with C∧N∧C tridentate ligands, [1; C∧N∧C = 2,6-diphenylpyridine], [2; C∧N∧C = 2,6-diphenylpyrazine], and [3; C∧N∧C = 2,6-diphenyltriazine], have been investigated theoretically to rationalize the marked difference in emission behaviors. The geometrical and electronic structures, spectra properties, radiative and nonradiative decay processes, as well as reverse intersystem crossing and reverse internal conversion (RIC) processes were thoroughly analyzed using density functional theory (DFT) and time-dependent DFT calculations. The computed results indicate that there is a small energy difference Δ E T 1 - T 1 ' between the lowest-energy triplet state (T1) and the second lowest-energy triplet state (T1') of complexes 2 and 3, suggesting that the excitons in the T1 state can reach the emissive higher-energy T1' through the RIC process. In addition, the non-emissive T1 states of gold(III) complexes in solution can be ascribed to the easily accessible metal-centered (3MC) state or possibly tunneling into high-energy vibrationally excited singlet states for nonradiative decay. The low efficiency of 3 is attributed to the deactivation pathway via the 3MC state. The present study elucidates the relationship between structure and property of gold(III) complexes featuring C∧N∧C ligands and providing a comprehensive understanding of the significant differences in their luminescence behaviors.
Collapse
Affiliation(s)
- Chongping Song
- School of Physics and Electronics, Henan University, Kaifeng 475004, P. R. China
| | - Lin An
- School of Physics and Electronics, Henan University, Kaifeng 475004, P. R. China
| | - Qinggao Wang
- School of Physics and Electronics, Henan University, Kaifeng 475004, P. R. China
| | - Houyu Zhang
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Guoqiang Li
- School of Physics and Electronics, Henan University, Kaifeng 475004, P. R. China
| |
Collapse
|
30
|
Lara D, Santibañez D, Miranda-Rojas S, Mendizabal F. Is there a Covalent Au(I)-Au(I) Bond in the trans-(AuX) 2 (X = F, Cl, Br, I) Structure? A Post-Hartree-Fock and Density Functional Theory Study. Inorg Chem 2023; 62:15421-15431. [PMID: 37690083 DOI: 10.1021/acs.inorgchem.3c01547] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
We present an exhaustive exploration of the driving forces dominating the interaction between gold atoms in the trans-(AuX)2, where X is a halogen ligand. This work provides insights into the nature of the gold-gold contact in the trans-(AuX)2. The geometries and energies were calculated at the MP2, CCSD(T), and DFT-D3(BJ) (B3LYP, PBE, and TPSS) levels of theory. The results show a short Au-Au distance, typical of a covalent bond, but with a weak interaction energy associated with noncovalent interactions. It is established that the physical contributions from polarization and the electronic correlation forces are the most relevant at the post-Hartree-Fock level of theory. Also, the electrostatic term is attractive but with low contribution. Finally, the Wiberg indices and NBO analysis exposed a small covalent character between the gold atoms, revealing that this contribution is insufficient to explain the stability of the dimers. It is concluded that a sum of contributions makes it possible to establish an attraction between the gold atoms in the dimers studied beyond a classical aurophilic interaction.
Collapse
Affiliation(s)
- Dina Lara
- Departamento de Químicas, Facultad de Ciencias, Universidad de Chile, Casilla, 653 Santiago, Chile
| | - Daniel Santibañez
- Departamento de Químicas, Facultad de Ciencias, Universidad de Chile, Casilla, 653 Santiago, Chile
| | - Sebastián Miranda-Rojas
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andrés Bello, Avenida República 275, 8370146 Santiago, Chile
- Centro de Química Teórica & Computacional (CQT&C), Facultad de Ciencias Exactas, Departamento de Ciencias Químicas, Universidad Andrés Bellos, Avenida República 275, 8370146 Santiago de Chile, Chile
| | - Fernando Mendizabal
- Departamento de Químicas, Facultad de Ciencias, Universidad de Chile, Casilla, 653 Santiago, Chile
| |
Collapse
|
31
|
Corrêa RLGQ, de Moraes MMF, de Oliveira KT, Aoto YA, Coutinho-Neto MD, Homem-de-Mello P. Diving into the optoelectronic properties of Cu(II) and Zn(II) curcumin complexes: a DFT and wavefunction benchmark. J Mol Model 2023; 29:166. [PMID: 37118617 DOI: 10.1007/s00894-023-05560-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/14/2023] [Indexed: 04/30/2023]
Abstract
CONTEXT Curcumin is a popular food additive around the world whose medicinal properties have been known since ancient times. The literature has recently highlighted several biological properties, but besides the health-related usages, its natural yellowish color may also be helpful for light-harvesting applications. This research aims to close a knowledge gap regarding the photophysical description of curcumin and its metallic complexes. METHODS We conducted benchmark experiments comparing NEVPT calculations with several DFT functionals (B3LYP, M06-L, M06-2X, CAM-B3LYP, and ωB97X-D) for describing the UV spectra of curcumin and its metallo-derivative, curcumin-copper(II). Once we determined the most suitable functional, we performed tests with different basis sets and conditions, such as solvation and redox state, to identify their impact on excited state properties. These results are also reported for the curcumin-zinc(II) derivative. We found that the accuracy of DFT functionals depends strongly on the nature of curcumin's excitations. Intra-ligand transitions dominate the absorption spectra of the complexes. Curcumin absorption is marginally affected by solvation and chelation, but when combined with redox processes, they may result in significant modifications. This is because copper cation changes its coordination geometry in response to redox conditions, changing the spectrum. We found that, compared to a NEVPT reference, B3LYP is the best functional for a general description of the compounds, despite not being appropriate for charge transfer transitions. M06-L was the best for LMCT transitions. However, compared with NEVPT2 and PNO-LCCSD(T)-F12 results, no functional achieved acceptable accuracy for MLCT transitions.
Collapse
Affiliation(s)
| | | | | | - Yuri Alexandre Aoto
- Center for Mathematics, Computation and Cognition (CMCC), Federal University of ABC (UFABC), Santo André, 09210-580, Brazil
| | | | - Paula Homem-de-Mello
- Center for Natural and Human Sciences (CCNH), Federal University of ABC (UFABC), Santo André, 09210-580, Brazil.
| |
Collapse
|
32
|
Petrovskii S, Paderina A, Sizova A, Grachova E. Homoleptic Alkynylphosphonium Au(I) Complexes as Push-Pull Phosphorescent Emitters. Inorg Chem 2023; 62:5123-5133. [PMID: 36939095 DOI: 10.1021/acs.inorgchem.2c04360] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
A series of compounds P1-P4 bearing terminal alkynyl sites connected with a phosphonium group via different π-conjugated linkers have been synthesized. The compounds themselves are efficient push-pull emitters and exhibit bright fluorescence in blue and near-UV regions. P1-P4 were used as alkynyl ligands to obtain a series of homoleptic bis-alkynyl Au(I) complexes 1-4. The complexes demonstrate bright phosphorescence and dual emission with dominating phosphorescence (2-4). Terphenyl derivative complex 3 exhibits warm white emission in DMSO solution and pure white emission in PMMA films. Time-dependent density functional theory calculations have shown that the T1 excited state has a hybrid MLCT/ILCT nature with a dominant contribution of charge transfer across a ligand-centered "D-π-A" system. The variation of linker allows tuning the effect of intermolecular charge transfer and thus changing the electronic and photophysical properties of the organogold "D-π-A" system. The results presented unambiguously display the advances of the conception of organometallic "D-π-A" construction.
Collapse
Affiliation(s)
- Stanislav Petrovskii
- Institute of Chemistry, St Petersburg University, Universitetskii pr. 26, 198504 St. Petersburg, Russia
| | - Aleksandra Paderina
- Institute of Chemistry, St Petersburg University, Universitetskii pr. 26, 198504 St. Petersburg, Russia
| | - Anastasia Sizova
- Institute of Chemistry, St Petersburg University, Universitetskii pr. 26, 198504 St. Petersburg, Russia
| | - Elena Grachova
- Institute of Chemistry, St Petersburg University, Universitetskii pr. 26, 198504 St. Petersburg, Russia
| |
Collapse
|
33
|
Photoluminescent nickel(II) carbene complexes with ligand-to-ligand charge-transfer excited states. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
34
|
Liu L, Geng B, Ji W, Wu L, Lei S, Hu W. A Highly Crystalline Single Layer 2D Polymer for Low Variability and Excellent Scalability Molecular Memristors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208377. [PMID: 36398525 DOI: 10.1002/adma.202208377] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Large-scale growth of highly crystalline single layer 2D polymers (SL-2DPs) and their subsequent integration into memristors is key to advancing the development of high-density data storage devices. However, leakage problems resulting from the porous structure of 2DPs continue to make such advances extremely challenging. Herein, we overcome this issue by incorporating long alkoxy chains into key molecular building blocks to obtain a highly crystalline 2DP, as visualized by scanning tunneling microscopy, and prevent metal permeation in the subsequent device fabrication process. SL-2DP memristors constructed via direct evaporation of the top electrodes exhibit low variability (σVset = 0.14) due to the single-monomer-thick feature together with the high regular structure and coordination ability which minimizes the stochastic spatial distribution of conductive filaments (CFs) in both vertical and lateral dimensions. The variability is further decreased to 0.04 by confining the formation and fracture of CFs to the interface through the utilization of bilayer junctions. Using peak force tunneling atomic force microscopy, the nanometer scalability (< 50 nm2 ) and low power consumption of these molecular memristor devices are demonstrated.
Collapse
Affiliation(s)
- Lei Liu
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Bowen Geng
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Wenyan Ji
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Lingli Wu
- Medical College, Northwest Minzu University, Lanzhou, 730000, China
| | - Shengbin Lei
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science & Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072, P. R. China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| |
Collapse
|
35
|
Amouri H. Luminescent Complexes of Platinum, Iridium, and Coinage Metals Containing N-Heterocyclic Carbene Ligands: Design, Structural Diversity, and Photophysical Properties. Chem Rev 2023; 123:230-270. [PMID: 36315851 DOI: 10.1021/acs.chemrev.2c00206] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The employment of N-heterocyclic carbenes (NHCs) to design luminescent metal compounds has been the focus of recent intense investigations because of the strong σ-donor properties, which bring stability to the whole system and tend to push the d-d dark states so high in energy that they are rendered thermally inaccessible, thereby generating highly emissive complexes for useful applications such as organic light-emitting diodes (OLEDs), or featuring chiroptical properties, a field that is still in its infancy. Among the NHC complexes, those containing organic chromophores such as naphthalimide, pyrene, and carbazole exhibit rich emission behavior and thus have attracted extensive interest in the past five years, especially carbene coinage metal complexes with carbazolate ligands. In this review, the design strategies of NHC-based luminescent platinum and iridium complexes with large spin-orbit-coupling (SOC) are described first. Subsequent paragraphs illustrate the recent advances of luminescent coinage metal complexes with nucleophilic- and electrophilic-based carbenes based on silver, gold, and copper metal complexes that have the ability to display rich excited state emissions in particular via thermally activated delayed fluorescence (TADF). The luminescence mechanism and excited state dynamics are also described. We then summarize the advance of NHC-metal complexes in the aforementioned fields in recent years. Finally, we propose the development trend of this fast-growing field of luminescent NHC-metal complexes.
Collapse
Affiliation(s)
- Hani Amouri
- CNRS, IPCM (UMR 8232), Sorbonne Université-Faculté des Sciences et Ingénerie Campus Pierre et Marie Curie, 4 Place Jussieu, 75252 Paris, Cedex 05, France
| |
Collapse
|
36
|
Liang R, Liu N, Li F. Recent Advances of Anticancer Studies Based on Nano-Fluorescent Metal-Organic Frameworks. ChemMedChem 2022; 17:e202200480. [PMID: 36220780 DOI: 10.1002/cmdc.202200480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/11/2022] [Indexed: 01/14/2023]
Abstract
Nano-fluorescent metal-organic frameworks (NF-MOFs), a kind of newly emerged nano-scaled platform, can provide visual, rapid, and highly sensitive optical imaging of cancer lesions both in vitro and in vivo. Meanwhile, the excellent porosity, structural tunability, and chemical modifiability also enable NF-MOFs to achieve simultaneous loading of targeted molecules and therapeutic agents. These NF-MOFs not only possess excellent targeted imaging ability, but also can guide the carried cargos to perform precise therapy, drawing considerable attention in current framework of anticancer drug design. In this review, we outline the fluorescence types and response mechanisms of NF-MOFs, and highlight their applications in cancer diagnosis and therapy in recent years. Based on this panorama, we also discuss current issues and future trends of NF-MOFs in biomedical fields, attempting to clarify the potential value of fluorescence imaging guided anticancer investigations.
Collapse
Affiliation(s)
- Ranxi Liang
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, P. R. China
| | - Ning Liu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, P. R. China
| | - Feize Li
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education Institute of Nuclear Science and Technology, Sichuan University, Chengdu, 610064, P. R. China
| |
Collapse
|
37
|
Chan MHY, Yam VWW. Toward the Design and Construction of Supramolecular Functional Molecular Materials Based on Metal–Metal Interactions. J Am Chem Soc 2022; 144:22805-22825. [DOI: 10.1021/jacs.2c08551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Michael Ho-Yeung Chan
- Institute of Molecular Functional Materials, State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China
| | - Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials, State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, People’s Republic of China
| |
Collapse
|
38
|
Li B, Wang Y, Chan MH, Pan M, Li Y, Yam VW. Supramolecular Assembly of Organoplatinum(II) Complexes for Subcellular Distribution and Cell Viability Monitoring with Differentiated Imaging. Angew Chem Int Ed Engl 2022; 61:e202210703. [DOI: 10.1002/anie.202210703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Baoning Li
- Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
- State Key Laboratory of Synthetic Chemistry Institute of Molecular Functional Materials and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong 999077 P. R. China
| | - Yaping Wang
- Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Michael Ho‐Yeung Chan
- State Key Laboratory of Synthetic Chemistry Institute of Molecular Functional Materials and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong 999077 P. R. China
| | - Mei Pan
- Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Yonguang Li
- Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Vivian Wing‐Wah Yam
- Lehn Institute of Functional Materials School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
- State Key Laboratory of Synthetic Chemistry Institute of Molecular Functional Materials and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong 999077 P. R. China
| |
Collapse
|
39
|
Riesebeck T, Bertrams MS, Stipurin S, Konowski K, Kerzig C, Strassner T. Cyclometalated Spirobifluorene Imidazolylidene Platinum(II) Complexes with Predominant 3LC Emissive Character and High Photoluminescence Quantum Yields. Inorg Chem 2022; 61:15499-15509. [PMID: 36125339 DOI: 10.1021/acs.inorgchem.2c02141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two novel bidentate C^C*spiro cyclometalated platinum(II) complexes comprising a spiro-conjugated bifluorene ligand and different β-diketonate auxiliary ligands are synthesized and characterized. Their preparation employs a robust and elaborate synthetic protocol commencing with an N-heterocyclic carbene precursor. Structural characterization by means of NMR techniques and solid-state structures validate the proposed and herein presented molecular scaffolds. Photophysical studies, including laser flash photolysis methods, reveal an almost exclusively ligand-centered triplet state, governed by the C^C*spiro-NHC ligand. The high triplet energies and the long triplet lifetimes in the order of 30 μs in solution make the complexes good candidates for light-emitting diode-driven photocatalysis, as initial energy transfer experiments reveal. In-depth time-dependent density functional theory investigations are in excellent accordance with our spectroscopic findings. The title compounds are highly emissive in the bluish-green color region with quantum yields of up to 87% in solid-state measurements.
Collapse
Affiliation(s)
- Tim Riesebeck
- Physikalische Organische Chemie, Technische Universität Dresden, 01069 Dresden, Germany
| | | | - Sergej Stipurin
- Physikalische Organische Chemie, Technische Universität Dresden, 01069 Dresden, Germany
| | - Kai Konowski
- Physikalische Organische Chemie, Technische Universität Dresden, 01069 Dresden, Germany
| | - Christoph Kerzig
- Department of Chemistry, Johannes Gutenberg University, 55128 Mainz, Germany
| | - Thomas Strassner
- Physikalische Organische Chemie, Technische Universität Dresden, 01069 Dresden, Germany
| |
Collapse
|
40
|
Matern J, Maisuls I, Strassert CA, Fernández G. Luminescence and Length Control in Nonchelated d 8 -Metallosupramolecular Polymers through Metal-Metal Interactions. Angew Chem Int Ed Engl 2022; 61:e202208436. [PMID: 35749048 PMCID: PMC9545304 DOI: 10.1002/anie.202208436] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Indexed: 11/15/2022]
Abstract
Supramolecular polymers (SPs) of d8 transition metal complexes have received considerable attention by virtue of their rich photophysical properties arising from metal-metal interactions. However, thus far, the molecular design is restricted to complexes with chelating ligands due to their advantageous preorganization and strong ligand fields. Herein, we demonstrate unique pathway-controllable metal-metal-interactions and remarkable 3 MMLCT luminescence in SPs of a non-chelated PtII complex. Under kinetic control, self-complementary bisamide H-bonding motifs induce a rapid self-assembly into non-emissive H-type aggregates (1A). However, under thermodynamic conditions, a more efficient ligand coplanarization leads to superiorly stabilized SP 1B with extended Pt⋅⋅⋅Pt interactions and remarkably long 3 MMLCT luminescence (τ77 K =0.26 ms). The metal-metal interactions could be subsequently exploited to control the length of the emissive SPs using the seeded-growth approach.
Collapse
Affiliation(s)
- Jonas Matern
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - Iván Maisuls
- CiMICSoNInstitut für Anorganische und Analytische ChemieWestfälische Wilhelms-Universität MünsterCorrensstraße 28/3048149MünsterGermany
- CeNTechWestfälische Wilhelms-Universität MünsterHeisenbergstraße 1148149MünsterGermany
| | - Cristian A. Strassert
- CiMICSoNInstitut für Anorganische und Analytische ChemieWestfälische Wilhelms-Universität MünsterCorrensstraße 28/3048149MünsterGermany
- CeNTechWestfälische Wilhelms-Universität MünsterHeisenbergstraße 1148149MünsterGermany
| | - Gustavo Fernández
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| |
Collapse
|
41
|
Liu XL, Zhang XY, Zhao HX, Long LS, Zheng LS. Thermally induced charge transfer in a quinoid-bridged linear Cu 3 compound. Dalton Trans 2022; 51:13826-13830. [PMID: 36039876 DOI: 10.1039/d2dt01980a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Charge transfer always occurs in molecular valence tautomers, leading to the redistribution of electron density and exhibiting electrical, optical, and magnetic properties, and can be further controlled by multiple external stimuli such as temperature, light and electric field. The design of molecule-based materials capable of charge transfer remains a challenge. Herein, a linear Cu3 compound [(CH3)3NCH2CH2Br]2[Cu3L4(H2O)2] (H2L = chloranilic acid) (1) with a multi-center donor-acceptor architecture was constructed using the redox-active chloranilic acid quinoid ligand. Temperature-dependent dielectric measurement was performed to capture the charge transfer valence tautomer transition because it is difficult to detect this transition by crystal structure and magnetism analysis. Temperature-dependent XPS and EPR further confirmed that the charge transfer valence tautomer transition is based on the CuII-L2- to CuI-L-˙ multi-center charge transfer. Thus, the present work builds a charge transfer compound with a multi-center donor-acceptor architecture and proves that dielectric measurement is a very effective means to detect charge transfer.
Collapse
Affiliation(s)
- Xiao-Lin Liu
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - Xiao-Yi Zhang
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - Hai-Xia Zhao
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - La-Sheng Long
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| | - Lan-Sun Zheng
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
| |
Collapse
|
42
|
Parker R, Stracey RF, McEllin AJ, Chen X, Wang Y, Williams JAG, Lynam JM, Bruce DW. Synthesis, Mesomorphism, Photophysics, and Device Properties of Liquid-Crystalline Pincer Complexes of Gold(III) Containing Semiperfluorinated Chains. ACS OMEGA 2022; 7:24903-24917. [PMID: 35874197 PMCID: PMC9301954 DOI: 10.1021/acsomega.2c03669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Gold(III) complexes of C∧N∧C-coordinating 2,6-diphenylpyridine pincer ligands with arylacetylide co-ligands are known triplet emitters at room temperature. We have reported previously that by functionalizing both the pincer ligand and the phenylacetylene with alkoxy chains, liquid crystallinity may be induced, with the complexes showing columnar mesophases. We now report new derivatives in which the phenylacetylene incorporates one, two, or three 1H,1H,2H,2H-perfluoroalkyl chains. In terms of intermolecular interactions, solution 1H NMR experiments suggest that the semiperfluoroalkyl chains promote a parallel, head-to-head arrangement of neighboring molecules relative to one another, rather than the anti-parallel, head-to-tail orientation found for the all-hydrocarbon materials. In terms of the liquid crystal properties, the complexes show columnar phases, with the addition of the more rigid fluorocarbon chains leading to a stabilization of both the crystal and liquid crystal mesophases. Mesophase temperature ranges were also wider. Interestingly, the amphiphilic nature of these complexes is evident through the observation of a frustrated columnar nematic phase between a Colr and a Colh phase, an observation recently reported in detail for one compound (Liq. Cryst., 2022, doi: 10.1080/02678292.2021.1991017). While calculation shows that, despite the "electronic insulation" provided by the dimethylene spacer group in the semiperfluoroalkyl chains, a small hypsochromic shift in one component of the absorption band is anticipated, experimentally this effect is not observed in the overall absorption envelope. Complexes with substituents in the 3,3',4,4'-positions of the phenyl rings of the pincer ligand once more show higher-luminescence quantum yields than the analogues with substituents in the 4,4'-positions only, associated with the lower-energy-emissive state in the former. However, in contrast to the observations with all-hydrocarbon analogues, the luminescence quantum yield of the complexes with 3,3',4,4'-substitution on the pincer increases as the number of semiperfluoroalkyl chains on the phenylacetylide increases, from 20% (one chain) to 34% (three chains). External quantum efficiencies in fabricated OLED devices are, however, low, attributed to the poor dispersion in the host materials on account of the fluorinated chains.
Collapse
Affiliation(s)
- Rachel
R. Parker
- Department
of Chemistry, University of York, Heslington, York YO10
5DD, U.K.
| | - Rachel F. Stracey
- Department
of Chemistry, University of York, Heslington, York YO10
5DD, U.K.
| | - Alice J. McEllin
- Department
of Chemistry, University of York, Heslington, York YO10
5DD, U.K.
| | - Xinrui Chen
- School
of Materials Science & Engineering, Changzhou University, Changzhou 213164, PR China
| | - Yafei Wang
- School
of Materials Science & Engineering, Changzhou University, Changzhou 213164, PR China
| | - J. A. Gareth Williams
- Department
of Chemistry, University Science Laboratories, Durham University, South Road, Durham DH1
3LE, U.K.
| | - Jason M. Lynam
- Department
of Chemistry, University of York, Heslington, York YO10
5DD, U.K.
| | - Duncan W. Bruce
- Department
of Chemistry, University of York, Heslington, York YO10
5DD, U.K.
| |
Collapse
|
43
|
Li G, Wen J, Zhan F, Lou W, Yang YF, Hu Y, She Y. Fused 6/5/6 Metallocycle-Based Tetradentate Pt(II) Emitters for Efficient Green Phosphorescent OLEDs. Inorg Chem 2022; 61:11218-11231. [PMID: 35834800 DOI: 10.1021/acs.inorgchem.2c01202] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pt(II) complexes are promising phosphorescent materials for organic light-emitting diode (OLED) applications in the fields of display, lighting, healthcare, aerospace, and so on. A series of novel biphenyl (bp)-based tetradentate 6/5/6 Pt(II) emitters using oxygen or carbon as a linking atom was designed and developed. The intermolecular interactions in crystal packing, electrochemical, and photophysical properties of the bp-based Pt(II) emitters and also their excited-state properties were systematically studied, which could be effectively regulated by ligand modification through linking group control; however, their emission spectra nearly showed no change. All the bp-based Pt(II) emitters exhibited vibronically featured emission spectra with dominant peaks at 502-505 nm and photoluminescent quantum yields of 24-34% in dichloromethane solution. Green OLED using Pt(bp-12) as an emitter achieved a maximum brightness (Lmax) of 16,644 cd/m2.
Collapse
Affiliation(s)
- Guijie Li
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Jianfeng Wen
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Feng Zhan
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Weiwei Lou
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Yun-Fang Yang
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Ying Hu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Yuanbin She
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| |
Collapse
|
44
|
Matern J, Maisuls I, Strassert CA, Fernandez G. Luminescence and Length Control in Nonchelated d8‐Metallosupramolecular Polymers through Metal‐Metal Interactions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jonas Matern
- WWU Münster: Westfalische Wilhelms-Universitat Munster Organisch-Chemisches Institut GERMANY
| | - Ivan Maisuls
- WWU Münster: Westfalische Wilhelms-Universitat Munster CeNTech GERMANY
| | | | - Gustavo Fernandez
- WWU Münster Organisch-Chemisches Institut Correnstraße, 4ß 48149 Münster GERMANY
| |
Collapse
|
45
|
Zhou Z, Maxeiner K, Moscariello P, Xiang S, Wu Y, Ren Y, Whitfield CJ, Xu L, Kaltbeitzel A, Han S, Mücke D, Qi H, Wagner M, Kaiser U, Landfester K, Lieberwirth I, Ng DYW, Weil T. In Situ Assembly of Platinum(II)-Metallopeptide Nanostructures Disrupts Energy Homeostasis and Cellular Metabolism. J Am Chem Soc 2022; 144:12219-12228. [PMID: 35729777 PMCID: PMC9284552 DOI: 10.1021/jacs.2c03215] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Nanostructure-based functions are omnipresent in nature and essential for the diversity of life. Unlike small molecules, which are often inhibitors of enzymes or biomimetics with established methods of elucidation, we show that functions of nanoscale structures in cells are complex and can implicate system-level effects such as the regulation of energy and redox homeostasis. Herein, we design a platinum(II)-containing tripeptide that assembles into intracellular fibrillar nanostructures upon molecular rearrangement in the presence of endogenous H2O2. The formed nanostructures blocked metabolic functions, including aerobic glycolysis and oxidative phosphorylation, thereby shutting down ATP production. As a consequence, ATP-dependent actin formation and glucose metabolite-dependent histone deacetylase activity are downregulated. We demonstrate that assembly-driven nanomaterials offer a rich avenue to achieve broad-spectrum bioactivities that could provide new opportunities in drug discovery.
Collapse
Affiliation(s)
- Zhixuan Zhou
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Konrad Maxeiner
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | | | - Siyuan Xiang
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Yingke Wu
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Yong Ren
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | | | - Lujuan Xu
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | | | - Shen Han
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - David Mücke
- Central Facility of Materials Science Electron Microscopy, Universität Ulm, 89081 Ulm, Germany
| | - Haoyuan Qi
- Central Facility of Materials Science Electron Microscopy, Universität Ulm, 89081 Ulm, Germany.,Faculty of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01062 Dresden, Germany
| | - Manfred Wagner
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Ute Kaiser
- Central Facility of Materials Science Electron Microscopy, Universität Ulm, 89081 Ulm, Germany
| | | | | | - David Y W Ng
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Tanja Weil
- Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| |
Collapse
|
46
|
Ibrahim MM, Mersal GAM, Abdou SN, Mohamed MA, Soliman MM, Al-Juaid SS, Abou Taleb MF, Amin MA. Synthesis, spectral, and X-ray structural characterization of mixed tren-barbitone nickel(II) complex grafted g-C 3N 4 for oxidative stress and antioxidant activities. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2089027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Mohamed M. Ibrahim
- Department of Chemistry, College of Science, Taif University, Taif, Saudi Arabia
| | - Gaber A. M. Mersal
- Department of Chemistry, College of Science, Taif University, Taif, Saudi Arabia
| | - Safaa N. Abdou
- Chemistry Department, Khourma University College, University of Taif, Taif, Saudi Arabia
| | - Mahmoud A. Mohamed
- Faculty of Agriculture, Department of Biochemistry, Cairo University, Cairo, Egypt
| | - Mohamed M. Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, Taif, Saudi Arabia
| | - Salih S. Al-Juaid
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Manal F. Abou Taleb
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-kharj, Saudi Arabia
- Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Egypt Nasr City, Cairo
| | - Mohammed A. Amin
- Department of Chemistry, College of Science, Taif University, Taif, Saudi Arabia
| |
Collapse
|
47
|
Jiao F, Wei M, Leng J, Song Z, Hu W, Zhang Y. Theoretical Investigation of Switch Effect on the Efficiency and Adaptivity of Molecular Optoelectronic Conversion Devices. Chem Asian J 2022; 17:e202200463. [PMID: 35723224 DOI: 10.1002/asia.202200463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/25/2022] [Indexed: 11/12/2022]
Abstract
Molecular photoswitch can effectively regulate charge separation (CS) and charge recombination (CR) in donor-acceptor (D-A) systems. However, deformation of the donor-switch-acceptor (D-S-A) systems caused by the switch isomerization will destroy the geometrical stability of the battery. Here we take the planar platinum(II) terpyridyl complex of [Pt(t Bu3 tpy)(-C≡C-Ph)n ]+ as the typical D-A model, designed six D-S-A systems using different photoswitches (dimethyldihydropyrene, fulgimide, arylazopyrazole, N-salicylideneaniline, spiropyran, and dithienylethene, denoted as D-S-A 1-6 hereafter). Our investigations show that the D-S-A 1-6 can absorb visible light of 799 nm, 673 nm, 527 nm, 568 nm, 616 nm, and 629 nm, facilitating electrons transfer from the donor and the switch to the acceptor through the Switch-on channel. Then cationic character of the photoswitch can undergo much more rapid isomerization than the neutral form due to the lower energy barrier. The Switch-off isomer breaks the conjugation of the D-S-A system, effectively turning off the CT channel and forming the CS state. Based on the evaluated conjugated backbone twist (CBT) angle, we found that D-S-A 1, 2, 4, 6 exhibit little configurational change and can be good candidates as the organic solar cell. The proposed D-S-A design controlled by the molecular switch may help to develop a solution for solar-harvesting practical applications.
Collapse
Affiliation(s)
- Fangfang Jiao
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Chemical Engineering, Qilu University of Technology-Shandong Academy of Sciences, Jinan, Shandong, 250353, P. R. China
| | - Mingzhi Wei
- School of Materials Science & Engineering, Qilu University of Technology-Shandong Academy of Sciences, Jinan, Shandong, 250353, P. R. China
| | - Jiancai Leng
- School of Electronic and Information Engineering (Department of Physics), Qilu University of Technology-Shandong Academy of Sciences, Jinan, Shandong, 250353, P. R. China
| | - Ziyue Song
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 E Mall, Vancouver, BC, Canada, V6T 1Z3
| | - Wei Hu
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Chemical Engineering, Qilu University of Technology-Shandong Academy of Sciences, Jinan, Shandong, 250353, P. R. China
| | - Yujin Zhang
- School of Electronic and Information Engineering (Department of Physics), Qilu University of Technology-Shandong Academy of Sciences, Jinan, Shandong, 250353, P. R. China
| |
Collapse
|
48
|
Yam VWW, Cheng YH. Stimuli-Responsive and Switchable Platinum(II) Complexes and Their Applications in Memory Storage. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Vivian Wing-Wah Yam
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Yat-Hin Cheng
- Institute of Molecular Functional Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| |
Collapse
|
49
|
Shin HJ, Jang YJ, Zenno H, Hayami S, Min KS. Formation of polynuclear iron(III) complexes of N-(2-pyridylmethyl)iminodipropanol depending on pseudohalide ions: synthesis, crystal structure, and magnetic properties. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
50
|
Sinha N, Pfund B, Wegeberg C, Prescimone A, Wenger OS. Cobalt(III) Carbene Complex with an Electronic Excited-State Structure Similar to Cyclometalated Iridium(III) Compounds. J Am Chem Soc 2022; 144:9859-9873. [PMID: 35623627 PMCID: PMC9490849 DOI: 10.1021/jacs.2c02592] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Many organometallic
iridium(III) complexes have photoactive excited
states with mixed metal-to-ligand and intraligand charge transfer
(MLCT/ILCT) character, which form the basis for numerous applications
in photophysics and photochemistry. Cobalt(III) complexes with analogous
MLCT excited-state properties seem to be unknown yet, despite the
fact that iridium(III) and cobalt(III) can adopt identical low-spin
d6 valence electron configurations due to their close chemical
relationship. Using a rigid tridentate chelate ligand (LCNC), in which a central amido π-donor is flanked by two σ-donating
N-heterocyclic carbene subunits, we obtained a robust homoleptic complex
[Co(LCNC)2](PF6), featuring a photoactive
excited state with substantial MLCT character. Compared to the vast
majority of isoelectronic iron(II) complexes, the MLCT state of [Co(LCNC)2](PF6) is long-lived because it
does not deactivate as efficiently into lower-lying metal-centered
excited states; furthermore, it engages directly in photoinduced electron
transfer reactions. The comparison with [Fe(LCNC)2](PF6), as well as structural, electrochemical, and UV–vis
transient absorption studies, provides insight into new ligand design
principles for first-row transition-metal complexes with photophysical
and photochemical properties reminiscent of those known from the platinum
group metals.
Collapse
Affiliation(s)
- Narayan Sinha
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Björn Pfund
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Christina Wegeberg
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Alessandro Prescimone
- Department of Chemistry, University of Basel, BPR 1096, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Oliver S Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|