1
|
Dong R, Najjar G, Günes C, Lechel A. Aberrant TERT expression: linking chronic inflammation to hepatocellular carcinoma †. J Pathol 2025; 266:130-133. [PMID: 40213897 PMCID: PMC12056276 DOI: 10.1002/path.6421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 05/08/2025]
Abstract
Telomerase reverse transcriptase (TERT), the catalytic enzyme component of telomerase, plays multiple roles in cellular biology. Its canonical function is primarily associated with telomere maintenance and genomic stability. In addition, several studies revealed critical non-canonical extra-telomeric functions of TERT in various cellular processes, including cell proliferation and survival, DNA damage response, transcription, signal transduction, and metabolic regulation, both in normal and in cancer cells. Notably, TERT is aberrantly upregulated in more than 80% of hepatocellular carcinoma (HCC) cases, making it an important target in liver cancer research. However, due to the diversity and complexity of TERT's functions in vivo, the precise mechanisms by which TERT contributes to the initiation and progression of HCC remain unclear. A recent study published in The Journal of Pathology using the Alb-Cre;TertTg mouse model and clinical HCC samples addresses the role of TERT in hepatocarcinogenesis. The study demonstrates that TERT promotes cell cycle progression and hepatocarcinogenesis by enhancing NF-κB promoter activity and facilitating the ubiquitination of p21. Notably, absence of functional p53 accelerates liver tumor development in TERT transgenic mice. These findings further underscore the critical role of TERT in inflammation-driven hepatocarcinogenesis and provide new insights into its underlying mechanisms. © 2025 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Rui Dong
- Department of Internal Medicine IUniversity Hospital UlmUlmGermany
| | | | - Cagatay Günes
- Department of UrologyUniversity Hospital UlmUlmGermany
| | - André Lechel
- Department of Internal Medicine IUniversity Hospital UlmUlmGermany
| |
Collapse
|
2
|
Affonso JM, D'Amico TP, Horst MA, Moreno FS, Heidor R. Telomeres and Telomerase: Targets for Chemoprevention of Hepatocellular Carcinoma With Bioactive Food Compounds. Mol Nutr Food Res 2025:e70088. [PMID: 40351047 DOI: 10.1002/mnfr.70088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 04/08/2025] [Accepted: 04/14/2025] [Indexed: 05/14/2025]
Abstract
The maintenance of telomere length by telomerase plays an essential role in senescence, aging, and cancer. Mutations in the TERT promoter, a telomerase subunit, are frequent in human cancers. In hepatocellular carcinoma (HCC), telomere shortening contributes to preneoplastic conditions such as cirrhosis. Telomerase activation during cirrhosis may reduce chromosomal instability, while its suppression in early dysplastic nodules may prevent hepatocarcinogenesis. Evidence suggests that bioactive food compounds (BFCs) can reduce the incidence and/or delay the onset of HCC by modulating telomerase activity. A systematic review was conducted on the role of BFCs in telomerase activity during hepatocarcinogenesis. BFCs were analyzed in isolated form or as part of extracts and categorized into fatty acids, isoprenoids, isothiocyanates, and phenolic compounds. Despite structural diversity, BFCs modulate telomerase through common mechanisms, including inhibition of activating proteins at the TERT promoter, activation of nuclear receptors, or histone H3 hyperacetylation. Indirectly, telomerase can also be modulated via activation of antioxidant defense pathways. Understanding telomerase reactivation and its modulation by BFCs is key to establishing effective HCC chemoprevention strategies targeting telomerase.
Collapse
Affiliation(s)
- Juliana Marques Affonso
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Thais Pereira D'Amico
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maria Aderuza Horst
- Nutritional Genomics Research Group, Faculty of Nutrition, Federal University of Goiás, Goiânia, Brazil
| | - Fernando Salvador Moreno
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Renato Heidor
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Kim JS, Kim HS, Tak KY, Han JW, Nam H, Sung PS, Lee SW, Kwon JH, Bae SH, Choi JY, Yoon SK, Jang JW. Male preference for TERT alterations and HBV integration in young-age HBV-related HCC: implications for sex disparity. Clin Mol Hepatol 2025; 31:509-524. [PMID: 39743888 PMCID: PMC12016656 DOI: 10.3350/cmh.2024.0545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/24/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND/AIMS Hepatocellular carcinoma (HCC) exhibits significant sex disparities in incidence, yet its molecular mechanisms remain unclear. We explored the role of telomerase reverse transcriptase (TERT) genetic alterations and hepatitis B virus (HBV) integration, both known major contributors to HCC, in sex-specific risk for HBV-related HCC. METHODS We examined 310 HBV-related HCC tissues to investigate sex-specific TERT promoter (TERT-pro) mutations and HBV integration profiles, stratified by sex and age, and validated with single-cell RNA sequencing (scRNA-seq) data. RESULTS Tumors predominantly exhibited TERT-pro mutations (26.0% vs. 0%) and HBV-TERT integration (37.0% vs. 3.0%) compared to non-tumorous tissues. While TERT-pro mutations increased with age in both sexes, younger males (≤60 years) showed marked predominance compared to younger females. Males had significantly more HBV integrations at younger ages, while females initially had fewer integrations that gradually increased with age. Younger males' integrations showed significantly greater enrichment in the TERT locus compared to younger females, alongside a preference for promoters, PreS/S regions, and CpG islands. Overall, TERT genetic alterations were significantly sex-differential in younger individuals (75.3% in males vs. 23.1% in females) but not in older individuals (76.9% vs. 83.3%, respectively). These alterations were associated with increased TERT expression. The skewed TERT abnormalities in younger males were further corroborated by independent scRNA-seq data. CONCLUSION Our findings highlight the critical role of TERT alterations and HBV integration patterns in the male predominance of HCC incidence among younger HBV carriers, offering insights for future exploration to optimize sex-specific patient care and HCC surveillance strategies.
Collapse
Affiliation(s)
- Jin Seoub Kim
- The Catholic University Liver Research Center, The Catholic University of Korea, Seoul, Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Korea
- Department of Medical Informatics, Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hye Seon Kim
- The Catholic University Liver Research Center, The Catholic University of Korea, Seoul, Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Korea
- Department of Medical Informatics, Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Kwon Yong Tak
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ji Won Han
- The Catholic University Liver Research Center, The Catholic University of Korea, Seoul, Korea
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Heechul Nam
- The Catholic University Liver Research Center, The Catholic University of Korea, Seoul, Korea
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Pil Soo Sung
- The Catholic University Liver Research Center, The Catholic University of Korea, Seoul, Korea
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sung Won Lee
- The Catholic University Liver Research Center, The Catholic University of Korea, Seoul, Korea
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jung Hyun Kwon
- The Catholic University Liver Research Center, The Catholic University of Korea, Seoul, Korea
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Si Hyun Bae
- The Catholic University Liver Research Center, The Catholic University of Korea, Seoul, Korea
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jong Young Choi
- The Catholic University Liver Research Center, The Catholic University of Korea, Seoul, Korea
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seung Kew Yoon
- The Catholic University Liver Research Center, The Catholic University of Korea, Seoul, Korea
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jeong Won Jang
- The Catholic University Liver Research Center, The Catholic University of Korea, Seoul, Korea
- Department of Medical Informatics, Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
4
|
Lu Z, Chai X, Li S. Machine learning-based identification of telomere-related gene signatures for prognosis and immunotherapy response in hepatocellular carcinoma. Mol Cytogenet 2025; 18:6. [PMID: 40102883 PMCID: PMC11921577 DOI: 10.1186/s13039-025-00705-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 02/06/2025] [Indexed: 03/20/2025] Open
Abstract
Telomere in cancers shows a main impact on maintaining chromosomal stability and unlimited proliferative capacity of tumor cells to promote cancer development and progression. So, we targeted to detect telomere-related genes(TRGs) in hepatocellular carcinoma (HCC) to develop a novel predictive maker and response to immunotherapy. We sourced clinical data and gene expression datasets of HCC patients from databases including TCGA and GEO database. The TelNet database was utilized to identify genes associated with telomeres. Genes with altered expression from TCGA and GSE14520 were intersected with TRGs, and Cox regression analysis was conducted to pinpoint genes strongly linked to survival prognosis. The risk model was developed using the Least Absolute Shrinkage and Selection Operator (LASSO) regression technique. Subsequently, evaluation of the risk model focused on immune cell infiltration, checkpoint genes, drug responsiveness, and immunotherapy outcomes across both high- and low-risk patient groups. We obtained 25 TRGs from the overlapping set of 34 genes using Cox regression analysis. Finally, six TRGs (CDC20, TRIP13, EZH2, AKR1B10, ESR1, and DNAJC6) were identified to formulate the risk score (RS) model, which independently predicted prognosis for HCC. The high-risk group demonstrated worse survival outcomes and showed elevated levels of infiltration by Macrophages M0 and Tregs. Furthermore, a notable correlation was observed between the genes in the risk model and immune checkpoint genes. The RS model, derived from TRGs, has been validated for its predictive value in immunotherapy outcomes. In conclusion, this model not only predicted the prognosis of HCC patients but also their immune responses, providing innovative strategies for cancer therapy.
Collapse
Affiliation(s)
- Zhengmei Lu
- Department of Infectious Diseases, Wenzhou Medical University Affiliated, Zhoushan Hospital, Zhoushan, 316000, China
| | - Xiaowei Chai
- Dermatology, Tongji University, Shanghai, 200040, China
| | - Shibo Li
- Department of Infectious Diseases, Wenzhou Medical University Affiliated, Zhoushan Hospital, Zhoushan, 316000, China.
| |
Collapse
|
5
|
Huang X, Huang L, Lu J, Cheng L, Wu D, Li L, Zhang S, Lai X, Xu L. The relationship between telomere length and aging-related diseases. Clin Exp Med 2025; 25:72. [PMID: 40044947 PMCID: PMC11882723 DOI: 10.1007/s10238-025-01608-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 02/21/2025] [Indexed: 03/09/2025]
Abstract
The intensifying global phenomenon of an aging population has spurred a heightened emphasis on studies on aging and disorders associated with aging. Cellular senescence and aging are known to be caused by telomere shortening. Telomere length (TL) has emerged as a biomarker under intense scrutiny, and its widespread use in investigations of diseases tied to advancing age. This review summarizes the current knowledge of the association between telomeres and aging-related diseases, explores the important contribution of dysfunctional telomeres to the development and progression of these diseases, and aims to provide valuable insights for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Xuanqi Huang
- Hangzhou Normal University School of Nursing, Hangzhou, China
| | - Leyi Huang
- Hangzhou Normal University School of Nursing, Hangzhou, China
| | - Jiaweng Lu
- Hangzhou Normal University School of Nursing, Hangzhou, China
| | - Lijuan Cheng
- Hangzhou Normal University School of Basic Medical Sciences, Hangzhou, China
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou, China
| | - Du Wu
- Hangzhou Wuyunshan Hospital, Hangzhou, China
| | - Linmeng Li
- Department of Clinical Laboratory, Zhuji People's Hospital of Zhejiang Province, Shaoxing, China
| | - Shuting Zhang
- Hangzhou Normal University School of Nursing, Hangzhou, China
| | - Xinyue Lai
- Hangzhou Normal University School of Nursing, Hangzhou, China
| | - Lu Xu
- Hangzhou Normal University School of Nursing, Hangzhou, China.
- Key Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
6
|
Aoki T, Nishida N, Minami Y, Kudo M. The Impact of Normal Hepatobiliary Cell Zonation Programs on the Phenotypes and Functions of Primary Liver Tumors. Liver Cancer 2025; 14:92-103. [PMID: 40144466 PMCID: PMC11936443 DOI: 10.1159/000541077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/21/2024] [Indexed: 03/28/2025] Open
Abstract
Background Traditional tumor classifications have relied on cellular origin, pathological morphological features, gene expression profiles, and more recently, the tumor immune microenvironment. While these classifications provide valuable insights, incorporating physiological classifications focusing on liver metabolic functions may lead to new discoveries. Summary We proposed to reclassify benign and malignant hepatocellular neoplasms based on their physiological functions such as albumin production, bile acid production, glycolysis, glycogenesis, and adipogenesis. We further demonstrated the homology between signal pathways activated by the differentiation program of the normal hepatobiliary cells and those activated by genetic abnormalities in tumors. Specifically, Wnt/β-catenin, RAS, NOTCH, and TGF-β signaling not only contribute to cell differentiation via activation of liver-enriched transcription factors but also determine the tumor traits. Examining the distinctions between hepatocellular carcinomas (HCCs) that maintain or lose metabolic functions can yield valuable insights into the drivers of biological malignancy and tumor plasticity. Key Messages To confirm the homology between the differentiation programs of normal hepatobiliary cells, hepatocellular adenomas (HCA), and HCC we identify liver-specific functions such as catabolism and anabolism within tumors. HCCs and HCAs that have lost these metabolic functions exhibit characteristics such as dedifferentiation, resemblance to biliary cells, or increased glycolysis. Focusing on this underexplored area will likely stimulate active research into new tumor characteristics.
Collapse
Affiliation(s)
- Tomoko Aoki
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Naoshi Nishida
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Yasunori Minami
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-Sayama, Japan
| |
Collapse
|
7
|
Southern BD, Gadre SK. Telomeropathies in Interstitial Lung Disease and Lung Transplant Recipients. J Clin Med 2025; 14:1496. [PMID: 40095034 PMCID: PMC11900913 DOI: 10.3390/jcm14051496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/23/2025] [Accepted: 02/09/2025] [Indexed: 03/19/2025] Open
Abstract
Telomeropathies, or telomere biology disorders (TBDs), are syndromes that can cause a number of medical conditions, including interstitial lung disease (ILD), bone marrow failure, liver fibrosis, and other diseases. They occur due to genetic mutations to the telomerase complex enzymes that result in premature shortening of telomeres, the caps on the ends of cellular DNA that protect chromosome length during cell division, leading to early cell senescence and death. Idiopathic pulmonary fibrosis (IPF) is the most common manifestation of the telomere biology disorders, although it has been described in other interstitial lung diseases as well, such as rheumatoid arthritis-associated ILD and chronic hypersensitivity pneumonitis. Telomere-related mutations can be inherited or can occur sporadically. Identifying these patients and offering genetic counseling is important because telomerapathies have been associated with poorer outcomes including death, lung transplantation, hospitalization, and FVC decline. Additionally, treatment with immunosuppressants has been shown to be associated with worse outcomes. Currently, there is no specific treatment for TBD except to transplant the organ that is failing, although there are a number of promising treatment strategies currently under investigation. Shortened telomere length is routinely discovered in patients undergoing lung transplantation for IPF. Testing to detect early TBD in patients with suggestive signs or symptoms can allow for more comprehensive treatment and multidisciplinary care pre- and post-transplant. Patients with TBD undergoing lung transplantation have been reported to have both pulmonary and extrapulmonary complications at a higher frequency than other lung transplant recipients, such as graft-specific complications, increased infections, and complications related to immunosuppressive therapy.
Collapse
Affiliation(s)
- Brian D. Southern
- Integrated Hospital-Care Institute, Department of Pulmonary Medicine, Cleveland Clinic, Cleveland, OH 44195, USA;
| | | |
Collapse
|
8
|
Wei H, Luo Q, Zhong W. Integration of 101 machine learning algorithm combinations to unveil m6A/m1A/m5C/m7G-associated prognostic signature in colorectal cancer. Sci Rep 2025; 15:5930. [PMID: 39966486 PMCID: PMC11836460 DOI: 10.1038/s41598-025-89944-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 02/10/2025] [Indexed: 02/20/2025] Open
Abstract
Colorectal cancer (CRC) is the most common malignancy in the digestive system, with a lower 5-year overall survival rate. There is increasing evidence showing that RNA modification regulators such as m1A, m5C, m6A, and m7G play crucial roles in tumor progression. However, the prognostic role of integrated m6A/m5C/m1A/m7G methylation modifications in CRC has not been reported and requires further investigation. Five cohorts with 989 samples were first retrieved from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Then, Three m6A/m1A/m5C/m7G-associated molecular subtypes were identified in the TCGA cohort via the consensus clustering analysis, and 1710 co-expression module genes associated with subtypes were obtained from weighted gene co-expression network analysis (WGCNA) results. After conducting univariate Cox analysis in each cohort and retaining common genes, an RNA methylation-related signature (RMS) was developed through the combination of 101 algorithms. The RMS exhibited strong accuracy and robustness in predicting survival outcomes across distinct cohorts (TCGA, GSE17536, GSE17537, GSE29612, and GSE38832) and demonstrated good performance compared with previously reported risk signatures. Additionally, the RMS was identified as an independent prognostic factor for overall survival in the TCGA, GSE17536, GSE17537, GSE29612, and GSE38832 cohorts. The patients were then stratified into high and low-risk groups based on the median risk score across the five cohorts. Compared to the high-risk groups, the low-risk group showed an increased immune cell infiltration level and showed more benefit from immunotherapy and chemotherapy drugs. Moreover, six drugs (KU-0063794, temozolomide, DNMDP, ML162, SJ-172550, ML050) from the Cancer Therapeutics Response Portal (CTRP) and five drugs (BIBX-1382, lomitapide, ZLN005, PPT, panobinostat) from the PRSM database were identified for the high-risk group patients. By integrating data from the TCGA database and the Cancer Cell Line Encyclopedia (CCLE) database, a potential therapeutic target named TERT was identified for the high-risk group of patients. The single-cell results indicated that TERT was highly expressed in epithelial cells. Overall, our developed RMS can accurately predict patients survival outcomes and immunotherapy response, indicating promising application in clinical practice. These findings may offer guidance for the prognosis and personalized treatment of CRC.
Collapse
Affiliation(s)
- Hao Wei
- Clinical Laboratory, Guangyuan Central Hospital, Guangyuan, 628099, Sichuan, People's Republic of China
| | - Qingsong Luo
- Clinical Laboratory, Guangyuan Central Hospital, Guangyuan, 628099, Sichuan, People's Republic of China
| | - Weimin Zhong
- Central Laboratory, The Fifth Hospital of Xiamen, Xiamen, Fujian, People's Republic of China.
| |
Collapse
|
9
|
Zheng J, Wang S, Xia L, Sun Z, Chan KM, Bernards R, Qin W, Chen J, Xia Q, Jin H. Hepatocellular carcinoma: signaling pathways and therapeutic advances. Signal Transduct Target Ther 2025; 10:35. [PMID: 39915447 PMCID: PMC11802921 DOI: 10.1038/s41392-024-02075-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/18/2024] [Accepted: 11/14/2024] [Indexed: 02/09/2025] Open
Abstract
Liver cancer represents a major global health concern, with projections indicating that the number of new cases could surpass 1 million annually by 2025. Hepatocellular carcinoma (HCC) constitutes around 90% of liver cancer cases and is primarily linked to factors incluidng aflatoxin, hepatitis B (HBV) and C (HCV), and metabolic disorders. There are no obvious symptoms in the early stage of HCC, which often leads to delays in diagnosis. Therefore, HCC patients usually present with tumors in advanced and incurable stages. Several signaling pathways are dis-regulated in HCC and cause uncontrolled cell propagation, metastasis, and recurrence of HCC. Beyond the frequently altered and therapeutically targeted receptor tyrosine kinase (RTK) pathways in HCC, pathways involved in cell differentiation, telomere regulation, epigenetic modification and stress response also provide therapeutic potential. Investigating the key signaling pathways and their inhibitors is pivotal for achieving therapeutic advancements in the management of HCC. At present, the primary therapeutic approaches for advanced HCC are tyrosine kinase inhibitors (TKI), immune checkpoint inhibitors (ICI), and combination regimens. New trials are investigating combination therapies involving ICIs and TKIs or anti-VEGF (endothelial growth factor) therapies, as well as combinations of two immunotherapy regimens. The outcomes of these trials are expected to revolutionize HCC management across all stages. Here, we provide here a comprehensive review of cellular signaling pathways, their therapeutic potential, evidence derived from late-stage clinical trials in HCC and discuss the concepts underlying earlier clinical trials, biomarker identification, and the development of more effective therapeutics for HCC.
Collapse
Affiliation(s)
- Jiaojiao Zheng
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Siying Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Lei Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Zhen Sun
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Kui Ming Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, PR China
| | - René Bernards
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Wenxin Qin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Jinhong Chen
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, PR China.
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| | - Haojie Jin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
10
|
Gilgenkrantz H, Paradis V, Lotersztajn S. Cell metabolism-based therapy for liver fibrosis, repair, and hepatocellular carcinoma. Hepatology 2025; 81:269-287. [PMID: 37212145 PMCID: PMC11643143 DOI: 10.1097/hep.0000000000000479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/21/2023] [Indexed: 05/23/2023]
Abstract
Progression of chronic liver injury to fibrosis, abnormal liver regeneration, and HCC is driven by a dysregulated dialog between epithelial cells and their microenvironment, in particular immune, fibroblasts, and endothelial cells. There is currently no antifibrogenic therapy, and drug treatment of HCC is limited to tyrosine kinase inhibitors and immunotherapy targeting the tumor microenvironment. Metabolic reprogramming of epithelial and nonparenchymal cells is critical at each stage of disease progression, suggesting that targeting specific metabolic pathways could constitute an interesting therapeutic approach. In this review, we discuss how modulating intrinsic metabolism of key effector liver cells might disrupt the pathogenic sequence from chronic liver injury to fibrosis/cirrhosis, regeneration, and HCC.
Collapse
Affiliation(s)
- Hélène Gilgenkrantz
- Paris-Cité University, INSERM, Center for Research on Inflammation, Paris, France
| | - Valérie Paradis
- Paris-Cité University, INSERM, Center for Research on Inflammation, Paris, France
- Pathology Department, Beaujon Hospital APHP, Paris-Cité University, Clichy, France
| | - Sophie Lotersztajn
- Paris-Cité University, INSERM, Center for Research on Inflammation, Paris, France
| |
Collapse
|
11
|
Kezer CA, Kusztos V, Kassmeyer B, Lennon R, Rattan P, Kamath PS, Shah VH, Simonetto DA. Impact of sociodemographic disparities on sarcopenia, telomere length, and mortality in patients with liver disease in the US population. BMC Gastroenterol 2024; 24:404. [PMID: 39528945 PMCID: PMC11555844 DOI: 10.1186/s12876-024-03488-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND & AIMS Sarcopenia is common in patients with liver disease and both sarcopenia and short telomeres are associated with mortality, however their relationship in patients with liver disease remains unknown. METHODS A cohort of 16,072 adults from the National Health and Nutrition Examination Survey from 1999 to 2006 was analyzed. Liver disease was defined by aminotransferases and classified into etiology-based categories. Sarcopenia was defined by dual-energy x-ray absorptiometry. All analyses were conducted separately on each multiple imputation data set and combined via Rubin's rules. P-values for group comparisons were calculated by testing logistic regression parameter estimates. Cox proportional hazards regression was used for mortality analysis with mortality data available until 2015. RESULTS Sarcopenia was present in 9.5% of patients with liver disease. Age, race, income, education, physical inactivity, and certain medical comorbidities were associated with sarcopenia. Patients with liver disease and sarcopenia had significantly shorter telomeres than patients with liver disease without sarcopenia when unadjusted for age. The interaction between telomere length and sarcopenia was significantly associated with all-cause mortality. CONCLUSIONS The implications of telomere length on all-cause mortality in patients with liver disease varied by age and sarcopenia status. Shorter telomeres appear to be more highly associated with increased mortality in older patients without sarcopenia.
Collapse
Affiliation(s)
- Camille A Kezer
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA.
| | - Victoria Kusztos
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Ryan Lennon
- Department of Statistics, Mayo Clinic, Rochester, MN, USA
| | - Puru Rattan
- Division of Gastroenterology and Hepatology, University of Pennsylvania, Philadelphia, PA, USA
| | - Patrick S Kamath
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Vijay H Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Douglas A Simonetto
- Division of Gastroenterology and Hepatology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| |
Collapse
|
12
|
Ming Y, Gong Y, Fu X, Ouyang X, Peng Y, Pu W. Small-molecule-based targeted therapy in liver cancer. Mol Ther 2024; 32:3260-3287. [PMID: 39113358 PMCID: PMC11489561 DOI: 10.1016/j.ymthe.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/13/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
Liver cancer is one of the most prevalent malignant tumors worldwide. According to the Barcelona Clinic Liver Cancer staging criteria, clinical guidelines provide tutorials to clinical management of liver cancer at their individual stages. However, most patients diagnosed with liver cancer are at advanced stage; therefore, many researchers conduct investigations on targeted therapy, aiming to improve the overall survival of these patients. To date, small-molecule-based targeted therapies are highly recommended (first line: sorafenib and lenvatinib; second line: regorafenib and cabozantinib) by current the clinical guidelines of the American Society of Clinical Oncology, European Society for Medical Oncology, and National Comprehensive Cancer Network. Herein, we summarize the small-molecule-based targeted therapies in liver cancer, including the approved and preclinical therapies as well as the therapies under clinical trials, and introduce their history of discovery, clinical trials, indications, and molecular mechanisms. For drug resistance, the revealed mechanisms of action and the combination therapies are also discussed. In fact, the known small-molecule-based therapies still have limited clinical benefits to liver cancer patients. Therefore, we analyze the current status and give our ideas for the urgent issues and future directions in this field, suggesting clues for novel techniques in liver cancer treatment.
Collapse
Affiliation(s)
- Yue Ming
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China
| | - Yanqiu Gong
- National Clinical Research Center for Geriatrics and Department of General Practice, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xuewen Fu
- Jinhua Huanke Environmental Technology Co., Ltd., Jinhua 321000, China
| | - Xinyu Ouyang
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China; West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Peng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China; Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu 610212, China.
| | - Wenchen Pu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610064, China; West China School of Medicine, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
13
|
Penrice DD, Jalan-Sakrikar N, Jurk D, Passos JF, Simonetto DA. Telomere dysfunction in chronic liver disease: The link from aging. Hepatology 2024; 80:951-964. [PMID: 37102475 PMCID: PMC10848919 DOI: 10.1097/hep.0000000000000426] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/20/2023] [Indexed: 04/28/2023]
Affiliation(s)
- Daniel D. Penrice
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Nidhi Jalan-Sakrikar
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Diana Jurk
- Department of Physiology and Biomedical Engineering, Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
| | - João F. Passos
- Department of Physiology and Biomedical Engineering, Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota, USA
| | - Douglas A. Simonetto
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
14
|
Shou S, Li Y, Chen J, Zhang X, Zhang C, Jiang X, Liu F, Yi L, Zhang X, Geer E, Pu Z, Pang B. Understanding, diagnosing, and treating pancreatic cancer from the perspective of telomeres and telomerase. Cancer Gene Ther 2024; 31:1292-1305. [PMID: 38594465 PMCID: PMC11405285 DOI: 10.1038/s41417-024-00768-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/11/2024]
Abstract
Telomerase is associated with cellular aging, and its presence limits cellular lifespan. Telomerase by preventing telomere shortening can extend the number of cell divisions for cancer cells. In adult pancreatic cells, telomeres gradually shorten, while in precancerous lesions of cancer, telomeres in cells are usually significantly shortened. At this time, telomerase is still in an inactive state, and it is not until before and after the onset of cancer that telomerase is reactivated, causing cancer cells to proliferate. Methylation of the telomerase reverse transcriptase (TERT) promoter and regulation of telomerase by lactate dehydrogenase B (LDHB) is the mechanism of telomerase reactivation in pancreatic cancer. Understanding the role of telomeres and telomerase in pancreatic cancer will help to diagnose and initiate targeted therapy as early as possible. This article reviews the role of telomeres and telomerase as biomarkers in the development of pancreatic cancer and the progress of research on telomeres and telomerase as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Songting Shou
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuanliang Li
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiaqin Chen
- Department of Gastroenterology, Dongzhimen Hospital, Beijing, China
| | - Xing Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chuanlong Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaochen Jiang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fudong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Yi
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiyuan Zhang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - En Geer
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhenqing Pu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bo Pang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
15
|
Amadeo E, Foti S, Camera S, Rossari F, Persano M, Lo Prinzi F, Vitiello F, Casadei-Gardini A, Rimini M. Developing targeted therapeutics for hepatocellular carcinoma: a critical assessment of promising phase II agents. Expert Opin Investig Drugs 2024; 33:839-849. [PMID: 39039690 DOI: 10.1080/13543784.2024.2377321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 07/03/2024] [Indexed: 07/24/2024]
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) is the sixth most common cancer worldwide and the first for primary liver tumors. In recent years greater therapeutic advancement was represented by employment of tyrosine kinase inhibitors (TKIs) either in monotherapy or in combination with immune checkpoint inhibitors (ICIs). AREAS COVERED Major attention was given to target therapies in the last couple of years, especially in those currently under phase II trials. Priority was given either to combinations of novel ICI and TKIs or those targeting alternative mutations of major carcinogenic pathways. EXPERT OPINION As TKIs are playing a more crucial role in HCC therapeutic strategies, it is fundamental to further expand molecular testing and monitoring of acquired resistances. Despite the recent advancement in both laboratory and clinical studies, further research is necessary to face the discrepancy in clinical practice.
Collapse
Affiliation(s)
- Elisabeth Amadeo
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Silvia Foti
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Silvia Camera
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Federico Rossari
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Mara Persano
- Medical Oncology, University and University Hospital of Cagliari, Cagliari, Italy
| | - Federica Lo Prinzi
- Operative Research Unit of Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Francesco Vitiello
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Andrea Casadei-Gardini
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| | - Margherita Rimini
- Department of Oncology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute Hospital, Milan, Italy
| |
Collapse
|
16
|
Zhang J, Yang XY, Chen J, Zhou Q, Pan G, Wang Y, Luo W, Hou J, Bao H, Xu G, Tang G, Bai H, Yu R. A Poly(amino acid)-Based Nanomedicine Strategy: Telomere-Telomerase Axis Targeting and Magnetic Resonance Imaging in Hepatocellular Carcinoma Treatment. NANO LETTERS 2024; 24:8351-8360. [PMID: 38916238 DOI: 10.1021/acs.nanolett.4c01767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Targeting telomere maintenance has emerged as a promising strategy for hepatocellular carcinoma (HCC) treatment. However, given the duality of the telomere-telomerase axis in telomere maintenance, a comprehensive strategy is urgently needed. Herein, we develop a poly(amino acid) (D-PAAs)-based strategy for spatiotemporal codelivery of telomerase inhibitor, BIBR1523, and AKT inhibitor, isobavachalcone. By leveraging D-PAAs' modifiability, we synthesize polymer-inhibitor conjugates (PB and PI) and a folic acid-decorated tumor-targeting vector (PF). These building blocks undergo micellization to fabricate a codelivery nanomedicine (P-BI@P-FA) by exploiting D-PAAs' noncovalent assembly. P-BI@P-FA improves the pharmacokinetics, tumor selectivity, and bioavailability of small molecule inhibitors and initiates a dual telomere-specific inhibition by combining telomerase deactivation with telomere disruption. Furthermore, a hybrid tumor-targeting magnetic nanosystem is designed using D-PAAs and manganese dioxide to showcase magnetic resonance imaging capacities. Our D-PAAs-based strategy addresses the pressing need for telomere-specific HCC treatment while allowing for diagnostic application, presenting a promising avenue for nanomedicine design.
Collapse
Affiliation(s)
- Jinguo Zhang
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, People's Republic of China
| | - Xiao-Yan Yang
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, People's Republic of China
| | - Jiayi Chen
- Department of Chemistry, Zhejiang University, Hangzhou 310028, People's Republic of China
| | - Qiaomei Zhou
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, People's Republic of China
| | - Guohua Pan
- Department of Chemistry, Zhejiang University, Hangzhou 310028, People's Republic of China
| | - Yining Wang
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, People's Republic of China
| | - Wangping Luo
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, People's Republic of China
| | - Jue Hou
- Department of Chemistry, Zhejiang University, Hangzhou 310028, People's Republic of China
| | - Hanxiao Bao
- Department of Chemistry, Zhejiang University, Hangzhou 310028, People's Republic of China
| | - Guoqiao Xu
- Department of Chemistry, Zhejiang University, Hangzhou 310028, People's Republic of China
| | - Guping Tang
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, People's Republic of China
- Department of Chemistry, Zhejiang University, Hangzhou 310028, People's Republic of China
| | - Hongzhen Bai
- Department of Chemistry, Zhejiang University, Hangzhou 310028, People's Republic of China
| | - Risheng Yu
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, People's Republic of China
| |
Collapse
|
17
|
Kirchner VA, Badshah JS, Kyun Hong S, Martinez O, Pruett TL, Niedernhofer LJ. Effect of Cellular Senescence in Disease Progression and Transplantation: Immune Cells and Solid Organs. Transplantation 2024; 108:1509-1523. [PMID: 37953486 PMCID: PMC11089077 DOI: 10.1097/tp.0000000000004838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Aging of the world population significantly impacts healthcare globally and specifically, the field of transplantation. Together with end-organ dysfunction and prolonged immunosuppression, age increases the frequency of comorbid chronic diseases in transplant candidates and recipients, contributing to inferior outcomes. Although the frequency of death increases with age, limited use of organs from older deceased donors reflects the concerns about organ durability and inadequate function. Cellular senescence (CS) is a hallmark of aging, which occurs in response to a myriad of cellular stressors, leading to activation of signaling cascades that stably arrest cell cycle progression to prevent tumorigenesis. In aging and chronic conditions, senescent cells accumulate as the immune system's ability to clear them wanes, which is causally implicated in the progression of chronic diseases, immune dysfunction, organ damage, decreased regenerative capacity, and aging itself. The intimate interplay between senescent cells, their proinflammatory secretome, and immune cells results in a positive feedback loop, propagating chronic sterile inflammation and the spread of CS. Hence, senescent cells in organs from older donors trigger the recipient's alloimmune response, resulting in the increased risk of graft loss. Eliminating senescent cells or attenuating their inflammatory phenotype is a novel, potential therapeutic target to improve transplant outcomes and expand utilization of organs from older donors. This review focuses on the current knowledge about the impact of CS on circulating immune cells in the context of organ damage and disease progression, discusses the impact of CS on abdominal solid organs that are commonly transplanted, and reviews emerging therapies that target CS.
Collapse
Affiliation(s)
- Varvara A. Kirchner
- Division of Abdominal Transplantation, Department of Surgery, Stanford University, Stanford, CA
| | - Joshua S. Badshah
- Division of Abdominal Transplantation, Department of Surgery, Stanford University, Stanford, CA
| | - Suk Kyun Hong
- Division of Abdominal Transplantation, Department of Surgery, Stanford University, Stanford, CA
- Department of Surgery, Seoul National University College of Medicine, Seoul, Korea
| | - Olivia Martinez
- Division of Abdominal Transplantation, Department of Surgery, Stanford University, Stanford, CA
| | - Timothy L. Pruett
- Division of Transplantation, Department of Surgery, University of Minnesota, Minneapolis, MN
| | - Laura J. Niedernhofer
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN
| |
Collapse
|
18
|
Yan W, Rao D, Fan F, Liang H, Zhang Z, Dong H. Hepatitis B virus X protein and TGF-β: partners in the carcinogenic journey of hepatocellular carcinoma. Front Oncol 2024; 14:1407434. [PMID: 38962270 PMCID: PMC11220127 DOI: 10.3389/fonc.2024.1407434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/21/2024] [Indexed: 07/05/2024] Open
Abstract
Hepatitis B infection is substantially associated with the development of liver cancer globally, with the prevalence of hepatocellular carcinoma (HCC) cases exceeding 50%. Hepatitis B virus (HBV) encodes the Hepatitis B virus X (HBx) protein, a pleiotropic regulatory protein necessary for the transcription of the HBV covalently closed circular DNA (cccDNA) microchromosome. In previous studies, HBV-associated HCC was revealed to be affected by HBx in multiple signaling pathways, resulting in genetic mutations and epigenetic modifications in proto-oncogenes and tumor suppressor genes. In addition, transforming growth factor-β (TGF-β) has dichotomous potentials at various phases of malignancy as it is a crucial signaling pathway that regulates multiple cellular and physiological processes. In early HCC, TGF-β has a significant antitumor effect, whereas in advanced HCC, it promotes malignant progression. TGF-β interacts with the HBx protein in HCC, regulating the pathogenesis of HCC. This review summarizes the respective and combined functions of HBx and TGB-β in HCC occurrence and development.
Collapse
Affiliation(s)
- Wei Yan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei, China
| | - Dean Rao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei, China
| | - Feimu Fan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education, National Health Commission (NHC), Chinese Academy of Medical Sciences, Wuhan, China
| | - Zunyi Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei, China
| | - Hanhua Dong
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, China
- Hubei Province for the Clinical Medicine Research Center of Hepatic Surgery, Wuhan, Hubei, China
| |
Collapse
|
19
|
Zhang S, Xiao X, Yi Y, Wang X, Zhu L, Shen Y, Lin D, Wu C. Tumor initiation and early tumorigenesis: molecular mechanisms and interventional targets. Signal Transduct Target Ther 2024; 9:149. [PMID: 38890350 PMCID: PMC11189549 DOI: 10.1038/s41392-024-01848-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 06/20/2024] Open
Abstract
Tumorigenesis is a multistep process, with oncogenic mutations in a normal cell conferring clonal advantage as the initial event. However, despite pervasive somatic mutations and clonal expansion in normal tissues, their transformation into cancer remains a rare event, indicating the presence of additional driver events for progression to an irreversible, highly heterogeneous, and invasive lesion. Recently, researchers are emphasizing the mechanisms of environmental tumor risk factors and epigenetic alterations that are profoundly influencing early clonal expansion and malignant evolution, independently of inducing mutations. Additionally, clonal evolution in tumorigenesis reflects a multifaceted interplay between cell-intrinsic identities and various cell-extrinsic factors that exert selective pressures to either restrain uncontrolled proliferation or allow specific clones to progress into tumors. However, the mechanisms by which driver events induce both intrinsic cellular competency and remodel environmental stress to facilitate malignant transformation are not fully understood. In this review, we summarize the genetic, epigenetic, and external driver events, and their effects on the co-evolution of the transformed cells and their ecosystem during tumor initiation and early malignant evolution. A deeper understanding of the earliest molecular events holds promise for translational applications, predicting individuals at high-risk of tumor and developing strategies to intercept malignant transformation.
Collapse
Affiliation(s)
- Shaosen Zhang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Xinyi Xiao
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Yonglin Yi
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Xinyu Wang
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Lingxuan Zhu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Changping Laboratory, 100021, Beijing, China
| | - Yanrong Shen
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Dongxin Lin
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Changping Laboratory, 100021, Beijing, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, 510060, China.
| | - Chen Wu
- Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Key Laboratory of Cancer Genomic Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
- Changping Laboratory, 100021, Beijing, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
- CAMS Oxford Institute, Chinese Academy of Medical Sciences, 100006, Beijing, China.
| |
Collapse
|
20
|
Szilveszter RM, Muntean M, Florea A. Molecular Mechanisms in Tumorigenesis of Hepatocellular Carcinoma and in Target Treatments-An Overview. Biomolecules 2024; 14:656. [PMID: 38927059 PMCID: PMC11201617 DOI: 10.3390/biom14060656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Hepatocellular carcinoma is the most common primary malignancy of the liver, with hepatocellular differentiation. It is ranked sixth among the most common cancers worldwide and is the third leading cause of cancer-related deaths. The most important etiological factors discussed here are viral infection (HBV, HCV), exposure to aflatoxin B1, metabolic syndrome, and obesity (as an independent factor). Directly or indirectly, they induce chromosomal aberrations, mutations, and epigenetic changes in specific genes involved in intracellular signaling pathways, responsible for synthesis of growth factors, cell proliferation, differentiation, survival, the metastasis process (including the epithelial-mesenchymal transition and the expression of adhesion molecules), and angiogenesis. All these disrupted molecular mechanisms contribute to hepatocarcinogenesis. Furthermore, equally important is the interaction between tumor cells and the components of the tumor microenvironment: inflammatory cells and macrophages-predominantly with a pro-tumoral role-hepatic stellate cells, tumor-associated fibroblasts, cancer stem cells, extracellular vesicles, and the extracellular matrix. In this paper, we reviewed the molecular biology of hepatocellular carcinoma and the intricate mechanisms involved in hepatocarcinogenesis, and we highlighted how certain signaling pathways can be pharmacologically influenced at various levels with specific molecules. Additionally, we mentioned several examples of recent clinical trials and briefly described the current treatment protocol according to the NCCN guidelines.
Collapse
Affiliation(s)
- Raluca-Margit Szilveszter
- Department of Pathology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400340 Cluj-Napoca, Romania
- Department of Cell and Molecular Biology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (M.M.); (A.F.)
- Cluj County Emergency Clinical Hospital, 400340 Cluj-Napoca, Romania
| | - Mara Muntean
- Department of Cell and Molecular Biology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (M.M.); (A.F.)
| | - Adrian Florea
- Department of Cell and Molecular Biology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania; (M.M.); (A.F.)
| |
Collapse
|
21
|
Sidali S, Borie R, Sicre de Fontbrune F, El Husseini K, Rautou PE, Lainey E, Goria O, Crestani B, Cadranel J, Cottin V, Bunel V, Dumortier J, Jacquemin E, Reboux N, Hirschi S, Bourdin A, Meszaros M, Dharancy S, Hilaire S, Mallet V, Reynaud-Gaubert M, Terriou L, Gottrand F, Abou Chahla W, Khan JE, Carrier P, Saliba F, Rubbia-Brandt L, Aubert JD, Elkrief L, de Lédinghen V, Abergel A, Olivier T, Houssel P, Jouneau S, Wemeau L, Bergeron A, Leblanc T, Ollivier-Hourmand I, Nguyen Khac E, Morisse-Pradier H, Ba I, Boileau C, Roudot-Thoraval F, Vilgrain V, Bureau C, Nunes H, Naccache JM, Durand F, Francoz C, Roulot D, Valla D, Paradis V, Kannengiesser C, Plessier A. Liver disease in germline mutations of telomere-related genes: Prevalence, clinical, radiological, pathological features, outcome, and risk factors. Hepatology 2024; 79:1365-1380. [PMID: 37934624 DOI: 10.1097/hep.0000000000000667] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/02/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND AND AIM Germline mutations of telomere-related genes (TRG) induce multiorgan dysfunction, and liver-specific manifestations have not been clearly outlined. We aimed to describe TRG mutations-associated liver diseases. APPROACH AND RESULTS Retrospective multicenter analysis of liver disease (transaminases > 30 IU/L and/or abnormal liver imaging) in patients with TRG mutations. Main measurements were characteristics, outcomes, and risk factors of liver disease in a TRG mutations cohort. The prevalence of liver disease was compared to a community-based control group (n = 1190) stratified for age and matched 1:3 for known risk factors of liver disease. Among 132 patients with TRG mutations, 95 (72%) had liver disease, with associated lung, blood, skin, rheumatological, and ophthalmological TRG diseases in 82%, 77%, 55%, 39%, and 30% of cases, respectively. Liver biopsy was performed in 52/95 patients, identifying porto-sinusoidal vascular disease in 48% and advanced fibrosis/cirrhosis in 15%. After a follow-up of 21 months (12-54), ascites, hepato-pulmonary syndrome, variceal bleeding, and HCC occurred in 14%, 13%, 13%, and 2% of cases, respectively. Five-year liver transplantation-free survival was 69%. A FIB-4 score ≥ 3·25 and ≥1 risk factor for cirrhosis were associated with poor liver transplantation-free survival. Liver disease was more frequent in patients with TRG mutations than in the paired control group [80/396, (20%)], OR 12.9 (CI 95%: 7.8-21.3, p < 0.001). CONCLUSIONS TRG mutations significantly increase the risk of developing liver disease. Although symptoms may be mild, they may be associated with severe disease. Porto-sinusoidal vascular disease and cirrhosis were the most frequent lesions, suggesting that the mechanism of action is multifactorial.
Collapse
Affiliation(s)
- Sabrina Sidali
- Université de Paris, AP-HP, C, DMU DIGEST, Centre de Référence des Maladies Vasculaires du Foie, FILFOIE, ERN RARE-LIVER, Centre de Recherche sur l'inflammation, Inserm, Paris, France
- Centre Hospitalier Universitaire Charles Nicolle, Hépato-Gastroentérologie, Rouen, France
| | - Raphaël Borie
- APHP, Service de Pneumologie, Centre de Référence des Maladies Pulmonaires Rares, FHU APOLLO, Hôpital Bichat, Paris, France
| | - Flore Sicre de Fontbrune
- Hematology Transplant Unit, Hôpital Saint louis, APHP, Paris, France, and French National Referral Center for Aplastic Anemia, CRMR
| | - Kinan El Husseini
- APHP, Service de Pneumologie, Centre de Référence des Maladies Pulmonaires Rares, FHU APOLLO, Hôpital Bichat, Paris, France
- Centre Hospitalier Universitaire Charles Nicolle, Pneumologie, Rouen, France
| | - Pierre-Emmanuel Rautou
- Université de Paris, AP-HP, C, DMU DIGEST, Centre de Référence des Maladies Vasculaires du Foie, FILFOIE, ERN RARE-LIVER, Centre de Recherche sur l'inflammation, Inserm, Paris, France
| | | | - Odile Goria
- Université de Paris, AP-HP, C, DMU DIGEST, Centre de Référence des Maladies Vasculaires du Foie, FILFOIE, ERN RARE-LIVER, Centre de Recherche sur l'inflammation, Inserm, Paris, France
- Centre Hospitalier Universitaire Charles Nicolle, Hépato-Gastroentérologie, Rouen, France
| | - Bruno Crestani
- APHP, Service de Pneumologie, Centre de Référence des Maladies Pulmonaires Rares, FHU APOLLO, Hôpital Bichat, Paris, France
| | | | - Vincent Cottin
- Centre Hospitalier Universitaire Lyon Sud, Pneumologie, Pierre-Bénite, France
| | - Vincent Bunel
- APHP, Service de Pneumologie, Centre de Référence des Maladies Pulmonaires Rares, FHU APOLLO, Hôpital Bichat, Paris, France
| | | | - Emmanuel Jacquemin
- Hôpital Kremlin-Bicêtre AP-HP, Hépatologie Pédiatrique, Le Kremlin-Bicêtre, France
| | - Noémi Reboux
- Centre Hospitalier Régional Universitaire Morvan, Hépatologie, Brest, France
| | - Sandrine Hirschi
- Centre Hospitalier Universitaire de Strasbourg, Pneumologie, Strasbourg, France
| | - Arnaud Bourdin
- Centre Hospitalier Universitaire de Montpellier, Pneumologie, Montpellier, France
| | - Magdalena Meszaros
- Centre Hospitalier Universitaire de Montpellier, Hépatologie, Montpellier, France
| | - Sebastien Dharancy
- Centre Hospitalier Régional Universitaire de Lille, Hépatologie, Lille, France
| | | | | | | | - Louis Terriou
- Centre Hospitalier Régional Universitaire de Lille, Médecine interne- Hématologie, Lille, France
| | - Frédéric Gottrand
- Univ. Lille, CHU Lille, Department of pediatric gastroenterology hepatology and nutrition, Inserm, Lille, France
| | - Wadih Abou Chahla
- Centre Hospitalier Régional Universitaire de Lille, Hémato-Pédiatrie, Lille, France
| | | | - Paul Carrier
- Hôpital Universitaire Dupuytren, Hépatologie, Limoges, France
| | - Faouzi Saliba
- Hôpital Paul-Brousse, AP-HP, Hépatologie, Villejuif, France
| | | | - John-David Aubert
- Centre Hospitalier Universitaire Vaudois, Pneumologie, Lausanne, Suisse
| | - Laure Elkrief
- Centre Hospitalier Régional Universitaire de Tours, Hépatologie, Tours, France
| | - Victor de Lédinghen
- Centre Hospitalier Universitaire - Haut-Lévêque, Hépatologie, Pessac, France
| | - Armand Abergel
- Centre Hospitalier Universitaire, Hépatologie, Clermont-Ferrand, France
| | | | - Pauline Houssel
- Centre Hospitalier Universitaire, Hépatologie, Rennes, France
| | | | - Lidwine Wemeau
- Centre Hospitalier Régional Universitaire de Lille, Pneumologie, Lille, France
| | - Anne Bergeron
- Hôpitaux Universitaires de Genève (HUG), Pneumologie, Genève, Suisse
| | - Thierry Leblanc
- Hematology Transplant Unit, Hôpital Saint louis, APHP, Paris, France, and French National Referral Center for Aplastic Anemia, CRMR
| | | | - Eric Nguyen Khac
- Centre Hospitalier Universitaire Amiens-Picardie Site Sud, Hépatologie, Amiens, France
| | | | - Ibrahima Ba
- Hôpital Bichat-Claude Bernard AP-HP, Génétique, Paris, France
| | | | | | | | | | - Hilario Nunes
- Hôpital Avicenne AP-HP, Pneumologie, Bobigny, France
| | | | - François Durand
- Université de Paris, AP-HP, C, DMU DIGEST, Centre de Référence des Maladies Vasculaires du Foie, FILFOIE, ERN RARE-LIVER, Centre de Recherche sur l'inflammation, Inserm, Paris, France
| | - Claire Francoz
- Université de Paris, AP-HP, C, DMU DIGEST, Centre de Référence des Maladies Vasculaires du Foie, FILFOIE, ERN RARE-LIVER, Centre de Recherche sur l'inflammation, Inserm, Paris, France
| | | | - Dominique Valla
- Université de Paris, AP-HP, C, DMU DIGEST, Centre de Référence des Maladies Vasculaires du Foie, FILFOIE, ERN RARE-LIVER, Centre de Recherche sur l'inflammation, Inserm, Paris, France
| | | | | | - Aurélie Plessier
- Université de Paris, AP-HP, C, DMU DIGEST, Centre de Référence des Maladies Vasculaires du Foie, FILFOIE, ERN RARE-LIVER, Centre de Recherche sur l'inflammation, Inserm, Paris, France
| |
Collapse
|
22
|
You Z, Ling S, Zhao S, Han H, Bian Y, He Y, Chen X. Tissue damage from chronic liver injury inhibits peripheral NK cell abundance and proinflammatory function. J Leukoc Biol 2024; 115:1042-1052. [PMID: 38315633 PMCID: PMC11135618 DOI: 10.1093/jleuko/qiae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 02/07/2024] Open
Abstract
One of the difficulties in the treatment of hepatocellular carcinoma is that it is impossible to eliminate the inhibitory effect of the tumor microenvironment on immune response. Therefore, it is particularly important to understand the formation process of the tumor microenvironment. Chronic inflammation is the core factor of cancer occurrence and the leading stage of inflammation-cancer transformation, and the natural killer cell subsets play an important role in it. Our study confirmed that in the stage of chronic liver injury, the local immunosuppressive microenvironment of the liver (i.e. the damaged microenvironment) has been formed, but this inhibitory effect is only for peripheral natural killer cells and has no effect on tissue-resident natural killer subsets. The markers of damage microenvironment are the same as those of tumor microenvironment.
Collapse
Affiliation(s)
- Zonghao You
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P. R. China
| | - Shaoxue Ling
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P. R. China
| | - Shuwu Zhao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P. R. China
| | - Haixing Han
- SINOSH (Tianjin) Group Co., Ltd, Tianjin, P. R. China
| | - Yuhong Bian
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P. R. China
| | - Yongzhi He
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P. R. China
| | - Xi Chen
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P. R. China
| |
Collapse
|
23
|
Yang S, Li A, Lv L, Duan J, Zheng Z, Zhuo W, Min J, Wei J. Identification and Validation of Nicotinamide Metabolism-Related Gene Signatures as a Novel Prognostic Model for Hepatocellular Carcinoma. Onco Targets Ther 2024; 17:423-438. [PMID: 38827823 PMCID: PMC11143992 DOI: 10.2147/ott.s464709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/22/2024] [Indexed: 06/05/2024] Open
Abstract
Background Nicotinamide (NAM+) regulates redox and metabolic activities in the mitochondria. The intention of the research was to identify key genes that relate to nicotinamide in hepatocellular carcinoma (HCC). Methods Relevant clinical information were collected as well as RNA-seq data using the Cancer Genome Atlas (TCGA) database. Differential analysis was used to discover the genes that were differently expressed. On the key genes associated with NAM, functional enrichment analysis was carried out. Next, receiver operating characteristic (ROC) and prognosis Kaplan-Meier (K-M) curve analyses were used to evaluate the importance of important gene expression, respectively. The immune cell signatures were estimated using the CIBERSORT algorithm. Finally, the anticancer impact of NAM on HCC was experimentally confirmed, and important genes NADSYN1 and NT5C were validated at the protein level in clinical specimens. Results Six prognostic key genes (NAXE, NADSYN1, NT5C, NT5C3A, PNP and NT5E) were identified. There is an association between the level of key gene expression and the clinical prognosis. Four key genes (NAXE, NADSYN1, NT5C and NT5C3A) have statistical significance of survival prognosis. Finally, the expression of NAM-related genes and the inhibitory effect of NAM on HCC were verified by experiments. Conclusion The study first found some Nicotinamide metabolism-related differentially expressed genes (NMRDEGs) that are related to HCC can contribute to predicting survival and monitoring the treatment.
Collapse
Affiliation(s)
- Sijia Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, People’s Republic of China
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, People’s Republic of China
| | - Ang Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, People’s Republic of China
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, People’s Republic of China
| | - Lihong Lv
- Clinical Trial Institution of Pharmaceuticals, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, People’s Republic of China
| | - Jinxin Duan
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, People’s Republic of China
| | - Zhihua Zheng
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangdong Province Engineering Laboratory for Druggability and New Drug Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, People’s Republic of China
| | - Wenfeng Zhuo
- Department of Hepatobiliary Surgery, the Fifth Affiliated Hospital, Sun Yat-sen University 528406 Zhuhai, Guangdong, People’s Republic of China
| | - Jun Min
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, People’s Republic of China
| | - Jinxing Wei
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, People’s Republic of China
| |
Collapse
|
24
|
Peruhova M, Banova-Chakarova S, Miteva DG, Velikova T. Genetic screening of liver cancer: State of the art. World J Hepatol 2024; 16:716-730. [PMID: 38818292 PMCID: PMC11135278 DOI: 10.4254/wjh.v16.i5.716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/14/2024] [Accepted: 04/09/2024] [Indexed: 05/22/2024] Open
Abstract
Liver cancer, primarily hepatocellular carcinoma, remains a global health challenge with rising incidence and limited therapeutic options. Genetic factors play a pivotal role in the development and progression of liver cancer. This state-of-the-art paper provides a comprehensive review of the current landscape of genetic screening strategies for liver cancer. We discuss the genetic underpinnings of liver cancer, emphasizing the critical role of risk-associated genetic variants, somatic mutations, and epigenetic alterations. We also explore the intricate interplay between environmental factors and genetics, highlighting how genetic screening can aid in risk stratification and early detection via using liquid biopsy, and advancements in high-throughput sequencing technologies. By synthesizing the latest research findings, we aim to provide a comprehensive overview of the state-of-the-art genetic screening methods for liver cancer, shedding light on their potential to revolutionize early detection, risk assessment, and targeted therapies in the fight against this devastating disease.
Collapse
Affiliation(s)
- Milena Peruhova
- Department of Gastroenterology, University Hospital "Heart and Brain", Burgas 8000, Bulgaria
| | - Sonya Banova-Chakarova
- Department of Gastroenterology, University Hospital "Heart and Brain", Burgas 8000, Bulgaria.
| | - Dimitrina Georgieva Miteva
- Department of Genetics, Faculty of Biology, Sofia University" St. Kliment Ohridski, Sofia 1164, Bulgaria
| | - Tsvetelina Velikova
- Medical Faculty, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria
| |
Collapse
|
25
|
Zhang Q, Liu H, Xu Q, Liu H, Han Y, Li DL, Ma F, Zhang CY. Construction of a 3D Quantum Dot Nanoassembly with Two-Step FRET for One-Step Sensing of Human Telomerase RNA in Breast Cancer Cells and Tissues. Anal Chem 2024; 96:7738-7746. [PMID: 38690966 DOI: 10.1021/acs.analchem.4c01042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Telomerase is an important biomarker for early diagnosis of cancers, but current telomerase assays usually rely on measuring the extension products of telomerase substrates, which increases the assay complexity. More evidence indicates that human telomerase RNA (hTR), as a core component of telomerase, is positively correlated with the telomerase activity. Herein, we demonstrate the development of a duplex-specific nuclease (DSN)-propelled 3D quantum dot (QD) nanoassembly with two-step Föster resonance energy transfer (FRET) for the one-step sensing of hTR in breast cancer cells and tissues. This assay involves only one hairpin probe modified with a Cy5 at the sixth base from the 5'-biotin end and a BHQ2 at the 3'-terminus, which integrates three functions of target recognition, target recycling amplification, and signal readout. The anchoring of the hairpin probe on the 605QD surface results in the formation of a 3D 605QD-Cy5-probe-BHQ2 nanoassembly in which two-step FRET occurs among the 605QD, Cy5, and BHQ2 quencher. Notably, the formation of 605QD-Cy5-probe-BHQ2 nanoassembly facilitates the reduction of background signal and the increase of signal-to-background ratio due to its dense, highly oriented nucleic acid shell-induced steric hindrance effect. This assay can achieve one-step and rapid detection of hTR with a detection limit of 2.10 fM, which is the simplest and most rapid hTR assay reported so far. Moreover, this assay can efficiently distinguish single-base mismatched sequences, and it can discriminate the hTR level between breast cancer patients and healthy donors with a high accuracy of 100%, with great prospects for early diagnosis of cancers.
Collapse
Affiliation(s)
- Qian Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Huan Liu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
| | - Qinfeng Xu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Hao Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Yun Han
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Dong-Ling Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Fei Ma
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
26
|
Tang Q, Hu G, Sang Y, Chen Y, Wei G, Zhu M, Chen M, Li S, Liu R, Peng Z. Therapeutic targeting of PLK1 in TERT promoter-mutant hepatocellular carcinoma. Clin Transl Med 2024; 14:e1703. [PMID: 38769666 PMCID: PMC11106514 DOI: 10.1002/ctm2.1703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/16/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Hotspot mutations in the promoter of telomerase reverse transcriptase (TERT) gene are the most common genetic variants in hepatocellular carcinoma (HCC) and associated with poor prognosis of the disease. However, no drug was currently approved for treating TERT promoter mutation positive HCC patients. Here, we aim to explore the potential therapeutic strategy for targeting TERT promoter mutation in HCC. METHODS The Liver Cancer Model Repository database was used for screening potential drugs to selectively suppress the growth of TERT promoter mutant HCC cells. RNA-seq, CRISPR-Cas9 technology and siRNA transfection were performed for mechanistic studies. Cell counting kit-8 (CCK8) assay and the xenograft tumour models were used for cell growth detection in vitro and in vivo, respectively. Cell apoptosis and cell cycle arrest were analysed by Annexin V-FITC staining and/or propidium iodide staining. RESULTS PLK1 inhibitors were remarkably more sensitive to HCC cells harbouring TERT promoter mutation than wild-type cells in vitro and in vivo, which were diminished after TERT promoter mutation was edited to the wild-type nucleotide. Comparing the HCC cells with wild-type promoter of TERT, PLK1 inhibitors specifically downregulated Smad3 to regulate TERT for inducing apoptosis and G2/M arrest in TERT mutant HCC cells. Moreover, knockout of Smad3 counteracted the effects of PLK1 inhibitors in TERT mutant HCC cells. Finally, a cooperative effect of PLK1 and Smad3 inhibition was observed in TERT mutant cells. CONCLUSIONS PLK1 inhibition selectively suppressed the growth of TERT mutant HCC cells through Smad3, thus contributed to discover a novel therapeutic strategy to treat HCC patients harbouring TERT promoter mutations. KEY POINTS TERT promoter mutation confers sensitivity to PLK1 inhibitors in HCC. The selective growth inhibition of TERT mutant HCC cells induced by PLK1 inhibitor was mediated by Smad3. Combined inhibition of PLK1 and Smad3 showed a cooperative anti-tumor effect in TERT mutant HCC cells.
Collapse
Affiliation(s)
- Qin Tang
- Department of Radiation OncologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Institute of Precision MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Guanghui Hu
- Institute of Precision MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Ye Sang
- Institute of Precision MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Yulu Chen
- Institute of Precision MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Guangyan Wei
- Department of Radiation OncologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Meiyan Zhu
- Department of Radiation OncologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Mengke Chen
- Institute of Precision MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Shiyong Li
- Institute of Precision MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Rengyun Liu
- Institute of Precision MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Zhenwei Peng
- Department of Radiation OncologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Institute of Precision MedicineThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Cancer CenterThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
27
|
Gomatou G, Masaoutis C, Vamvakaris I, Kotteas E, Bouros E, Tzilas V, Bouros D. Differential immunohistochemical expression of hTERT in lung cancer patients with and without idiopathic pulmonary fibrosis. Pulmonology 2024; 30:214-221. [PMID: 35153179 DOI: 10.1016/j.pulmoe.2021.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/05/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Human telomerase reverse transcriptase (hTERT) is the catalytic subunit of telomerase enzyme, which adds nucleotides to telomeres and counteracts their length shortening. The development of a telomere maintenance mechanism represents a hallmark of cancer. On the other hand, idiopathic pulmonary fibrosis (IPF) is associated with mutations in telomerase genes and shorter telomeres. IPF is frequently complicated with lung cancer. AIM To investigate the expression of hTERT in lung cancer with co-existing IPF and to compare with lung cancer without fibrosis. METHODS Diagnostic lung cancerous biopsies were retrieved from 18 patients with lung cancer and concomitant IPF, as well as 18 age and gender matched controls with lung cancer without pulmonary fibrosis. The expression of hTERT was studied with immunohistochemistry. ImajeJ software was used to quantitate subcellular stain intensity. Immunohistochemical investigation of two senescence-associated markers, p16 and p21, was also performed in all 36 cases. RESULTS Both groups highly expressed hTERT, without significant difference (100% vs 95%, p = 0.521). Evaluation of p16 and p21 immunostaining revealed negative to minimal immunoreactivity in both groups. hTERT localization exhibited higher median nuclear intensity in the group of lung cancer with IPF (0.62 vs 0.45, p = 0.016), while cytoplasmic intensity did not differ significantly (0.17 vs 0.15, p = 0.463). Higher median nuclear intensity was also correlated with small cell lung cancer subtype in the whole study sample (0.69 vs 0.45, p = 0.09). CONCLUSION hTERT is highly expressed in lung cancer with concomitant IPF, but with differential localization compared to lung cancer without IPF, implying differences in pathogenicity and requiring further investigation.
Collapse
Affiliation(s)
- G Gomatou
- Interstitial Lung Diseases Unit, 1st Department of Respiratory Medicine, "Sotiria" Hospital for Diseases of the Chest, National and Kapodistrian University of Athens, Athens, Greece; Oncology Unit, Third Department of Medicine, "Sotiria" Hospital for Diseases of the Chest, National and Kapodistrian University of Athens, Athens, Greece.
| | - C Masaoutis
- 1st Department of Pathology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - I Vamvakaris
- Department of Pathology, "Sotiria" Hospital for Diseases of the Chest, Athens, Greece
| | - E Kotteas
- Oncology Unit, Third Department of Medicine, "Sotiria" Hospital for Diseases of the Chest, National and Kapodistrian University of Athens, Athens, Greece
| | - E Bouros
- Interstitial Lung Diseases Unit, 1st Department of Respiratory Medicine, "Sotiria" Hospital for Diseases of the Chest, National and Kapodistrian University of Athens, Athens, Greece
| | - V Tzilas
- Center for Diseases of the Chest, Athens Medical Center, Athens, Greece
| | - D Bouros
- Interstitial Lung Diseases Unit, 1st Department of Respiratory Medicine, "Sotiria" Hospital for Diseases of the Chest, National and Kapodistrian University of Athens, Athens, Greece; Center for Diseases of the Chest, Athens Medical Center, Athens, Greece
| |
Collapse
|
28
|
Zheng S, Chan SW, Liu F, Liu J, Chow PKH, Toh HC, Hong W. Hepatocellular Carcinoma: Current Drug Therapeutic Status, Advances and Challenges. Cancers (Basel) 2024; 16:1582. [PMID: 38672664 PMCID: PMC11048862 DOI: 10.3390/cancers16081582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/12/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common form of liver cancer, accounting for ~90% of liver neoplasms. It is the second leading cause of cancer-related deaths and the seventh most common cancer worldwide. Although there have been rapid developments in the treatment of HCC over the past decade, the incidence and mortality rates of HCC remain a challenge. With the widespread use of the hepatitis B vaccine and antiviral therapy, the etiology of HCC is shifting more toward metabolic-associated steatohepatitis (MASH). Early-stage HCC can be treated with potentially curative strategies such as surgical resection, liver transplantation, and radiofrequency ablation, improving long-term survival. However, most HCC patients, when diagnosed, are already in the intermediate or advanced stages. Molecular targeted therapy, followed by immune checkpoint inhibitor immunotherapy, has been a revolution in HCC systemic treatment. Systemic treatment of HCC especially for patients with compromised liver function is still a challenge due to a significant resistance to immune checkpoint blockade, tumor heterogeneity, lack of oncogenic addiction, and lack of effective predictive and therapeutic biomarkers.
Collapse
Affiliation(s)
- Shunzhen Zheng
- Key Laboratory of Biopharmaceuticals, Postdoctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Science, Jinan 250098, China;
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore 138673, Singapore; (S.W.C.); (W.H.)
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China;
| | - Siew Wee Chan
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore 138673, Singapore; (S.W.C.); (W.H.)
| | - Fei Liu
- Key Laboratory of Biopharmaceuticals, Postdoctoral Scientific Research Workstation, Shandong Academy of Pharmaceutical Science, Jinan 250098, China;
| | - Jun Liu
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China;
| | - Pierce Kah Hoe Chow
- Division of Surgery and Surgical Oncology, National Cancer Centre, Singapore 169610, Singapore;
- Academic Clinical Programme for Surgery, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Han Chong Toh
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 168583, Singapore;
| | - Wanjin Hong
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore 138673, Singapore; (S.W.C.); (W.H.)
| |
Collapse
|
29
|
Dawoud A, Elmasri RA, Mohamed AH, Mahmoud A, Rostom MM, Youness RA. Involvement of CircRNAs in regulating The "New Generation of Cancer Hallmarks": A Special Depiction on Hepatocellular Carcinoma. Crit Rev Oncol Hematol 2024; 196:104312. [PMID: 38428701 DOI: 10.1016/j.critrevonc.2024.104312] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/01/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024] Open
Abstract
The concept of 'Hallmarks of Cancer' is an approach of reducing the enormous complexity of cancer to a set of guiding principles. As the underlying mechanism of cancer are portrayed, we find that we gain insight and additional aspects of the disease arise. The understanding of the tumor microenvironment (TME) brought a new dimension and led to the discovery of novel hallmarks such as senescent cells, non-mutational epigenetic reprogramming, polymorphic microbiomes and unlocked phenotypic plasticity. Circular RNAs (circRNAs) are single-stranded, covalently closed RNA molecules that are ubiquitous across all species. Recent studies on the circRNAs have highlighted their crucial function in regulating the formation of human malignancies through a range of biological processes. The primary goal of this review is to clarify the role of circRNAs in the most common form of liver cancer, hepatocellular carcinoma (HCC). This review also addressed the topic of how circRNAs affect HCC hallmarks, including the new generation hallmarks. Finally, the enormous applications that these rapidly expanding ncRNA molecules serve in the functional and molecular development of effective HCC diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- A Dawoud
- Molecular Genetics and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), 11835, New Administrative Capital, Egypt; School of Medicine, University of North California, Chapel Hill, NC 27599, USA
| | - R A Elmasri
- Molecular Genetics and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), 11835, New Administrative Capital, Egypt
| | - A H Mohamed
- Molecular Genetics and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), 11835, New Administrative Capital, Egypt; Department of Chemistry, Faculty of Science, Cairo University, Cairo, Egypt
| | - A Mahmoud
- Molecular Genetics and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), 11835, New Administrative Capital, Egypt; Biotechnology School, Nile University, Giza 12677, Egypt
| | - M M Rostom
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC), Cairo 11835, Egypt
| | - R A Youness
- Molecular Genetics and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU), 11835, New Administrative Capital, Egypt.
| |
Collapse
|
30
|
Bertrand A, Ba I, Kermasson L, Pirabakaran V, Chable N, Lainey E, Ménard C, Kallel F, Picard C, Hadiji S, Coolen-Allou N, Blanchard E, de Villartay JP, Moshous D, Roelens M, Callebaut I, Kannengiesser C, Revy P. Characterization of novel mutations in the TEL-patch domain of the telomeric factor TPP1 associated with telomere biology disorders. Hum Mol Genet 2024; 33:612-623. [PMID: 38176734 DOI: 10.1093/hmg/ddad210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 01/06/2024] Open
Abstract
Telomeres are nucleoprotein structures that protect the chromosome ends from degradation and fusion. Telomerase is a ribonucleoprotein complex essential to maintain the length of telomeres. Germline defects that lead to short and/or dysfunctional telomeres cause telomere biology disorders (TBDs), a group of rare and heterogeneous Mendelian diseases including pulmonary fibrosis, dyskeratosis congenita, and Høyeraal-Hreidarsson syndrome. TPP1, a telomeric factor encoded by the gene ACD, recruits telomerase at telomere and stimulates its activity via its TEL-patch domain that directly interacts with TERT, the catalytic subunit of telomerase. TBDs due to TPP1 deficiency have been reported only in 11 individuals. We here report four unrelated individuals with a wide spectrum of TBD manifestations carrying either heterozygous or homozygous ACD variants consisting in the recurrent and previously described in-frame deletion of K170 (K170∆) and three novel missense mutations G179D, L184R, and E215V. Structural and functional analyses demonstrated that the four variants affect the TEL-patch domain of TPP1 and impair telomerase activity. In addition, we identified in the ACD gene several motifs associated with small deletion hotspots that could explain the recurrence of the K170∆ mutation. Finally, we detected in a subset of blood cells from one patient, a somatic TERT promoter-activating mutation that likely provides a selective advantage over non-modified cells, a phenomenon known as indirect somatic genetic rescue. Together, our results broaden the genetic and clinical spectrum of TPP1 deficiency and specify new residues in the TEL-patch domain that are crucial for length maintenance and stability of human telomeres in vivo.
Collapse
Affiliation(s)
- Alexis Bertrand
- Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue contre le Cancer, INSERM UMR 1163, Imagine Institute, 24 boulevard du Montparnasse, Paris 75015, France
- Université Paris Cité, Imagine Institute, Paris 75015, France
| | - Ibrahima Ba
- Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue contre le Cancer, INSERM UMR 1163, Imagine Institute, 24 boulevard du Montparnasse, Paris 75015, France
- Université Paris Cité, Imagine Institute, Paris 75015, France
- Assistance Publique des Hôpitaux de Paris, Hôpital Bichat, Service de Génétique, Université Paris Diderot, Paris 75018, France
| | - Laëtitia Kermasson
- Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue contre le Cancer, INSERM UMR 1163, Imagine Institute, 24 boulevard du Montparnasse, Paris 75015, France
- Université Paris Cité, Imagine Institute, Paris 75015, France
| | - Vithura Pirabakaran
- Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue contre le Cancer, INSERM UMR 1163, Imagine Institute, 24 boulevard du Montparnasse, Paris 75015, France
- Université Paris Cité, Imagine Institute, Paris 75015, France
| | - Noémie Chable
- Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue contre le Cancer, INSERM UMR 1163, Imagine Institute, 24 boulevard du Montparnasse, Paris 75015, France
- Université Paris Cité, Imagine Institute, Paris 75015, France
| | - Elodie Lainey
- Hematology Laboratory, Robert Debré Hospital-AssistancePublique-Hôpitaux de Paris (APHP), INSERM UMR 1131-Hematology University Institute-Denis Diderot School of Medicine, Paris 75019, France
| | - Christelle Ménard
- Assistance Publique des Hôpitaux de Paris, Hôpital Bichat, Service de Génétique, Université Paris Diderot, Paris 75018, France
| | - Faten Kallel
- Hematology Department, Hedi Chaker Hospital, 3029, Sfax, Tunisia
| | - Capucine Picard
- Université Paris Cité, Imagine Institute, Paris 75015, France
- Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, (APHP), Paris 75015, France
- Centre de références des déficits immunitaires Héréditaires (CEREDIH), Necker-Enfants Malades Hospital APHP, Paris 75015, France
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, Inserm UMR 1163, Institut Imagine, Paris 75015, France
| | - Sondes Hadiji
- Hematology Department, Hedi Chaker Hospital, 3029, Sfax, Tunisia
| | - Nathalie Coolen-Allou
- Service de Pneumologie, Hôpital Félix Guyon, CHU Réunion, Saint-Denis de la Réunion 97400, France
| | - Elodie Blanchard
- Service de Pneumologie, Hôpital Haut-Lévêque, CHU Bordeaux, Bordeaux 33604, France
| | - Jean-Pierre de Villartay
- Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue contre le Cancer, INSERM UMR 1163, Imagine Institute, 24 boulevard du Montparnasse, Paris 75015, France
- Université Paris Cité, Imagine Institute, Paris 75015, France
| | - Despina Moshous
- Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue contre le Cancer, INSERM UMR 1163, Imagine Institute, 24 boulevard du Montparnasse, Paris 75015, France
- Université Paris Cité, Imagine Institute, Paris 75015, France
- Department of Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades Hospital, (APHP), Paris 75015, France
| | - Marie Roelens
- Université Paris Cité, Imagine Institute, Paris 75015, France
- Centre de références des déficits immunitaires Héréditaires (CEREDIH), Necker-Enfants Malades Hospital APHP, Paris 75015, France
| | - Isabelle Callebaut
- Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris 75005, France
| | - Caroline Kannengiesser
- Assistance Publique des Hôpitaux de Paris, Hôpital Bichat, Service de Génétique, Université Paris Diderot, Paris 75018, France
| | - Patrick Revy
- Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue contre le Cancer, INSERM UMR 1163, Imagine Institute, 24 boulevard du Montparnasse, Paris 75015, France
- Université Paris Cité, Imagine Institute, Paris 75015, France
| |
Collapse
|
31
|
Wen KW, Kakar S. Hepatic Precancerous Lesions and Early Hepatocellular Carcinoma. Gastroenterol Clin North Am 2024; 53:109-132. [PMID: 38280744 DOI: 10.1016/j.gtc.2023.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2024]
Abstract
This review discusses the diagnostic challenges of diagnosing and treating precursor lesions of hepatocellular carcinoma (HCC) in both cirrhotic and non-cirrhotic livers. The distinction of high-grade dysplastic nodule (the primary precursor lesion in cirrhotic liver) from early HCC is emphasized based on morphologic, immunohistochemical, and genomic features. The risk factors associated with HCC in hepatocellular adenomas (precursor lesion in non-cirrhotic liver) are delineated, and the risk in different subtypes is discussed with emphasis on terminology, diagnosis, and genomic features.
Collapse
Affiliation(s)
- Kwun Wah Wen
- 505 Parnassus Avenue, M545, Box #0102, San Francisco, CA 94143, USA.
| | - Sanjay Kakar
- 505 Parnassus Avenue, M545, Box #0102, San Francisco, CA 94143, USA
| |
Collapse
|
32
|
Beaufrère A, Paisley S, Ba I, Laouirem S, Priori V, Cazier H, Favre L, Cauchy F, Lesurtel M, Calderaro J, Kannengiesser C, Paradis V. Differential diagnosis of small hepatocellular nodules in cirrhosis: surrogate histological criteria of TERT promoter mutations. Histopathology 2024; 84:473-481. [PMID: 37903649 DOI: 10.1111/his.15086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/25/2023] [Accepted: 10/14/2023] [Indexed: 11/01/2023]
Abstract
AIMS The differential diagnosis of small hepatocellular nodules in cirrhosis between dysplastic nodules and hepatocellular carcinoma (HCC) remains challenging on biopsy. As TERT promoter (pTERT) mutations may indicate the nodules already engaged in the malignant process, the aim of this study was to identify histological criteria associated with pTERT mutations by detecting these mutations by ddPCR in small formalin-fixed paraffin-embedded (FFPE) hepatocellular nodules arising in cirrhosis. METHODS AND RESULTS We built a bicentric cohort data set of 339 hepatocellular nodules < 2 cm from cirrhotic samples, divided into a test cohort of 299 resected samples and a validation cohort of 40 biopsies. Pathological review, based on the evaluation of 14 histological criteria, classified all nodules. pTERT mutations were identified by ddPCR in FFPE samples. Among the 339 nodules, ddPCR revealed pTERT mutations in 105 cases (31%), including 90 and 15 cases in the test and validation cohorts, respectively. On multivariate analysis, three histological criteria were associated with pTERT mutations in the test cohort: increased cell density (P = 0.003), stromal invasion (P = 0.036) and plate-thickening anomalies (P < 0.001). With the combination of at least two of these major criteria, the AUC for predicting pTERT mutations was 0.84 in the test cohort (sensitivity: 86%, specificity: 83%) and 0.81 in the validation cohort (sensitivity: 87%, specificity: 76%). CONCLUSIONS We identified three histological criteria as surrogate markers of pTERT mutations that may be used in routine biopsy to more clearly classify small hepatocellular nodules arising in cirrhosis.
Collapse
Affiliation(s)
- Aurélie Beaufrère
- Université Paris Cité, Paris, France
- AP-HP.Nord, Department of Pathology, FHU MOSAIC, Beaujon Hospital, Clichy, France
- Centre de Recherche sur l'Inflammation, INSERM UMR 1149, Paris, France
| | - Sarah Paisley
- AP-HP.Nord, Department of Pathology, FHU MOSAIC, Beaujon Hospital, Clichy, France
- Centre de Recherche sur l'Inflammation, INSERM UMR 1149, Paris, France
| | - Ibrahima Ba
- AP-HP.Nord, Department of Molecular Genetics, Bichat Hospital, Paris, France
| | - Samira Laouirem
- Centre de Recherche sur l'Inflammation, INSERM UMR 1149, Paris, France
| | - Victoria Priori
- Centre de Recherche sur l'Inflammation, INSERM UMR 1149, Paris, France
| | - Hélène Cazier
- Centre de Recherche sur l'Inflammation, INSERM UMR 1149, Paris, France
| | - Loëtitia Favre
- AP-HP, Department of Pathology, Henri Mondor Hospital, Créteil, France
| | - François Cauchy
- Centre de Recherche sur l'Inflammation, INSERM UMR 1149, Paris, France
| | - Mickael Lesurtel
- Université Paris Cité, Paris, France
- AP-HP.Nord, Department of HPB Surgery an d Liver Transplantation, Beaujon Hospital, Clichy, France
| | - Julien Calderaro
- AP-HP, Department of Pathology, Henri Mondor Hospital, Créteil, France
| | | | - Valérie Paradis
- Université Paris Cité, Paris, France
- AP-HP.Nord, Department of Pathology, FHU MOSAIC, Beaujon Hospital, Clichy, France
- Centre de Recherche sur l'Inflammation, INSERM UMR 1149, Paris, France
| |
Collapse
|
33
|
Chen C, Xie Z, Ni Y, He Y. Screening immune-related blood biomarkers for DKD-related HCC using machine learning. Front Immunol 2024; 15:1339373. [PMID: 38318171 PMCID: PMC10838782 DOI: 10.3389/fimmu.2024.1339373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/05/2024] [Indexed: 02/07/2024] Open
Abstract
Background Diabetes mellitus is a significant health problem worldwide, often leading to diabetic kidney disease (DKD), which may also influence the occurrence of hepatocellular carcinoma (HCC). However, the relationship and diagnostic biomarkers between DKD and HCC are unclear. Methods Using public database data, we screened DKD secretory RNAs and HCC essential genes by limma and WGCNA. Potential mechanisms, drugs, and biomarkers for DKD-associated HCC were identified using PPI, functional enrichment, cMAP, and machine learning algorithms, and a diagnostic nomogram was constructed. Then, ROC, calibration, and decision curves were used to evaluate the diagnostic performance of the nomograms. In addition, immune cell infiltration in HCC was explored using CIBERSORT. Finally, the detectability of critical genes in blood was verified by qPCR. Results 104 DEGs associated with HCC using WGCNA were identified. 101 DEGs from DKD were predicated on secreting into the bloodstream with Exorbase datasets. PPI analysis identified three critical modules considered causative genes for DKD-associated HCC, primarily involved in inflammation and immune regulation. Using lasso and RM, four hub genes associated with DKD-associated HCC were identified, and a diagnostic nomogram confirmed by DCA curves was established. The results of immune cell infiltration showed immune dysregulation in HCC, which was associated with the expression of four essential genes. PLVAP was validated by qPCR as a possible blood-based diagnostic marker for DKD-related HCC. Conclusion We revealed the inflammatory immune pathways of DKD-related HCC and developed a diagnostic nomogram for HCC based on PLVAP, C7, COL15A1, and MS4A6A. We confirmed with qPCR that PLVAP can be used as a blood marker to assess the risk of HCC in DKD patients.
Collapse
Affiliation(s)
- Chao Chen
- Engineering Research Center of Natural Medicine, Ministry of Education, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, China
- Instrumentation and Service Center for Science and Technology, Beijing Normal University at Zhuhai, Zhuhai, China
| | - Zhinan Xie
- Medical Engineering Department, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Ying Ni
- Engineering Research Center of Natural Medicine, Ministry of Education, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, China
| | - Yuxi He
- Department of Pediatrics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
34
|
Yang R, Hu J, Zhang L, Liu X, Huang Y, Zhang L, Fan Q. Recent advances in optical biosensing and imaging of telomerase activity and relevant signal amplification strategies. Analyst 2024; 149:290-303. [PMID: 38099470 DOI: 10.1039/d3an01900d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Telomerase as a new valuable biomarker for early diagnosis and prognosis evaluation of cancer has attracted much interest in the field of biosensors, cell imaging, and drug screening. In this review, we mainly focus on different optical techniques and various signal amplification strategies for telomerase activity determination. Fluorometric, colorimetry, chemiluminescence, surface-enhanced Raman scattering (SERS), and dual-mode techniques for telomerase sensing and imaging are summarized. Signal amplification strategies include two categories: one is nucleic acid-based amplification, such as rolling circle amplification (RCA), the hybridization chain reaction (HCR), and catalytic hairpin assembly (CHA); the other is nanomaterial-assisted amplification, including metal nanoclusters, quantum dots, transition metal compounds, graphene oxide, and DNA nanomaterials. Challenges and prospects are also discussed to provide new insights for future development of multifunctional strategies and techniques for in situ and in vivo analysis of biomarkers for accurate cancer diagnosis.
Collapse
Affiliation(s)
- Ruining Yang
- The State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Junbo Hu
- The State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Longsheng Zhang
- The State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Xingfen Liu
- The State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Yanqin Huang
- The State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Lei Zhang
- The State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Quli Fan
- The State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| |
Collapse
|
35
|
Al-Karmalawy AA, Mousa MHA, Sharaky M, Mourad MAE, El-Dessouki AM, Hamouda AO, Alnajjar R, Ayed AA, Shaldam MA, Tawfik HO. Lead Optimization of BIBR1591 To Improve Its Telomerase Inhibitory Activity: Design and Synthesis of Novel Four Chemical Series with In Silico, In Vitro, and In Vivo Preclinical Assessments. J Med Chem 2024; 67:492-512. [PMID: 38117230 DOI: 10.1021/acs.jmedchem.3c01708] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Herein, modifications to the previously reported BIBR1591 were conducted to obtain bioisosteric candidates with improved activities. The % inhibition of the newly afforded candidates against the telomerase target was investigated. Notably, 6f achieved superior telomerase inhibition (63.14%) compared to BIBR1532 and BIBR1591 (69.64 and 51.58%, respectively). In addition, 8a and 8b showed comparable promising telomerase inhibition with 58.65 and 55.57%, respectively, which were recorded to be frontier to that of BIBR1591. 6f, 8a, and 8b were tested against five cancer cell lines related to the lung and liver subtypes. Moreover, 6f was examined on both cell cycle progression and apoptosis induction in HuH7 cancer cells. Furthermore, the in vivo antitumor activity of 6f was further assessed in female mice with solid Ehrlich carcinoma. In addition, molecular docking and molecular dynamics simulations were carried out. Collectively, 6f, 8a, and 8b could be considered potential new telomerase inhibitors to be subjected to further investigation and/or optimization.
Collapse
Affiliation(s)
- Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, 6h of October City, Giza 12566, Egypt
| | - Mai H A Mousa
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo 11786, Egypt
| | - Marwa Sharaky
- Cancer Biology Department, Pharmacology Unit, National Cancer Institute (NCI), Cairo University, Cairo 12613, Egypt
| | - Mai A E Mourad
- Medicinal Chemistry Department, Faculty of Pharmacy, Port-Said University, Port-Said 42511, Egypt
| | - Ahmed M El-Dessouki
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ahram Canadian University, 6th of October City, Giza 12566, Egypt
| | - Amir O Hamouda
- Department of Biochemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt
| | - Radwan Alnajjar
- Department of Chemistry, Faculty of Science, University of Benghazi, Benghazi 1308, Libya
- PharmD, Faculty of Pharmacy, Libyan International Medical University, Benghazi 1308, Libya
| | - Abdelmoneim A Ayed
- Department of Chemistry, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Moataz A Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Haytham O Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
36
|
Annamaraju SS, Mullaguri SC, Putta S, Vishnubhotla R, Kancha RK. Liver Cancer. BIOMEDICAL ASPECTS OF SOLID CANCERS 2024:61-71. [DOI: 10.1007/978-981-97-1802-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
37
|
Panfili FM, Pietrobattista A, Vecchio D, Gonfiantini MV, Bartuli A, Macchiaiolo M. Commentary: Case report: Hereditary fibrosing poikiloderma with tendon contractures, myopathy, and pulmonary fibrosis (POIKTMP) presenting with liver cirrhosis and steroid-responsive interstitial pneumonia. Front Genet 2023; 14:1255807. [PMID: 38188503 PMCID: PMC10770826 DOI: 10.3389/fgene.2023.1255807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024] Open
Affiliation(s)
- Filippo M. Panfili
- Rare Diseases and Medical Genetics Unit, Bambino Gesù Children’s Hospital, IRCSS, Rome, Italy
| | - Andrea Pietrobattista
- Division of Gastroenterology, Hepatology and Nutrition, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| | - Davide Vecchio
- Rare Diseases and Medical Genetics Unit, Bambino Gesù Children’s Hospital, IRCSS, Rome, Italy
| | - Michaela V. Gonfiantini
- Rare Diseases and Medical Genetics Unit, Bambino Gesù Children’s Hospital, IRCSS, Rome, Italy
| | - Andrea Bartuli
- Rare Diseases and Medical Genetics Unit, Bambino Gesù Children’s Hospital, IRCSS, Rome, Italy
| | - Marina Macchiaiolo
- Rare Diseases and Medical Genetics Unit, Bambino Gesù Children’s Hospital, IRCSS, Rome, Italy
| |
Collapse
|
38
|
Ma M, Wei N, Yang J, Ding T, Song A, Chen L, Zheng S, Jin H. Schisandrin B promotes senescence of activated hepatic stellate cell via NCOA4-mediated ferritinophagy. PHARMACEUTICAL BIOLOGY 2023; 61:621-629. [PMID: 37010139 PMCID: PMC10071970 DOI: 10.1080/13880209.2023.2189908] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/31/2023] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
CONTEXT Schisandrin B (Sch B), an active ingredient from Schisandrae chinensis (Turcz.) Baill. (Schisandraceae) Fructus, possesses diverse pharmacological activities including antitumor, anti-inflammation, and hepatoprotection. OBJECTIVE To explore the effect of Sch B on activated HSCs senescence in hepatic fibrosis and the mechanisms implicated. MATERIALS AND METHODS ICR mice with CCl4-induced hepatic fibrosis were supplemented with Sch B (40 mg/kg) for 30 d and LX2 cells were treated with Sch B (5, 10 and 20 μM) for 24 h. Cellular senescence was assessed by senescence-related indicators senescence-associated β-galactosidase (SA-β-gal) activity and the expression of p16, p21, p53, γ-H2AX, H3K9me3, TERT, TRF1, and TRF2. Ferric ammonium citrate (FAC) and NCOA4 siRNA were used to evaluate the mechanisms underlying Sch B's regulation of cellular senescence. RESULTS Sch B (40 mg/kg) reduced serum levels of AST and ALT (53.2% and 63.6%), alleviated hepatic collagen deposition, and promoted activated HSCs senescence in mice. Treatment with Sch B (20 μM) decreased cell viability to 80.38 ± 4.87% and elevated SA-β-gal activity, with the levels of p16, p21 and p53 increased by 4.5-, 2.9-, and 3.5-fold and the levels of TERT, TRF1 and TRF2 decreased by 2.4-, 2.7-, and 2.6-fold in LX2 cells. FAC (400 μM) enhanced Sch B's effect mentioned above. NCOA4 siRNA weakened the effects of Sch B on iron deposition and HSCs senescence. CONCLUSIONS Sch B could ameliorate hepatic fibrosis through the promotion of activated HSCs senescence, which might be attributed to its induction of NCOA4-mediated ferritinophagy and subsequent iron overload.
Collapse
Affiliation(s)
- Mingyue Ma
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, Anhui, P.R. China
| | - Na Wei
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, Anhui, P.R. China
| | - Jieren Yang
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, Anhui, P.R. China
| | - Tingting Ding
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, Anhui, P.R. China
| | - Anping Song
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, Anhui, P.R. China
| | - Lerong Chen
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, Anhui, P.R. China
| | - Shuguo Zheng
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, Anhui, P.R. China
- Laboratory of Pharmacology of Chinese Medicine, School of Pharmacy, Wannan Medical College, Wuhu, Anhui, P.R. China
| | - Huanhuan Jin
- Department of Pharmacology, School of Pharmacy, Wannan Medical College, Wuhu, Anhui, P.R. China
- Laboratory of Pharmacology of Chinese Medicine, School of Pharmacy, Wannan Medical College, Wuhu, Anhui, P.R. China
| |
Collapse
|
39
|
Liu TY, Liao CC, Chang YS, Chen YC, Chen HD, Lai IL, Peng CY, Chung CC, Chou YP, Tsai FJ, Jeng LB, Chang JG. Identification of 13 Novel Loci in a Genome-Wide Association Study on Taiwanese with Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:16417. [PMID: 38003606 PMCID: PMC10671380 DOI: 10.3390/ijms242216417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Liver cancer is caused by complex interactions among genetic factors, viral infection, alcohol abuse, and metabolic diseases. We conducted a genome-wide association study and polygenic risk score (PRS) model in Taiwan, employing a nonspecific etiology approach, to identify genetic risk factors for hepatocellular carcinoma (HCC). Our analysis of 2836 HCC cases and 134,549 controls revealed 13 novel associated loci such as the FAM66C gene, noncoding genes, liver-fibrosis-related genes, metabolism-related genes, and HCC-related pathway genes. We incorporated the results from the UK Biobank and Japanese database into our study for meta-analysis to validate our findings. We also identified specific subtypes of the major histocompatibility complex that influence both viral infection and HCC progression. Using this data, we developed a PRS to predict HCC risk in the general population, patients with HCC, and HCC-affected families. The PRS demonstrated higher risk scores in families with multiple HCCs and other cancer cases. This study presents a novel approach to HCC risk analysis, identifies seven new genes associated with HCC development, and introduces a reproducible PRS model for risk assessment.
Collapse
Affiliation(s)
- Ting-Yuan Liu
- Center for Precision Medicine and Epigenome Research Center, China Medical University Hospital, Taichung 40447, Taiwan; (T.-Y.L.); (C.-C.L.); (Y.-S.C.); (Y.-C.C.); (H.-D.C.); (I.-L.L.); (C.-C.C.); (Y.-P.C.)
- Million-Person Precision Medicine Initiative, Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
| | - Chi-Chou Liao
- Center for Precision Medicine and Epigenome Research Center, China Medical University Hospital, Taichung 40447, Taiwan; (T.-Y.L.); (C.-C.L.); (Y.-S.C.); (Y.-C.C.); (H.-D.C.); (I.-L.L.); (C.-C.C.); (Y.-P.C.)
| | - Ya-Sian Chang
- Center for Precision Medicine and Epigenome Research Center, China Medical University Hospital, Taichung 40447, Taiwan; (T.-Y.L.); (C.-C.L.); (Y.-S.C.); (Y.-C.C.); (H.-D.C.); (I.-L.L.); (C.-C.C.); (Y.-P.C.)
| | - Yu-Chia Chen
- Center for Precision Medicine and Epigenome Research Center, China Medical University Hospital, Taichung 40447, Taiwan; (T.-Y.L.); (C.-C.L.); (Y.-S.C.); (Y.-C.C.); (H.-D.C.); (I.-L.L.); (C.-C.C.); (Y.-P.C.)
- Million-Person Precision Medicine Initiative, Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
| | - Hong-Da Chen
- Center for Precision Medicine and Epigenome Research Center, China Medical University Hospital, Taichung 40447, Taiwan; (T.-Y.L.); (C.-C.L.); (Y.-S.C.); (Y.-C.C.); (H.-D.C.); (I.-L.L.); (C.-C.C.); (Y.-P.C.)
- Department of Laboratory Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - I-Lu Lai
- Center for Precision Medicine and Epigenome Research Center, China Medical University Hospital, Taichung 40447, Taiwan; (T.-Y.L.); (C.-C.L.); (Y.-S.C.); (Y.-C.C.); (H.-D.C.); (I.-L.L.); (C.-C.C.); (Y.-P.C.)
| | - Cheng-Yuan Peng
- Department of Internal Medicine, Section of Hepatobiliary Tract, China Medical University Hospital, Taichung 40447, Taiwan;
| | - Chin-Chun Chung
- Center for Precision Medicine and Epigenome Research Center, China Medical University Hospital, Taichung 40447, Taiwan; (T.-Y.L.); (C.-C.L.); (Y.-S.C.); (Y.-C.C.); (H.-D.C.); (I.-L.L.); (C.-C.C.); (Y.-P.C.)
| | - Yu-Pao Chou
- Center for Precision Medicine and Epigenome Research Center, China Medical University Hospital, Taichung 40447, Taiwan; (T.-Y.L.); (C.-C.L.); (Y.-S.C.); (Y.-C.C.); (H.-D.C.); (I.-L.L.); (C.-C.C.); (Y.-P.C.)
| | - Fuu-Jen Tsai
- Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
- School of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
- Division of Pediatric Genetics, Children’s Hospital of China Medical University, Taichung 40447, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 41354, Taiwan
| | - Long-Bin Jeng
- Department of Surgery, Section of Hepatobiliary Tract, China Medical University Hospital, Taichung 40447, Taiwan;
| | - Jan-Gowth Chang
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung 41354, Taiwan
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
40
|
Wang X, Guo Y, Cui T, Zhang T, Hu W, Liu R, Yin C. Telomerase reverse transcriptase restores pancreatic microcirculation profiles and attenuates endothelial dysfunction by inhibiting mitochondrial superoxide production: A potential target for acute pancreatitis therapy. Biomed Pharmacother 2023; 167:115576. [PMID: 37776643 DOI: 10.1016/j.biopha.2023.115576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/02/2023] Open
Abstract
BACKGROUND Acute pancreatitis (AP) is a potentially lethal disease related to prominent microcirculation dysfunction. Pancreatic microvascular endothelial dysfunction enhances oxidative stress with tissue damage. Increased superoxide production disrupts endothelial junction integrity and increases endothelial permeability. Endothelial mitochondrial ROS (mtROS) represent a major intracellular source of superoxide anions. The non-canonical function of telomerase reverse transcriptase (TERT) involves the maintenance of cellular redox homeostasis in somatic tissues. METHODS We investigated whether TERT restores microcirculation dysfunction and attenuates the endothelium injury by inhibiting superoxide production during AP progression. We established TERT transgenic and TERT knock-down mice and used cerulein (CER) and lipopolysaccharide (LPS) injections to induce AP models. In addition, we exposed HUVECs to LPS following TERT overexpression or silencing to explore the role of TERT in endothelial dysfunction. We also performed flow cytometry and confocal microscopy assays by using HUVECs. And a mtROS inhibitor, MitoTempo, was used to scavenge mitochondria superoxide and alkyl. RESULTS TERT transgenic mice were found to have restored pancreatic microcirculation profiles and microvascular endothelial morphology compared with wild-type mice under cerulein injection. In contrast, TERT silencing displayed the opposite effect in response to cerulein. Subsequently, we showed that TERT overexpression attenuates mtROS production and mitochondrial dysfunction during LPS-stimulated endothelial dysfunction. Furthermore, we found that TERT overexpression maintains the balance between mitochondrial contents and ATP level during endothelial dysfunction. In addition, the protective trend of MitoTempo is impeded after TERT silencing. CONCLUSION TERT restores pancreatic microcirculation dysfunction and attenuates microvascular endothelium lesions by inhibiting the increase of superoxide production and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Xueyan Wang
- Department of Internal Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China; Peking University People's Hospital, Beijing 100044, China
| | - Yinan Guo
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Tianyu Cui
- Department of Internal Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Tingting Zhang
- Department of Internal Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Weikai Hu
- Department of Internal Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Ruixia Liu
- Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China.
| | - Chenghong Yin
- Department of Internal Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China; Department of Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
41
|
Lam YK, Yu J, Huang H, Ding X, Wong AM, Leung HH, Chan AW, Ng KK, Xu M, Wang X, Wong N. TP53 R249S mutation in hepatic organoids captures the predisposing cancer risk. Hepatology 2023; 78:727-740. [PMID: 36221953 PMCID: PMC10086078 DOI: 10.1002/hep.32802] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 12/08/2022]
Abstract
BACKGROUND AND AIMS Major genomic drivers of hepatocellular carcinoma (HCC) are nowadays well recognized, although models to establish their roles in human HCC initiation remain scarce. Here, we used human liver organoids in experimental systems to mimic the early stages of human liver carcinogenesis from the genetic lesions of TP53 loss and L3 loop R249S mutation. In addition, chromatin immunoprecipitation sequencing (ChIP-seq) of HCC cell lines shed important functional insights into the initiation of HCC consequential to the loss of tumor-suppressive function from TP53 deficiency and gain-of-function activities from mutant p53. APPROACH AND RESULTS Human liver organoids were generated from surgical nontumor liver tissues. CRISPR knockout of TP53 in liver organoids consistently demonstrated tumor-like morphological changes, increased in stemness and unrestricted in vitro propagation. To recapitulate TP53 status in human HCC, we overexpressed mutant R249S in TP53 knockout organoids. A spontaneous increase in tumorigenic potentials and bona fide HCC histology in xenotransplantations were observed. ChIP-seq analysis of HCC cell lines underscored gain-of-function properties from L3 loop p53 mutants in chromatin remodeling and overcoming extrinsic stress. More importantly, direct transcriptional activation of PSMF1 by mutant R249S could increase organoid resistance to endoplasmic reticulum stress, which was readily abrogated by PSMF1 knockdown in rescue experiments. In a patient cohort of primary HCC tumors and genome-edited liver organoids, quantitative polymerase chain reaction corroborated ChIP-seq findings and verified preferential genes modulated by L3 mutants, especially those enriched by R249S. CONCLUSIONS We showed differential tumorigenic effects from TP53 loss and L3 mutations, which together confer normal hepatocytes with early clonal advantages and prosurvival functions.
Collapse
Affiliation(s)
- Yin Kau Lam
- Department of Surgery, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong, China
| | - Jianqing Yu
- Department of Surgery, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong, China
| | - Hao Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Xiaofan Ding
- Department of Surgery, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong, China
| | - Alissa M. Wong
- Department of Surgery, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong, China
| | - Howard H. Leung
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Anthony W. Chan
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Hong Kong, China
| | - Kelvin K. Ng
- Department of Surgery, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong, China
| | - Mingjing Xu
- Department of Surgery, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong, China
| | - Xin Wang
- Department of Surgery, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong, China
| | - Nathalie Wong
- Department of Surgery, Sir Y.K. Pao Centre for Cancer, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
42
|
Akuta N, Kawamura Y, Fujiyama S, Sezaki H, Hosaka T, Saitoh S, Kobayashi M, Arase Y, Ikeda K, Suzuki Y, Kumada H, Suzuki F. Favorable Impact of Serum TERT C228T for Prognosis after Surgical Resection for Liver Cancer. Oncology 2023; 101:738-752. [PMID: 37651985 DOI: 10.1159/000533303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/07/2023] [Indexed: 09/02/2023]
Abstract
INTRODUCTION Personalized medicine and molecular therapies with the diagnosis of somatic genetic alterations are expected to be developed for liver cancer. Nevertheless, it is unknown whether a mutation in the telomere reverse transcriptase promoter (TERT C228T) in serum cfDNA might be useful for making prognostic predictions after surgical resection for primary liver cancer. METHODS This cohort study retrospectively investigated 111 patients who had undergone surgical resection of liver cancer for the first time. We investigated the differences between clinicopathological features and prognosis according to classification of three tumor markers, including AFP, PIVKAII, and TERT C228T. RESULTS Multivariate analysis identified etiology (fatty liver disease vs. HBV odds ratio [OR] 6.853) and fibrosis stage (2-4, OR: 0.137) as determinants of TERT C228T-positive liver cancer with normal levels of AFP and PIVKAII (TERT single positive liver cancer). TERT single positive (Yes, OR: 0.301), fibrosis (FIB)-4 index (≥3.25, OR: 2.038), Child-Pugh classification (B, OR: 4.975), and number of tumors (≥2, OR: 4.098) were identified as determinants of the recurrence of liver cancer. TERT single positive (Yes, OR: 3.311), FIB-4 index (≥3.25, OR: 0.433), and number of tumors (≥2, OR: 0.262) were identified as determinants of disease-free survival. CONCLUSIONS Our results highlight the impact of classification of prognostic tumor markers. TERT single positive is one predictor of favorable prognosis after surgical resection for liver cancer.
Collapse
Affiliation(s)
- Norio Akuta
- Department of Hepatology, Toranomon Hospital and Okinaka Memorial Institute for Medical Research, Tokyo, Japan
| | - Yusuke Kawamura
- Department of Hepatology, Toranomon Hospital and Okinaka Memorial Institute for Medical Research, Tokyo, Japan
| | - Shunichiro Fujiyama
- Department of Hepatology, Toranomon Hospital and Okinaka Memorial Institute for Medical Research, Tokyo, Japan
| | - Hitomi Sezaki
- Department of Hepatology, Toranomon Hospital and Okinaka Memorial Institute for Medical Research, Tokyo, Japan
| | - Tetsuya Hosaka
- Department of Hepatology, Toranomon Hospital and Okinaka Memorial Institute for Medical Research, Tokyo, Japan
| | - Satoshi Saitoh
- Department of Hepatology, Toranomon Hospital and Okinaka Memorial Institute for Medical Research, Tokyo, Japan
| | | | - Yasuji Arase
- Department of Hepatology, Toranomon Hospital and Okinaka Memorial Institute for Medical Research, Tokyo, Japan
| | - Kenji Ikeda
- Department of Hepatology, Toranomon Hospital and Okinaka Memorial Institute for Medical Research, Tokyo, Japan
| | - Yoshiyuki Suzuki
- Department of Hepatology, Toranomon Hospital and Okinaka Memorial Institute for Medical Research, Tokyo, Japan
| | - Hiromitsu Kumada
- Department of Hepatology, Toranomon Hospital and Okinaka Memorial Institute for Medical Research, Tokyo, Japan
| | - Fumitaka Suzuki
- Department of Hepatology, Toranomon Hospital and Okinaka Memorial Institute for Medical Research, Tokyo, Japan
| |
Collapse
|
43
|
Fischer AK, Semaan A, Wulf AL, Vokuhl C, Goltz D, Fischer HP. Pathology of Hepatocellular Carcinoma and Tumor-Bearing Liver Tissue in Association with hTERT Promoter Mutation. Int J Hepatol 2023; 2023:4313504. [PMID: 37593089 PMCID: PMC10432107 DOI: 10.1155/2023/4313504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/22/2023] [Accepted: 05/31/2023] [Indexed: 08/19/2023] Open
Abstract
Background The hTERT promoter mutation represents a common and early event in hepatocarcinogenesis, but its linkage to the morphological status of the underlying liver tissue is poorly understood. We analyzed the connection between the histopathological changes in tumor-bearing liver tissue and the occurrence of the hTERT promoter mutation in hepatocellular carcinoma (HCC), correlated with clinical data. Methods The study cohort comprised 160 histologically confirmed HCC in patients with or without cirrhosis that were investigated for the hTERT promoter mutation. We evaluated the frequency of the hTERT promoter mutation in patients with HCC with or without cirrhosis and correlated it with potential clinical and histopathological drivers. In particular, we examined tumor-bearing noncirrhotic liver tissue regarding inflammation; the modified histological activity index (mHAI), fibrosis, and steatosis; and its correlation with the frequency of the hTERT promoter mutation in HCC. We evaluated overall survival with multivariate Cox regression. Furthermore, we compared hTERT antibody immunohistochemistry and molecular hTERT promoter mutation analysis of both HCC and background liver tissue. Results The hTERT promoter mutation was especially related to HCC in cirrhotic compared with noncirrhotic liver (p < 0.001) and independently of cirrhosis in patients ≥ 60 years (p = 0.005). Furthermore, the hTERT promoter mutation was associated with cirrhosis caused by alcohol toxicity and hepatitis C virus infection. In noncirrhotic liver tissue, the frequency of hTERT-promoter-mutated HCC increased with the degree of inflammation and fibrosis. Nevertheless, 25% of the hTERT-promoter-mutated HCC developed in normal liver tissue without HCC risk factors. Multivariate Cox regression analysis did not reveal an influence of the hTERT promoter mutation in HCC on overall survival at 3, 5, and 16 years. Immunohistochemical analysis with the hTERT antibodies LS-B95 and 2D8 in hTERT-promoter-mutated HCC and hTERT-wildtype HCC showed a mildly stronger immunoreaction compared with the tumor-bearing liver tissue (LS-B95: p < 0.01, 2D8: p < 0.01). Conclusions Our study reveals a connection between pathological changes in tumor-bearing liver tissue and the hTERT promoter mutation in most HCC, even in noncirrhotic liver tissue. Immunohistochemical hTERT antibodies do not discriminate between hTERT-promoter-mutated and wildtype HCC.
Collapse
Affiliation(s)
| | - Alexander Semaan
- Department of General, Visceral, Thoracic and Vascular Surgery, University of Bonn, Venusberg Campus 1, 53127 Bonn, Germany
| | - Anna-Lena Wulf
- Institute of Pathology, University of Bonn, Venusberg Campus 1, 53127 Bonn, Germany
| | - Christian Vokuhl
- Institute of Pathology, University of Bonn, Venusberg Campus 1, 53127 Bonn, Germany
| | - Diane Goltz
- Institute of Pathology and Hematopathology Hamburg, Fangdieckstraße 75a, 22547 Hamburg, Germany
| | - Hans-Peter Fischer
- Institute of Pathology, University of Bonn, Venusberg Campus 1, 53127 Bonn, Germany
- Institute of Pathology Troisdorf, Mendener Str. 12, 53840 Troisdorf, Germany
| |
Collapse
|
44
|
Barouki R, Samson M, Blanc EB, Colombo M, Zucman-Rossi J, Lazaridis KN, Miller GW, Coumoul X. The exposome and liver disease - how environmental factors affect liver health. J Hepatol 2023; 79:492-505. [PMID: 36889360 PMCID: PMC10448911 DOI: 10.1016/j.jhep.2023.02.034] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 03/10/2023]
Abstract
Since the initial development of the exposome concept, much effort has been devoted to the characterisation of the exposome through analytical, epidemiological, and toxicological/mechanistic studies. There is now an urgent need to link the exposome to human diseases and to include exposomics in the characterisation of environment-linked pathologies together with genomics and other omics. Liver diseases are particularly well suited for such studies since major functions of the liver include the detection, detoxification, and elimination of xenobiotics, as well as inflammatory responses. It is well known that several liver diseases are associated with i) addictive behaviours such as alcohol consumption, smoking, and to a certain extent dietary imbalance and obesity, ii) viral and parasitic infections, and iii) exposure to toxins and occupational chemicals. Recent studies indicate that environmental exposures are also significantly associated with liver diseases, and these include air pollution (particulate matter and volatile chemicals), contaminants such as polyaromatic hydrocarbons, bisphenol A and per-and poly-fluorinated substances, and physical stressors such as radiation. Furthermore, microbial metabolites and the "gut-liver" axis play a major role in liver diseases. Exposomics is poised to play a major role in the field of liver pathology. Methodological advances such as the exposomics-metabolomics framework, the determination of risk factors' genomic and epigenomic signatures, and cross-species biological pathway analysis should further delineate the impact of the exposome on the liver, opening the way for improved prevention, as well as the identification of new biomarkers of exposure and effects, and additional therapeutic targets.
Collapse
Affiliation(s)
| | - Michel Samson
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | | | - Massimo Colombo
- San Raffaele Hospital, Liver Center, Via Olgettina 60, 20132, Milan, Italy
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Inserm, AP-HP, Hôpital Européen Georges Pompidou, Institut du Cancer Paris CARPEM, F-75006, Paris, France
| | | | - Gary W Miller
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, 10032, USA
| | | |
Collapse
|
45
|
Lin F, Huang J, Zhu W, Jiang T, Guo J, Xia W, Chen M, Guo L, Deng W, Lin H. Prognostic value and immune landscapes of TERT promoter methylation in triple negative breast cancer. Front Immunol 2023; 14:1218987. [PMID: 37575241 PMCID: PMC10416624 DOI: 10.3389/fimmu.2023.1218987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/14/2023] [Indexed: 08/15/2023] Open
Abstract
Background Treatment options for patients with triple-negative breast cancer (TNBC) remain limited to mainstay therapies owing to a lack of efficacious therapeutic targets. Accordingly, there is an urgent need to discover and identify novel molecular targets for the treatment and diagnosis of this disease. In this study, we analyzed the correlation of telomerase reverse transcriptase (TERT) methylation status with TERT expression, prognosis, and immune infiltration in TNBC and identified the role of TERT methylation in the regulation TNBC prognosis and immunotherapy. Methods Data relating to the transcriptome, clinicopathological characteristics and methylation of TNBC patients were obtained from The Cancer Genome Atlas (TCGA) database. TERT expression levels and differential methylation sites (DMSs) were detected. The correlations between TERT expression and DMSs were calculated. Kaplan-Meier curves was plotted to analyze the relationship between the survival of TNBC patients and the DMSs. The correlations of DMSs and TERT expression with several immunological characteristics of immune microenvironment (immune cell infiltration, immunomodulators, immune-related biological pathways, and immune checkpoints) were assessed. The results were validated using 40 TNBC patients from Sun Yat-sen University Cancer Center (SYSUCC). Results Six DMSs were identified. Among them, four sites (cg11625005, cg07380026, cg17166338, and cg26006951) were within the TERT promoter, in which two sites (cg07380026 and cg26006951) were significantly related to the prognosis of patients with TNBC. Further validation using 40 TNBC samples from SYSUCC showed that the high methylation of the cg26006951 CpG site was associated with poor survival prognosis (P=0.0022). TERT expression was significantly correlated with pathological N stage and clinical stage, and cg07380026 were significantly associated with pathological T and N stages in the TCGA cohort. Moreover, the methylation site cg26006951, cg07380026 and TERT expression were significantly correlated with immune cell infiltration, common immunomodulators, and the level of the immune checkpoint receptor lymphocyte activation gene 3 (LAG-3) in TNBC patients. Conclusion TERT promotertypermethylation plays an important role in TERT expression regulation and tumor microenvironment in TNBC. It is associated with overall survival and LAG-3 expression. TERT promoter hypermethylation may be a potential molecular biomarker for predicting response to the TERT inhibitors and immune checkpoint inhibitors in TNBC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ling Guo
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wuguo Deng
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Huanxin Lin
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
46
|
Yi Q, Yang J, Wu Y, Wang Y, Cao Q, Wen W. Immune microenvironment changes of liver cirrhosis: emerging role of mesenchymal stromal cells. Front Immunol 2023; 14:1204524. [PMID: 37539053 PMCID: PMC10395751 DOI: 10.3389/fimmu.2023.1204524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/21/2023] [Indexed: 08/05/2023] Open
Abstract
Cirrhosis is a progressive and diffuse liver disease characterized by liver tissue fibrosis and impaired liver function. This condition is brought about by several factors, including chronic hepatitis, hepatic steatosis, alcohol abuse, and other immunological injuries. The pathogenesis of liver cirrhosis is a complex process that involves the interaction of various immune cells and cytokines, which work together to create the hepatic homeostasis imbalance in the liver. Some studies have indicated that alterations in the immune microenvironment of liver cirrhosis are closely linked to the development and prognosis of the disease. The noteworthy function of mesenchymal stem cells and their paracrine secretion lies in their ability to promote the production of cytokines, which in turn enhance the self-repairing capabilities of tissues. The objective of this review is to provide a summary of the alterations in liver homeostasis and to discuss intercellular communication within the organ. Recent research on MSCs is yielding a blueprint for cell typing and biomarker immunoregulation. Hopefully, as MSCs researches continue to progress, novel therapeutic approaches will emerge to address cirrhosis.
Collapse
Affiliation(s)
- Qiuyun Yi
- National Center for Liver Cancer, Third Affiliated Hospital of Naval Medical University, Shanghai, China
- International Cooperation Laboratory on Signal Transduction, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| | - Jinxian Yang
- National Center for Liver Cancer, Third Affiliated Hospital of Naval Medical University, Shanghai, China
- International Cooperation Laboratory on Signal Transduction, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| | - Ying Wu
- Department of Breast and Thyroid Surgery, Changhai Hospital, Naval Military Medical University, Shanghai, China
| | - Ying Wang
- Department of Laboratory Diagnosis, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| | - Qiqi Cao
- National Center for Liver Cancer, Third Affiliated Hospital of Naval Medical University, Shanghai, China
- International Cooperation Laboratory on Signal Transduction, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| | - Wen Wen
- National Center for Liver Cancer, Third Affiliated Hospital of Naval Medical University, Shanghai, China
- Department of Laboratory Diagnosis, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, China
| |
Collapse
|
47
|
Kohansal F, Mobed A, Aletaha N, Ghaseminasab K, Dolati S, Hasanzadeh M. Biosensing of telomerase antigen using sandwich type immunosensor based on poly(β-Cyclodextrin) decorated by Au@Pt nanoparticles: An innovative immune-platform toward early-stage identification of cancer. Microchem J 2023; 190:108649. [DOI: 10.1016/j.microc.2023.108649] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
48
|
Ge T, Shao Y, Bao X, Xu W, Lu C. Cellular senescence in liver diseases: From mechanisms to therapies. Int Immunopharmacol 2023; 121:110522. [PMID: 37385123 DOI: 10.1016/j.intimp.2023.110522] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 06/05/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023]
Abstract
Cellular senescence is an irreversible state of cell cycle arrest, characterized by a gradual decline in cell proliferation, differentiation, and biological functions. Cellular senescence is double-edged for that it can provoke organ repair and regeneration in physiological conditions but contribute to organ and tissue dysfunction and prime multiple chronic diseases in pathological conditions. The liver has a strong regenerative capacity, where cellular senescence and regeneration are closely involved. Herein, this review firstly introduces the morphological manifestations of senescent cells, the major regulators (p53, p21, and p16), and the core pathophysiologic mechanisms underlying senescence process, and then specifically generalizes the role and interventions of cellular senescence in multiple liver diseases, including alcoholic liver disease, nonalcoholic fatty liver disease, liver fibrosis, and hepatocellular carcinoma. In conclusion, this review focuses on interpreting the importance of cellular senescence in liver diseases and summarizes potential senescence-related regulatory targets, aiming to provide new insights for further researches on cellular senescence regulation and therapeutic developments for liver diseases.
Collapse
Affiliation(s)
- Ting Ge
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Yunyun Shao
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Xiaofeng Bao
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Wenxuan Xu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China.
| | - Chunfeng Lu
- School of Pharmacy, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
49
|
Nevola R, Beccia D, Rosato V, Ruocco R, Mastrocinque D, Villani A, Perillo P, Imbriani S, Delle Femine A, Criscuolo L, Alfano M, La Montagna M, Russo A, Marfella R, Cozzolino D, Sasso FC, Rinaldi L, Marrone A, Adinolfi LE, Claar E. HBV Infection and Host Interactions: The Role in Viral Persistence and Oncogenesis. Int J Mol Sci 2023; 24:7651. [PMID: 37108816 PMCID: PMC10145402 DOI: 10.3390/ijms24087651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Hepatitis B virus (HBV) is a major cause of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. Despite the advent of vaccines and potent antiviral agents able to suppress viral replication, recovery from chronic HBV infection is still an extremely difficult goal to achieve. Complex interactions between virus and host are responsible for HBV persistence and the risk of oncogenesis. Through multiple pathways, HBV is able to silence both innate and adaptive immunological responses and become out of control. Furthermore, the integration of the viral genome into that of the host and the production of covalently closed circular DNA (cccDNA) represent reservoirs of viral persistence and account for the difficult eradication of the infection. An adequate knowledge of the virus-host interaction mechanisms responsible for viral persistence and the risk of hepatocarcinogenesis is necessary for the development of functional cures for chronic HBV infection. The purpose of this review is, therefore, to analyze how interactions between HBV and host concur in the mechanisms of infection, persistence, and oncogenesis and what are the implications and the therapeutic perspectives that follow.
Collapse
Affiliation(s)
- Riccardo Nevola
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy; (V.R.); (D.M.); (P.P.); (E.C.)
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Domenico Beccia
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Valerio Rosato
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy; (V.R.); (D.M.); (P.P.); (E.C.)
| | - Rachele Ruocco
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Davide Mastrocinque
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy; (V.R.); (D.M.); (P.P.); (E.C.)
| | - Angela Villani
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Pasquale Perillo
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy; (V.R.); (D.M.); (P.P.); (E.C.)
| | - Simona Imbriani
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Augusto Delle Femine
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Livio Criscuolo
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Maria Alfano
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Marco La Montagna
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Antonio Russo
- Department of Mental Health and Public Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Domenico Cozzolino
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Aldo Marrone
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Luigi Elio Adinolfi
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.B.); (R.R.); (A.V.); (S.I.); (A.D.F.); (L.C.); (M.A.); (M.L.M.); (R.M.); (D.C.); (F.C.S.); (L.R.); (A.M.); (L.E.A.)
| | - Ernesto Claar
- Liver Unit, Ospedale Evangelico Betania, 80147 Naples, Italy; (V.R.); (D.M.); (P.P.); (E.C.)
| |
Collapse
|
50
|
Zhang S, Zheng Y, Li X, Zhang S, Hu H, Kuang W. Cellular senescence-related gene signature as a valuable predictor of prognosis in hepatocellular carcinoma. Aging (Albany NY) 2023; 15:3064-3093. [PMID: 37059592 DOI: 10.18632/aging.204658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/28/2023] [Indexed: 04/16/2023]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a lethal tumor. Its prognosis prediction remains a challenge. Meanwhile, cellular senescence, one of the hallmarks of cancer, and its related prognostic genes signature can provide critical information for clinical decision-making. METHOD Using bulk RNA sequencing and microarray data of HCC samples, we established a senescence score model via multi-machine learning algorithms to predict the prognosis of HCC. Single-cell and pseudo-time trajectory analyses were used to explore the hub genes of the senescence score model in HCC sample differentiation. RESULT A machine learning model based on cellular senescence gene expression profiles was identified in predicting HCC prognosis. The feasibility and accuracy of the senescence score model were confirmed in external validation and comparison with other models. Moreover, we analyzed the immune response, immune checkpoints, and sensitivity to immunotherapy drugs of HCC patients in different prognostic risk groups. Pseudo-time analyses identified four hub genes in HCC progression, including CDCA8, CENPA, SPC25, and TTK, and indicated related cellular senescence. CONCLUSIONS This study identified a prognostic model of HCC by cellular senescence-related gene expression and insight into novel potential targeted therapies.
Collapse
Affiliation(s)
- Shuqiao Zhang
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yilu Zheng
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xinyu Li
- Medical College of Acupuncture-Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shijun Zhang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hao Hu
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Weihong Kuang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, The First Dongguan Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Dongguan, Guangdong, China
| |
Collapse
|