1
|
Xu K, Motiwala Z, Corona-Avila I, Makhanasa D, Alkahalifeh L, Khan MW. The Gut Microbiome and Its Multifaceted Role in Cancer Metabolism, Initiation, and Progression: Insights and Therapeutic Implications. Technol Cancer Res Treat 2025; 24:15330338251331960. [PMID: 40208053 PMCID: PMC12032467 DOI: 10.1177/15330338251331960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 04/11/2025] Open
Abstract
This review summarizes the intricate relationship between the microbiome and cancer initiation and development. Microbiome alterations impact metabolic pathways, immune responses, and gene expression, which can accelerate or mitigate cancer progression. We examine how dysbiosis affects tumor growth, metastasis, and treatment resistance. Additionally, we discuss the potential of microbiome-targeted therapies, such as probiotics and fecal microbiota transplants, to modulate cancer metabolism. These interventions offer the possibility of reversing or controlling cancer progression, enhancing the efficacy of traditional treatments like chemotherapy and immunotherapy. Despite promising developments, challenges remain in identifying key microbial species and pathways and validating microbiome-targeted therapies through large-scale clinical trials. Nonetheless, the intersection of microbiome research and cancer initiation and development presents an exciting frontier for innovative therapies. This review offers a fresh perspective on cancer initiation and development by integrating microbiome insights, highlighting the potential for interdisciplinary research to enhance our understanding of cancer progression and treatment strategies.
Collapse
Affiliation(s)
- Kai Xu
- Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, IL, USA
| | - Zainab Motiwala
- Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| | - Irene Corona-Avila
- Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, IL, USA
| | - Dhruvi Makhanasa
- Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Md. Wasim Khan
- Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
2
|
Yang G, Wan YJY. Noninvasive biomarkers implicated in urea and TCA cycles for metabolic liver disease. Biomark Res 2024; 12:145. [PMID: 39578903 PMCID: PMC11583652 DOI: 10.1186/s40364-024-00694-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/17/2024] [Indexed: 11/24/2024] Open
Abstract
Bile acid (BA) and its receptor FXR play crucial roles in metabolism, and dysregulated BA synthesis regulated by hepatic and bacterial enzymes causes metabolic dysfunction-associated steatohepatitis (MASH) and hepatocellular carcinoma (HCC). Moreover, because ~ 75% of hepatic blood is from the gut, liver metabolism is influenced by intestinal bacteria and their metabolites. Thus, we used gut microbiota and metabolites from the urine and serum to uncover biomarkers for metabolic distress caused by Western diet (WD) intake, aging, and FXR inactivity. Hepatic transcriptomes were profiled to define liver phenotypes. There were 654 transcriptomes commonly altered by differential diet intake, ages, and FXR functional status, representing the signatures of liver dysfunction, and 76 of them were differentially expressed in healthy human livers and HCC. Machine learning approaches classified urine and serum metabolites for differential dietary intake and age difference. Additionally, the gut microbiota could predict FXR functional status. Furthermore, FXR was essential for differentiating dietary effects in colonizing age-related gut microbes. The integrated analysis established the relationships between the metabolites and gut microbiota correlated with hepatic transcripts commonly altered by diet, age, and FXR functionality. Remarkably, the changes in metabolites involved in the urea cycle, mitochondrial metabolism, and amino acid metabolism are associated with hepatic dysfunction (i.e. FXF deactivation). Taken together, noninvasive specimens and biomarkers are promising resources for identifying metabolic distress.
Collapse
Affiliation(s)
- Guiyan Yang
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yu-Jui Yvonne Wan
- Department of Pathology and Laboratory Medicine, University of California, Davis, Davis Health. Room 3400B, Research Building III, 4645 2nd Ave, 95817, Sacramento, CA, USA.
| |
Collapse
|
3
|
Yang G, Liu R, Rezaei S, Liu X, Wan YJY. Uncovering the Gut-Liver Axis Biomarkers for Predicting Metabolic Burden in Mice. Nutrients 2023; 15:3406. [PMID: 37571345 PMCID: PMC10421148 DOI: 10.3390/nu15153406] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Western diet (WD) intake, aging, and inactivation of farnesoid X receptor (FXR) are risk factors for metabolic and chronic inflammation-related health issues ranging from metabolic dysfunction-associated steatotic liver disease (MASLD) to dementia. The progression of MASLD can be escalated when those risks are combined. Inactivation of FXR, the receptor for bile acid (BA), is cancer prone in both humans and mice. The current study used multi-omics including hepatic transcripts, liver, serum, and urine metabolites, hepatic BAs, as well as gut microbiota from mouse models to classify those risks using machine learning. A linear support vector machine with K-fold cross-validation was used for classification and feature selection. We have identified that increased urine sucrose alone achieved 91% accuracy in predicting WD intake. Hepatic lithocholic acid and serum pyruvate had 100% and 95% accuracy, respectively, to classify age. Urine metabolites (decreased creatinine and taurine as well as increased succinate) or increased gut bacteria (Dorea, Dehalobacterium, and Oscillospira) could predict FXR deactivation with greater than 90% accuracy. Human disease relevance is partly revealed using the metabolite-disease interaction network. Transcriptomics data were also compared with the human liver disease datasets. WD-reduced hepatic Cyp39a1 (cytochrome P450 family 39 subfamily a member 1) and increased Gramd1b (GRAM domain containing 1B) were also changed in human liver cancer and metabolic liver disease, respectively. Together, our data contribute to the identification of noninvasive biomarkers within the gut-liver axis to predict metabolic status.
Collapse
Affiliation(s)
- Guiyan Yang
- Department of Medical Pathology, Laboratory Medicine in Sacramento, University of California, Davis, CA 95817, USA;
| | - Rex Liu
- Department of Computer Science, University of California, Davis, CA 95616, USA; (R.L.); (S.R.); (X.L.)
| | - Shahbaz Rezaei
- Department of Computer Science, University of California, Davis, CA 95616, USA; (R.L.); (S.R.); (X.L.)
| | - Xin Liu
- Department of Computer Science, University of California, Davis, CA 95616, USA; (R.L.); (S.R.); (X.L.)
| | - Yu-Jui Yvonne Wan
- Department of Medical Pathology, Laboratory Medicine in Sacramento, University of California, Davis, CA 95817, USA;
| |
Collapse
|
4
|
Hu Y, Setayesh T, Vaziri F, Wu X, Hwang ST, Chen X, Yvonne Wan YJ. miR-22 gene therapy treats HCC by promoting anti-tumor immunity and enhancing metabolism. Mol Ther 2023; 31:1829-1845. [PMID: 37143325 PMCID: PMC10277895 DOI: 10.1016/j.ymthe.2023.04.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/29/2023] [Accepted: 04/28/2023] [Indexed: 05/06/2023] Open
Abstract
MicroRNA-22 (miR-22) can be induced by beneficial metabolites that have metabolic and immune effects, including retinoic acids, bile acids, vitamin D3, and short-chain fatty acids. The tumor suppressor effects of miR-22 have been suggested, but whether miR-22 treats orthotopic hepatocellular carcinoma (HCC) is not established. The role of miR-22 in regulating tumor immunity is also poorly understood. Our data showed that miR-22 delivered by adeno-associated virus serotype 8 effectively treated HCC. Compared with FDA-approved lenvatinib, miR-22 produced better survival outcomes without noticeable toxicity. miR-22 silenced hypoxia-inducible factor 1 (HIF1α) and enhanced retinoic acid signaling in both hepatocytes and T cells. Moreover, miR-22 treatment improved metabolism and reduced inflammation. In the liver, miR-22 reduced the abundance of IL17-producing T cells and inhibited IL17 signaling by reducing the occupancy of HIF1α in the Rorc and Il17a genes. Conversely, increasing IL17 signaling ameliorated the anti-HCC effect of miR-22. Additionally, miR-22 expanded cytotoxic T cells and reduced regulatory T cells (Treg). Moreover, depleting cytotoxic T cells also abolished the anti-HCC effects of miR-22. In patients, miR-22 high HCC had upregulated metabolic pathways and reduced IL17 pro-inflammatory signaling compared with miR-22 low HCC. Together, miR-22 gene therapy can be a novel option for HCC treatment.
Collapse
Affiliation(s)
- Ying Hu
- Department of Pathology and Laboratory Medicine, University of California Davis Health, Sacramento, CA 95817, USA
| | - Tahereh Setayesh
- Department of Pathology and Laboratory Medicine, University of California Davis Health, Sacramento, CA 95817, USA
| | - Farzam Vaziri
- Department of Pathology and Laboratory Medicine, University of California Davis Health, Sacramento, CA 95817, USA
| | - Xuesong Wu
- Department of Dermatology, University of California Davis Health, Sacramento, CA 95817, USA
| | - Samuel T Hwang
- Department of Dermatology, University of California Davis Health, Sacramento, CA 95817, USA
| | - Xin Chen
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Yu-Jui Yvonne Wan
- Department of Pathology and Laboratory Medicine, University of California Davis Health, Sacramento, CA 95817, USA.
| |
Collapse
|
5
|
Meng X, Zheng J, Wang F, Zheng J, Yang D. Dietary fiber chemical structure determined gut microbiota dynamics. IMETA 2022; 1:e64. [PMID: 38867894 PMCID: PMC10989905 DOI: 10.1002/imt2.64] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/13/2022] [Accepted: 11/06/2022] [Indexed: 06/14/2024]
Abstract
Precision modulation of gut microbiota requires elucidation of the relation between dietary fiber intake and gut microbe dynamics. However, current studies on this aspect are few due to many technical limitations. Here, we used Caenorhabditis elegans to minimize the complicated host-microbial factors and to find the relation between dietary fiber chemical structures and gut microbiota dynamics. The Allium schoenoprasum polysaccharide (AssP) structure was elucidated and used as the complex dietary fiber against the simple fiber inulin. In vitro bacterial growth and genome analysis indicated that AssP supports bacterial growth better than inulin, while in vivo gut microbiota analysis of C. elegans fed with AssP showed that microbiota richness increased significantly compared with those fed with inulin. It is concluded that the more complex the dietary fiber chemical structure, the more gut bacteria growth it supports. Together with the community bacterial interactions that alter their abundances in vivo, these factors regulate gut microbiota synergistically.
Collapse
Affiliation(s)
- Xin Meng
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional EngineeringChina Agricultural UniversityBeijingChina
| | - Jun Zheng
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional EngineeringChina Agricultural UniversityBeijingChina
| | - Fengqiao Wang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional EngineeringChina Agricultural UniversityBeijingChina
| | - Jie Zheng
- Center for Food Safety and Applied NutritionU.S. Food and Drug AdministrationCollege ParkMarylandUSA
| | - Dong Yang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional EngineeringChina Agricultural UniversityBeijingChina
| |
Collapse
|
6
|
Dong HS, Shen QB, Lan HY, Zhao W, Cao P, Chen P. Fecal Bile Acids Profile of Crewmembers Consuming the Same Space Food in a Spacecraft Simulator. Front Physiol 2021; 12:593226. [PMID: 34658900 PMCID: PMC8517451 DOI: 10.3389/fphys.2021.593226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 08/27/2021] [Indexed: 11/20/2022] Open
Abstract
Introduction: Recently, bile acids (BAs) are increasingly being considered as unique metabolic integrators and not just for the cholesterol metabolism and absorption of dietary lipids. Human BAs profiles are evolved to be individual under different environmental, dietary, and inherited factors. Variation of BAs for crewmembers from freshly prepared kitchen diets to wholly prepackaged industrial foods in a ground-based spacecraft simulator has not been clearly interpreted. Methods: Three crewmembers were confined in a docked spacecraft and supplied with 7 days periodic wholly prepackaged industrial foods for 50 days. Fecal samples were collected before entry in the spacecraft simulator and after evacuation. Determination of 16 kinds of BAs was carried out by high-performance liquid chromatography tandem mass spectrometry method. Results: Bile acids metabolism is sensitive to diet and environment transition from freshly prepared kitchen diets in the canteen to wholly prepackaged industrial foods in a ground-based spacecraft simulator, which is also specific to individuals. A significant positive relationship with a coefficient of 0.85 was found for primary BAs as chenodeoxycholic acid (CDCA) and cholic acid (CA), and a significantly negative relationship with a coefficient of −0.69 for secondary BAs as lithocholic acid (LCA) and deoxycholic acid (DCA). Discussion: The profile of BA metabolism of individuals who share the same food in the same environment appears to be unique, suggesting that the inherent ability of different individuals to adapt to diet and environment varies. Since the transition from the free diet in open space to whole prepackaged space food diet in a space station simulator causes the variations of BAs pool in an individual manner, assessment of BA metabolic profiles provides a new perspective for personalized diet design, astronaut selection and training, and space flight diet acclimatization.
Collapse
Affiliation(s)
- Hai-Sheng Dong
- State Key Lab of Space Medicine Fundamentals and Application, Key Laboratory of Space Nutrition and Food Engineering, China Astronaut Research and Training Center, Beijing, China
| | - Qi-Bing Shen
- Innovation Center of Space Nutrition and Food Engineering, Shenzhen, China
| | - Hai-Yun Lan
- State Key Lab of Space Medicine Fundamentals and Application, Key Laboratory of Space Nutrition and Food Engineering, China Astronaut Research and Training Center, Beijing, China
| | - Wei Zhao
- State Key Lab of Space Medicine Fundamentals and Application, Key Laboratory of Space Nutrition and Food Engineering, China Astronaut Research and Training Center, Beijing, China
| | - Ping Cao
- State Key Lab of Space Medicine Fundamentals and Application, Key Laboratory of Space Nutrition and Food Engineering, China Astronaut Research and Training Center, Beijing, China
| | - Pu Chen
- State Key Lab of Space Medicine Fundamentals and Application, Key Laboratory of Space Nutrition and Food Engineering, China Astronaut Research and Training Center, Beijing, China
| |
Collapse
|
7
|
Hu Y, He J, Zheng P, Mao X, Huang Z, Yan H, Luo Y, Yu J, Luo J, Yu B, Chen D. Prebiotic inulin as a treatment of obesity related nonalcoholic fatty liver disease through gut microbiota: a critical review. Crit Rev Food Sci Nutr 2021; 63:862-872. [PMID: 34292103 DOI: 10.1080/10408398.2021.1955654] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The microbial-derived products, including short chain fatty acids, lipopolysaccharide and secondary bile acids, have been shown to participate in the regulation of hepatic lipid metabolism. Previous studies have demonstrated that prebiotics, such as oligosaccharide and inulin, have abilities to change the concentration of microbial-derived products through modulating the microbial community structure, thus controlling body weight and alleviating hepatic fat accumulation. However, recent evidence indicates that there are individual differences in host response upon inulin treatment due to the differences in host microbial composition before dietary intervention. Probably it is because of the multiple relationships among bacterial species (e.g., competition and mutualism), which play key roles in the degradation of inulin and the regulation of microbial structure. Thereby, analyzing the composition and function of initial gut microbiota is essential for improving the efficacy of prebiotics supplementation. Furthermore, considering that different structures of polysaccharides can be used by different microorganisms, the chemical structure of processed inulin should be tested before using prebiotic inulin to treat obesity related nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Yaolian Hu
- Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Yaan, People's Republic of China
| | - Jun He
- Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Yaan, People's Republic of China
| | - Ping Zheng
- Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Yaan, People's Republic of China
| | - Xiangbing Mao
- Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Yaan, People's Republic of China
| | - Zhiqing Huang
- Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Yaan, People's Republic of China
| | - Hui Yan
- Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Yaan, People's Republic of China
| | - Yuheng Luo
- Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Yaan, People's Republic of China
| | - Jie Yu
- Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Yaan, People's Republic of China
| | - Junqiu Luo
- Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Yaan, People's Republic of China
| | - Bing Yu
- Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Yaan, People's Republic of China
| | - Daiwen Chen
- Key laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Yaan, People's Republic of China
| |
Collapse
|
8
|
Rajeev R, Seethalakshmi PS, Jena PK, Prathiviraj R, Kiran GS, Selvin J. Gut microbiome responses in the metabolism of human dietary components: Implications in health and homeostasis. Crit Rev Food Sci Nutr 2021; 62:7615-7631. [PMID: 34016000 DOI: 10.1080/10408398.2021.1916429] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The gut microbiome and its link with human health and disease have gained a lot of attention recently. The microbiome executes its functions in the host by carrying out the transformation of dietary components and/or de novo synthesis of various essential nutrients. The presence of complex microbial communities makes it difficult to understand the host-microbiome interplay in the metabolism of dietary components. This review attempts to uncover the incredible role of the gut microbiome in the metabolism of dietary components, diet-microbiome interplay, and restoration of the microbiome. The in silico analysis performed in this study elucidates the functional description of essential/hub genes involved in the amino acid degradation pathway, which are mutually present in the host and its gut microbiome. Hence, the computational model helps comprehend the inter-and intracellular molecular networks between humans and their microbial partners.
Collapse
Affiliation(s)
- Riya Rajeev
- Department of Microbiology, Pondicherry University, Puducherry, India
| | - P S Seethalakshmi
- Department of Microbiology, Pondicherry University, Puducherry, India
| | - Prasant Kumar Jena
- Immunology and infectious disease research, Department of Pediatrics, Cedars Sinai Medical Center, Los Angeles, California, USA
| | - R Prathiviraj
- Department of Microbiology, Pondicherry University, Puducherry, India
| | - George Seghal Kiran
- Department of Food Science and Technology, Pondicherry University, Puducherry, India
| | - Joseph Selvin
- Department of Microbiology, Pondicherry University, Puducherry, India
| |
Collapse
|
9
|
Jena PK, Sheng L, Nguyen M, Di Lucente J, Hu Y, Li Y, Maezawa I, Jin LW, Wan YJY. Dysregulated bile acid receptor-mediated signaling and IL-17A induction are implicated in diet-associated hepatic health and cognitive function. Biomark Res 2020; 8:59. [PMID: 33292701 PMCID: PMC7648397 DOI: 10.1186/s40364-020-00239-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Chronic consumption of high sugar and high fat diet associated with liver inflammation and cognitive decline. This paper tests a hypothesis that the development and resolution of diet-induced nonalcoholic fatty liver disease (NAFLD) has an impact on neuroplasticity and cognition. METHODS C57BL/6 wild-type mice were fed with either a healthy control diet (CD) or a fructose, palmitate, and cholesterol (FPC)-enriched diet since weaning. When mice were 3-months old, FPC diet-fed mice were randomly assigned to receive either FPC-enriched diet with or without 6% inulin supplementation. At 8 months of age, all three groups of mice were euthanized followed by analysis of inflammatory signaling in the liver and brain, gut microbiota, and cecal metabolites. RESULTS Our data showed that FPC diet intake induced hepatic steatosis and inflammation in the liver and brain along with elevated RORγ and IL-17A signaling. Accompanied by microglia activation and reduced hippocampal long-term potentiation, FPC diet intake also reduced postsynaptic density-95 and brain derived neurotrophic factor, whereas inulin supplementation prevented diet-reduced neuroplasticity and the development of NAFLD. In the gut, FPC diet increased Coriobacteriaceae and Erysipelotrichaceae, which are implicated in cholesterol metabolism, and the genus Allobaculum, and inulin supplementation reduced them. Furthermore, FPC diet reduced FXR and TGR5 signaling, and inulin supplementation reversed these changes. Untargeted cecal metabolomics profiling uncovered 273 metabolites, and 104 had significant changes due to FPC diet intake or inulin supplementation. Among the top 10 most affected metabolites, FPC-fed mice had marked increase of zymosterol, a cholesterol biosynthesis metabolite, and reduced 2,8-dihydroxyquinoline, which has known benefits in reducing glucose intolerance; these changes were reversible by inulin supplementation. Additionally, the abundance of Barnesiella, Coprobacter, Clostridium XIVa, and Butyrivibrio were negatively correlated with FPC diet intake and the concentration of cecal zymosterol but positively associated with inulin supplementation, suggesting their benefits. CONCLUSION Taken together, the presented data suggest that diet alters the gut microbiota and their metabolites, including bile acids. This will subsequently affect IL-17A signaling, resulting in systemic impacts on both hepatic metabolism and cognitive function.
Collapse
Affiliation(s)
- Prasant Kumar Jena
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis Health, Room 3400B, Research Building III, 4645 2nd Ave, Sacramento, CA, 95817, USA
- Department of Pediatrics, Cedars Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Lili Sheng
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis Health, Room 3400B, Research Building III, 4645 2nd Ave, Sacramento, CA, 95817, USA
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Michelle Nguyen
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis Health, Room 3400B, Research Building III, 4645 2nd Ave, Sacramento, CA, 95817, USA
| | - Jacopo Di Lucente
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis Health, Room 3400B, Research Building III, 4645 2nd Ave, Sacramento, CA, 95817, USA
| | - Ying Hu
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis Health, Room 3400B, Research Building III, 4645 2nd Ave, Sacramento, CA, 95817, USA
| | - Yongchun Li
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis Health, Room 3400B, Research Building III, 4645 2nd Ave, Sacramento, CA, 95817, USA
- Department of Gastroenterology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
- Department of Infectious Diseases, Nanhai Hospital, Southern Medical University, Foshan, 528200, China
| | - Izumi Maezawa
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis Health, Room 3400B, Research Building III, 4645 2nd Ave, Sacramento, CA, 95817, USA
| | - Lee-Way Jin
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis Health, Room 3400B, Research Building III, 4645 2nd Ave, Sacramento, CA, 95817, USA
| | - Yu-Jui Yvonne Wan
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis Health, Room 3400B, Research Building III, 4645 2nd Ave, Sacramento, CA, 95817, USA.
| |
Collapse
|
10
|
Li S, Hua D, Wang Q, Yang L, Wang X, Luo A, Yang C. The Role of Bacteria and Its Derived Metabolites in Chronic Pain and Depression: Recent Findings and Research Progress. Int J Neuropsychopharmacol 2019; 23:26-41. [PMID: 31760425 PMCID: PMC7064053 DOI: 10.1093/ijnp/pyz061] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/30/2019] [Accepted: 11/22/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Chronic pain is frequently comorbid with depression in clinical practice. Recently, alterations in gut microbiota and metabolites derived therefrom have been found to potentially contribute to abnormal behaviors and cognitive dysfunction via the "microbiota-gut-brain" axis. METHODS PubMed was searched and we selected relevant studies before October 1, 2019. The search keyword string included "pain OR chronic pain" AND "gut microbiota OR metabolites"; "depression OR depressive disorder" AND "gut microbiota OR metabolites". We also searched the reference lists of key articles manually. RESULTS This review systematically summarized the recent evidence of gut microbiota and metabolites in chronic pain and depression in animal and human studies. The results showed the pathogenesis and therapeutics of chronic pain and depression might be partially due to gut microbiota dysbiosis. Importantly, bacteria-derived metabolites, including short-chain fatty acids, tryptophan-derived metabolites, and secondary bile acids, offer new insights into the potential linkage between key triggers in gut microbiota and potential mechanisms of depression. CONCLUSION Studying gut microbiota and its metabolites has contributed to the understanding of comorbidity of chronic pain and depression. Consequently, modulating dietary structures or supplementation of specific bacteria may be an available strategy for treating chronic pain and depression.
Collapse
Affiliation(s)
- Shan Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dongyu Hua
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiaoyan Wang
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Ling Yang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Xinlei Wang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ailin Luo
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China,Correspondence: Chun Yang, MD, PhD, Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China (; )
| |
Collapse
|
11
|
Chronic Inflammatory Diseases: Are We Ready for Microbiota-based Dietary Intervention? Cell Mol Gastroenterol Hepatol 2019; 8:61-71. [PMID: 30836147 PMCID: PMC6517864 DOI: 10.1016/j.jcmgh.2019.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 02/22/2019] [Accepted: 02/22/2019] [Indexed: 12/12/2022]
Abstract
The last 15 years have witnessed the emergence of a new field of research that focuses on the roles played by the intestinal microbiota in health and disease. This research field has produced accumulating evidence indicating that dysregulation of host-microbiota interactions contributes to a range of chronic inflammatory diseases, including inflammatory bowel diseases, colorectal cancer, and metabolic syndrome. Although dysregulation of the microbiota can take complex forms, in some cases, specific bacterial species that can drive specific clinical outcomes have been identified. Among the numerous factors influencing the intestinal microbiota composition, diet is a central actor, wherein numerous dietary factors can beneficially or detrimentally impact the host/microbiota relationship. This review will highlight recent literature that has advanced understanding of microbiota-diet-disease interplay, with a central focus on the following question: Are we ready to use intestinal microbiota composition-based personalized dietary interventions to treat chronic inflammatory diseases?
Collapse
|