1
|
Bao K, Berger J, Na E, Su Q, Halasz G, Sleeman M, Okamoto H. Hepatic PKA Mediates Liver and Pancreatic α-Cell Cross Talk. Diabetes 2025; 74:885-897. [PMID: 40095004 PMCID: PMC12097458 DOI: 10.2337/db24-0958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 03/12/2025] [Indexed: 03/19/2025]
Abstract
Glucagon stimulates hepatic glucose production, in part by promoting the uptake and catabolism of amino acids. Inhibition of the liver glucagon receptor (GCGR) results in elevated plasma amino acids, which triggers the proliferation of pancreatic α-cells, forming a liver-α-cell loop. This study aims to delineate hepatic signaling molecules downstream of GCGR that mediate the liver-α-cell loop. We knocked down liver GCGR, its G-coupled protein GNAS, and two GNAS downstream effectors, PKA and EPAC2 (RAPGEF4). Mice with GCGR, GNAS, and PKA knockdown had similar suppression of hepatic amino acid catabolism genes, hyperaminoacidemia, and α-cell hyperplasia, but those with EPAC2 knockdown did not. We then demonstrated that activating liver PKA was sufficient to reverse hyperaminoacidemia and α-cell hyperplasia caused by GCGR blockade. These results suggest that liver GCGR signals through PKA to control amino acid metabolism and that hepatic PKA plays a critical role in the liver-α-cell loop. ARTICLE HIGHLIGHTS A liver-α-cell loop exists, where inhibition of the liver glucagon receptor (GCGR) causes hyperaminoacidemia and pancreatic α-cell hyperplasia, but the GCGR downstream factors responsible for these effects are not clear. We silenced GCGR, its G-coupled protein GNAS, and two GNAS downstream effectors, PKA and EPAC2, to assess their effects on the liver-α-cell loop. Inhibition of the GCGR-GNAS-PKA pathway suppresses amino acid catabolism and causes α-cell hyperplasia, whereas PKA activation promotes amino acid catabolism and reduces alpha cell mass even when GCGR is blocked. Our study establishes hepatic PKA as the critical regulator of the liver-α-cell loop.
Collapse
Affiliation(s)
- Kehan Bao
- Regeneron Pharmaceuticals, Tarrytown, NY
| | | | - Erqian Na
- Regeneron Pharmaceuticals, Tarrytown, NY
| | - Qi Su
- Regeneron Pharmaceuticals, Tarrytown, NY
| | | | | | | |
Collapse
|
2
|
Samanta A, Bordbar DD, Weng CY, Chancellor JR. Glucagon-like Peptide-1 Receptor Agonists in the Management of Diabetic Retinopathy. Int Ophthalmol Clin 2025; 65:23-26. [PMID: 39710901 DOI: 10.1097/iio.0000000000000541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Glucagon-like peptide-1 (GLP-1) receptor agonists are a family of drugs, most well known by the third-generation once-weekly subcutaneous semaglutide, that act on the incretin pathway of metabolic, hormonal signaling to modulate pancreatic insulin release, gastric emptying, energy intake, and subjective feelings of satiety. This class of drugs' efficacy and safety in the treatment of type 2 diabetes and obesity have been demonstrated across multiple large randomized controlled trials. These data have propelled GLP-1 receptor agonists to ubiquity in diabetic management and weight loss therapy, leading them to be frequently encountered in ophthalmic practice. The effect of GLP-1 receptor agonists like semaglutide on diabetic retinopathy (DR) is at this point unclear; some studies indicate a worsening of DR with the initiation of GLP-1 agonists, especially semaglutide. Overall, the macrovascular reduction of cardiovascular and stroke risks from GLP-1 receptor agonists should be prioritized over the potential microvascular progression of DR, as long as the patient is regularly followed by ophthalmology.
Collapse
Affiliation(s)
- Anindya Samanta
- Cullen Eye Institute, Baylor College of Medicine, Houston, TX
| | | | | | | |
Collapse
|
3
|
Ansari S, Khoo B, Tan T. Targeting the incretin system in obesity and type 2 diabetes mellitus. Nat Rev Endocrinol 2024; 20:447-459. [PMID: 38632474 DOI: 10.1038/s41574-024-00979-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 04/19/2024]
Abstract
Obesity and type 2 diabetes mellitus (T2DM) are widespread, non-communicable diseases that are responsible for considerable levels of morbidity and mortality globally, primarily in the form of cardiovascular disease (CVD). Changes to lifestyle and behaviour have insufficient long-term efficacy in most patients with these diseases; metabolic surgery, although effective, is not practically deliverable on the scale that is required. Over the past two decades, therapies based on incretin hormones, spearheaded by glucagon-like peptide 1 (GLP1) receptor agonists (GLP1RAs), have become the treatment of choice for obesity and T2DM, and clinical evidence now suggests that these agents have benefits for CVD. We review the latest advances in incretin-based pharmacotherapy. These include 'GLP1 plus' agents, which combine the known advantages of GLP1RAs with the activity of additional hormones, such as glucose-dependent insulinotropic peptide, glucagon and amylin, to achieve desired therapeutic goals. Second-generation non-peptidic oral GLP1RAs promise to extend the benefits of GLP1 therapy to those who do not want, or cannot have, subcutaneous injection therapy. We conclude with a discussion of the knowledge gaps that must be addressed before incretin-based therapies can be properly deployed for maximum benefit in the treatment of obesity and T2DM.
Collapse
Affiliation(s)
- Saleem Ansari
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Bernard Khoo
- Department of Endocrinology, Division of Medicine, Royal Free Campus, University College London, London, UK
| | - Tricia Tan
- Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK.
| |
Collapse
|
4
|
Zhao C, Li J, Hu Y, Li L, Yu M, Huang Y, Zhang T, Shang H, Zou Z. (+)/(-)-Gerbeloid A, a pair of unprecedented coumarin-based polycyclic meroterpenoid enantiomers from Gerbera piloselloides: Structural elucidation, semi-synthesis, and lipid-lowering activity. Acta Pharm Sin B 2024; 14:2657-2668. [PMID: 38828137 PMCID: PMC11143508 DOI: 10.1016/j.apsb.2024.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 06/05/2024] Open
Abstract
A pair of coumarin-based polycyclic meroterpenoid enantiomers (+)/(-)-gerbeloid A [(+)-1a and (-)-1b] were isolated from the medicinal plant Gerbera piloselloides, which have a unique caged oxatricyclo [4.2.2.03,8] decene scaffold. Their planar and three-dimensional structures were exhaustively characterized by comprehensive spectroscopic data and X-ray diffraction analysis. Guided by the hypothetical biosynthetic pathway, the biomimetic synthesis of racemic 1 was achieved using 4-hydroxy-5-methylcoumarin and citral as the starting material via oxa-6π electrocyclization and intramolecular [2 + 2] photocycloaddition. Subsequently, the results of the biological activity assay demonstrated that both (+)-1a and (-)-1b exhibited potent lipid-lowering effects in 3T3-L1 adipocytes and the high-fat diet zebrafish model. Notably, the lipid-lowering activity of (+)-1a is better than that of (-)-1b at the same concentration, and molecular mechanism study has shown that (+)-1a and (-)-1b impairs adipocyte differentiation and stimulate lipolysis by regulating C/EBPα/PPARγ signaling and Perilipin signaling in vitro and in vivo. Our findings provide a promising drug model molecule for the treatment of obesity.
Collapse
Affiliation(s)
- Chenxu Zhao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jingrong Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yue Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Lingyu Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Meng Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Yunfeng Huang
- Institute of Chinese Medicine Resources, Guangxi Institute of Chinese Medicine & Pharmaceutical Science, Nanning 530000, China
| | - Tao Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Hai Shang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Zhongmei Zou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
5
|
Myšková A, Sýkora D, Kuneš J, Maletínská L. Lipidization as a tool toward peptide therapeutics. Drug Deliv 2023; 30:2284685. [PMID: 38010881 PMCID: PMC10987053 DOI: 10.1080/10717544.2023.2284685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/12/2023] [Indexed: 11/29/2023] Open
Abstract
Peptides, as potential therapeutics continue to gain importance in the search for active substances for the treatment of numerous human diseases, some of which are, to this day, incurable. As potential therapeutic drugs, peptides have many favorable chemical and pharmacological properties, starting with their great diversity, through their high affinity for binding to all sort of natural receptors, and ending with the various pathways of their breakdown, which produces nothing but amino acids that are nontoxic to the body. Despite these and other advantages, however, they also have their pitfalls. One of these disadvantages is the very low stability of natural peptides. They have a short half-life and tend to be cleared from the organism very quickly. Their instability in the gastrointestinal tract, makes it impossible to administer peptidic drugs orally. To achieve the best pharmacologic effect, it is desirable to look for ways of modifying peptides that enable the use of these substances as pharmaceuticals. There are many ways to modify peptides. Herein we summarize the approaches that are currently in use, including lipidization, PEGylation, glycosylation and others, focusing on lipidization. We describe how individual types of lipidization are achieved and describe their advantages and drawbacks. Peptide modifications are performed with the goal of reaching a longer half-life, reducing immunogenicity and improving bioavailability. In the case of neuropeptides, lipidization aids their activity in the central nervous system after the peripheral administration. At the end of our review, we summarize all lipidized peptide-based drugs that are currently on the market.
Collapse
Affiliation(s)
- Aneta Myšková
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, Prague, Czech Republic
- Institute of Organic Chemistry and Biochemistry, Academy of Science of the Czech Republic, Prague, Czech Republic
| | - David Sýkora
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Jaroslav Kuneš
- Institute of Organic Chemistry and Biochemistry, Academy of Science of the Czech Republic, Prague, Czech Republic
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Lenka Maletínská
- Institute of Organic Chemistry and Biochemistry, Academy of Science of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
6
|
Vishnoi S, Bhattacharya S, Walsh EM, Okoh GI, Thompson D. Computational Peptide Design Cotargeting Glucagon and Glucagon-like Peptide-1 Receptors. J Chem Inf Model 2023; 63:4934-4947. [PMID: 37523325 PMCID: PMC10428222 DOI: 10.1021/acs.jcim.3c00752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Indexed: 08/02/2023]
Abstract
Peptides are sustainable alternatives to conventional therapeutics for G protein-coupled receptor (GPCR) linked disorders, promising biocompatible and tailorable next-generation therapeutics for metabolic disorders including type-2 diabetes, as agonists of the glucagon receptor (GCGR) and the glucagon-like peptide-1 receptor (GLP-1R). However, single agonist peptides activating GLP-1R to stimulate insulin secretion also suppress obesity-linked glucagon release. Hence, bioactive peptides cotargeting GCGR and GLP-1R may remediate the blood glucose and fatty acid metabolism imbalance, tackling both diabetes and obesity to supersede current monoagonist therapy. Here, we design and model optimized peptide sequences starting from peptide sequences derived from earlier phage-displayed library screening, identifying those with predicted molecular binding profiles for dual agonism of GCGR and GLP-1R. We derive design rules from extensive molecular dynamics simulations based on peptide-receptor binding. Our newly designed coagonist peptide exhibits improved predicted coupled binding affinity for GCGR and GLP-1R relative to endogenous ligands and could in the future be tested experimentally, which may provide superior glycemic and weight loss control.
Collapse
Affiliation(s)
- Shubham Vishnoi
- Department
of Physics, Bernal Institute, University
of Limerick, Limerick V94T9PX, Ireland
| | - Shayon Bhattacharya
- Department
of Physics, Bernal Institute, University
of Limerick, Limerick V94T9PX, Ireland
| | | | | | - Damien Thompson
- Department
of Physics, Bernal Institute, University
of Limerick, Limerick V94T9PX, Ireland
| |
Collapse
|
7
|
Artasensi A, Mazzolari A, Pedretti A, Vistoli G, Fumagalli L. Obesity and Type 2 Diabetes: Adiposopathy as a Triggering Factor and Therapeutic Options. Molecules 2023; 28:molecules28073094. [PMID: 37049856 PMCID: PMC10095867 DOI: 10.3390/molecules28073094] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Obesity and type 2 diabetes (T2DM) are major public health concerns associated with serious morbidity and increased mortality. Both obesity and T2DM are strongly associated with adiposopathy, a term that describes the pathophysiological changes of the adipose tissue. In this review, we have highlighted adipose tissue dysfunction as a major factor in the etiology of these conditions since it promotes chronic inflammation, dysregulated glucose homeostasis, and impaired adipogenesis, leading to the accumulation of ectopic fat and insulin resistance. This dysfunctional state can be effectively ameliorated by the loss of at least 15% of body weight, that is correlated with better glycemic control, decreased likelihood of cardiometabolic disease, and an improvement in overall quality of life. Weight loss can be achieved through lifestyle modifications (healthy diet, regular physical activity) and pharmacotherapy. In this review, we summarized different effective management strategies to address weight loss, such as bariatric surgery and several classes of drugs, namely metformin, GLP-1 receptor agonists, amylin analogs, and SGLT2 inhibitors. These drugs act by targeting various mechanisms involved in the pathophysiology of obesity and T2DM, and they have been shown to induce significant weight loss and improve glycemic control in obese individuals with T2DM.
Collapse
|
8
|
Zhang X, Ha S, Lau HCH, Yu J. Excess body weight: Novel insights into its roles in obesity comorbidities. Semin Cancer Biol 2023; 92:16-27. [PMID: 36965839 DOI: 10.1016/j.semcancer.2023.03.008] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/13/2023] [Accepted: 03/21/2023] [Indexed: 03/27/2023]
Abstract
Excess body weight is a global health problem due to sedentary lifestyle and unhealthy diet, affecting 2 billion population worldwide. Obesity is a major risk factor for metabolic diseases. Notably, the metabolic risk of obesity largely depends on body weight distribution, of which visceral adipose tissues but not subcutaneous fats are closely associated with obesity comorbidities, including type 2 diabetes, non-alcoholic fatty liver disease, cardiovascular disease and certain types of cancer. Latest multi-omics and mechanistical studies reported the crucial involvement of genetic and epigenetic alterations, adipokines dysregulation, immunity changes, imbalance of white and brown adipose tissues, and gut microbial dysbiosis in mediating the pathogenic association between visceral adipose tissues and comorbidities. In this review, we explore the epidemiology of excess body weight and the up-to-date mechanism of how excess body weight and obesity lead to chronic complications. We also examine the utilization of visceral fat measurement as an accurate clinical parameter for risk assessment in healthy individuals and clinical outcome prediction in obese subjects. In addition, current approaches for the prevention and treatment of excess body weight and its related metabolic comorbidities are further discussed. DATA AVAILABILITY: No data was used for the research described in the article.
Collapse
Affiliation(s)
- Xiang Zhang
- Institute of Digestive Disease and the Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Suki Ha
- Institute of Digestive Disease and the Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Harry Cheuk-Hay Lau
- Institute of Digestive Disease and the Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Jun Yu
- Institute of Digestive Disease and the Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| |
Collapse
|