1
|
Birreci D, Angelini L, Paparella G, Costa D, Cannavacciuolo A, Passaretti M, De Riggi M, Aloisio S, Colella D, Guerra A, Bologna M. Pathophysiological Role of Primary Motor Cortex in Essential Tremor. Mov Disord 2025. [PMID: 40243615 DOI: 10.1002/mds.30197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/11/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Essential tremor (ET) is one of the most prevalent movement disorders. However, the complete understanding of ET pathophysiology remains elusive. OBJECTIVE To explore the pathophysiological role of primary motor cortex (M1) in ET, specifically exploring its neurophysiological changes and their correlation with voluntary motor abnormalities. METHODS We recruited 30 ET patients and 18 healthy controls (HC). Evaluations were conducted on patients using clinical scales. Transcranial magnetic stimulation (TMS) was used to assess M1 excitability, including motor thresholds and motor evoked potentials (MEPs) input/output curve, together with intracortical excitability measures. Long-term potentiation (LTP)-like plasticity of M1 was tested using intermittent theta-burst stimulation (iTBS). Objective assessments of tremor and voluntary movement execution during finger-tapping were conducted through kinematic analysis. Finally, we explored the potential relationship between TMS, clinical, and kinematic data. RESULTS Compared with HC, ET patients had lower excitability, intracortical inhibition, and lower LTP-like plasticity of M1. ET patients also exhibited slower finger-tapping performance compared with HC. Among ET patients, the degree of movement slowing during finger-tapping correlated with alterations in corticospinal excitability. Specifically, reduced M1 excitability was associated with lower finger-tapping velocity. No other correlations were found. CONCLUSIONS The study findings reveal neurophysiological alterations of M1 in ET and demonstrate correlations between excitability measures and voluntary motor performance. These results provide novel insight into the pathophysiology of ET, emphasizing the role of M1 changes in this condition. © 2025 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Daniele Birreci
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | | | - Giulia Paparella
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | | | | | - Massimiliano Passaretti
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Martina De Riggi
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Simone Aloisio
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Donato Colella
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Andrea Guerra
- Parkinson and Movement Disorder Unit, Study Center on Neurodegeneration (CESNE) Department of Neuroscience, University of Padua, Padua, Italy
- Padova Neuroscience Center, University of Padua, Padua, Italy
| | - Matteo Bologna
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
2
|
Onat OE, Ustunel F, Akbostanci C, Doganyigit KE, Sen M, Gunaydin EC, Bilguvar K, Akbostanci MC. Effects of essential tremor on longevity and mortality rates in families. PLoS One 2025; 20:e0320422. [PMID: 40193366 PMCID: PMC11975089 DOI: 10.1371/journal.pone.0320422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 02/16/2025] [Indexed: 04/09/2025] Open
Abstract
Essential Tremor (ET) is a common movement disorder characterized by action tremors, primarily affecting the hands and head. lthough previous studies have suggested potential links between ET and aging-related diseases, its relationship with longevity remains unclear, with conflicting evidence in the literature. To investigate this association, we analyzed data from 1,493 individuals across 145 families, encompassing both ET-positive (ET+) and ET-negative (ET-) participants. Using comprehensive statistical methods, including survival function estimation and regression modeling, we examined the potential influence of ET on lifespan. The median age of our participants was 67 years (IQR 54-77). Among deceased individuals, those with ET had a higher median age at death (80 years, IQR 70-86) compared to their ET- counterparts (70 years, IQR 59-77). Living ET+ participants also demonstrated slightly higher median ages (63 years, IQR 53-74) than living ET- individuals (60 years, IQR 49-71). Survival analysis revealed a significantly prolonged lifespan for ET+ individuals compared to ET- individuals (log-rank p = 1.11 × 10 ⁻23). Furthermore, hazard ratio (HR) calculations indicated a reduced risk of mortality for the ET+ group (HR = 0.44, CI95% = 0.37-0.52), particularly among males. These findings suggest that ET may be associated with increased longevity, though the underlying biological mechanisms remain unclear. Further research is essential to elucidate the processes contributing to this relationship and to explore its implications for understanding aging and neurodegenerative disorders.
Collapse
Affiliation(s)
- Onur Emre Onat
- Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakıf University, İstanbul, Türkiye,
- Department of Biotechnology, Institute of Health Sciences, Bezmialem Vakıf University, İstanbul, Türkiye,
| | - Faruk Ustunel
- Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakıf University, İstanbul, Türkiye,
- Department of Drug Discovery and Development, Institute of Health Sciences, Bezmialem Vakıf University, Istanbul, Türkiye,
| | - Cem Akbostanci
- School of Psychology, Washington State University, Pullman, Washington, United States of America
| | - Kivilcim E. Doganyigit
- Department of Biomolecular Engineering, School of Engineering, University of California Santa Cruz, California, United States of America
| | - Merve Sen
- Centre for Ophthalmology, Institute for Ophthalmic Research, Universitatsklinikum Tübingen, Tübingen, Germany
| | - Emre Can Gunaydin
- Department of Biotechnology, Institute of Health Sciences, Bezmialem Vakıf University, İstanbul, Türkiye,
| | - Kaya Bilguvar
- Department of Medical Genetics, School of Medicine, Acıbadem Mehmet Ali Aydınlar University, İstanbul, Türkiye,
- Departments of Neurosurgery and Genetics, School of Medicine, Yale University, New Haven, Connecticut, United States of America
| | | |
Collapse
|
3
|
Sankar K, Subairdeen MA, Muthukrishnan NK. Technological interventions for the suppression of hand tremors: A literature review. Proc Inst Mech Eng H 2025; 239:266-285. [PMID: 40088065 DOI: 10.1177/09544119251325115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2025]
Abstract
A tremor is a neurological disorder that results in trembling or shaking in one or more body parts. A thorough literature review was conducted to investigate the methods for suppressing tremors. We looked for articles published between 1995 and 2024 in the databases CINAHL (Cumulative Index to Nursing and Allied Health Literature), PubMed, Medline, Embase, Scopus, and Cochrane. Two thousand two hundred fifty distinct items were discovered after an extensive search. Based only on the title, 250 were included. Two hundred papers were deemed ineligible after the abstracts were assessed. The remaining 26 articles were shortlisted after screening titles and abstracts and categorized based on treatment methods for hand tremors. According to the study's findings, deep brain stimulation (DBS) and electrical stimulation both reduced tremors considerably. It was also evident that attenuation systems and passive devices lessen the effects of tremors; target tracking tasks can lessen physiological tremors in postural posture; ET may have better hand functions after cold water treatment than warm water or at baseline; and targeted ultrasound thalamotomy is an effective treatment for ET, as it improved quality of life (QoL) significantly. Additionally, the design, development, and evaluation of wearable devices and pharmaceutical interventions for tremor suppression were investigated in detail. The main objective was to perform a comparative analysis of the merits and demerits of both treatment methodologies in terms of functional outcomes, users' comfort, and side effects. The review highlights wearable devices as a beneficial option for tremor suppression, offering comfort, safety, and advanced technology over pharmaceutical intervention methodologies.
Collapse
Affiliation(s)
- Krishnakumar Sankar
- Department of Biomedical Engineering, Rajalakshmi Engineering College, Chennai, Tamil Nadu, India
| | | | | |
Collapse
|
4
|
Yan Z, Zheng Z, Cao L, Zhu Z, Zhou C, Sun Q, Tang B, Zhao G. Altered gut microbiome and serum metabolome profiles associated with essential tremor. Metab Brain Dis 2025; 40:118. [PMID: 39903340 DOI: 10.1007/s11011-025-01549-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/30/2025] [Indexed: 02/06/2025]
Abstract
The genetic predisposition and environmental factors both trigger the complex neurological dyskinesia of essential tremor (ET). Gut dysbiosis may facilitate the occurrence and development of neurological diseases. Therefore, it is worth exploring the inner connections between gut microbiota and ET. First, the gut microbiota of 19 ET patients and 21 healthy controls (HCs) were analysed with metagenomics approach. Second, the potential linkages between gut microbiome and serum metabolome profiles were explored by integrative analysis. The gut microbiota disorders were present in ET patients. The LEfSe method showed a significant decrease in Bacteroides. The functional analysis revealed that there were differences in gut microbial apoptosis, retinol metabolism, and steroid hormone biosynthesis pathways. The levels of various lipids and lipid-like molecules alter in serum of ET patients, which correlated with altered gut microbial abundance, indicating the alterations in lipid metabolism involved in apoptosis pathway in ET. All of these data point to the gut dysbiosis in ET, and some changed gut microbial species were linked to abnormalities in blood lipid metabolism, which open up new avenues for investigation into the pathophysiology of ET.
Collapse
Affiliation(s)
- Zhenzhen Yan
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, P.R. China
| | - Zhilin Zheng
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, P.R. China
| | - Lanxiao Cao
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, P.R. China
| | - Zeyu Zhu
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, P.R. China
| | - Chen Zhou
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, P.R. China
| | - Qiying Sun
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, P.R. China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, P.R. China
| | - Guohua Zhao
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, P.R. China.
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China.
| |
Collapse
|
5
|
Bosch TJ, Groth C, Espinoza AI, Bharmauria V, Flouty O, Singh A. Cerebellar Oscillatory Patterns in Essential Tremor: Modulatory Effects of VIM-DBS. CEREBELLUM (LONDON, ENGLAND) 2025; 24:40. [PMID: 39891875 PMCID: PMC11787153 DOI: 10.1007/s12311-025-01787-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/10/2025] [Indexed: 02/03/2025]
Abstract
Essential tremor (ET) is a common movement disorder, and while ventral intermediate nucleus deep brain stimulation (VIM-DBS) is a well-established treatment, its precise mechanisms or modulatory effects, particularly in relation to cerebellar oscillations, remain unclear. In this study, we hypothesized that VIM-DBS would modulate cerebellar oscillatory activity across both resting and motor task conditions, reflecting its impact on cerebello-thalamic pathways. Ten patients diagnosed with ET participated in this study. We examined the effects of VIM-DBS on mid-cerebellar oscillations during resting-state and lower-limb pedaling motor tasks. Frequency analysis was conducted on the resting-state signal and time-frequency analysis was performed on motor task-related signals. We explored the modulatory effects of VIM-DBS on oscillatory activity across delta, theta, alpha, beta, and gamma frequency bands. We found that ON VIM-DBS increased mid-cerebellar relative theta power during resting-state conditions, with no significant changes in other frequency bands. During a pedaling motor task, VIM-DBS led to significant reductions in theta, alpha, and gamma power, highlighting the frequency-specific effects of stimulation. VIM-DBS also increased peak acceleration of leg movements during the pedaling task. Furthermore, VIM-DBS selectively increased mid-frontal relative theta and beta power as well as mid-occipital relative theta power during resting condition, suggesting localized mid-cerebellar modulation. Moreover, similarity analyses between mid-cerebellar and nearby mid-occipital signals revealed differences in coherence, phase coherence, and cross-spectrum phase coherence. Overall, these results support the role of VIM-DBS in modulating mid-cerebellar oscillations in ET and provide new insights into the neural mechanisms underlying DBS efficacy.
Collapse
Affiliation(s)
- Taylor J Bosch
- Department of Psychology, University of South Dakota, Vermillion, SD, USA
- Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD, USA
| | | | | | - Vishal Bharmauria
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Oliver Flouty
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Arun Singh
- Center for Brain and Behavior Research, University of South Dakota, Vermillion, SD, USA.
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, 414 E. Clark St. Vermillion, Vermillion, SD, 57069, USA.
- Department of Neuroscience, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA.
| |
Collapse
|
6
|
Widner J, Faust PL, Louis ED, Fujita H. Axonal pathology differentially affects human Purkinje cell subtypes in the essential tremor cerebellum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.26.633063. [PMID: 39974874 PMCID: PMC11838201 DOI: 10.1101/2025.01.26.633063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The cerebellar cortex is organized into discrete regions populated by molecularly distinct Purkinje cells (PCs), the sole cortical output neurons. While studies in animal models have shown that PC subtypes differ in their vulnerability to disease, our understanding of human PC subtype and vulnerability remains limited. Here, we demonstrate that human cerebellar regions specialized for motor vs cognitive functions (lobule HV vs Crus I) contain distinct PC populations characterized by specific molecular and anatomical features, which show selective vulnerability in essential tremor (ET), a cerebellar degenerative disorder. Using a known PC subtype marker, neurofilament heavy chain (NEFH), we found that motor lobule HV contains PCs with high NEFH expression, while cognitive lobule Crus I contains PCs with low NEFH expression in post-mortem samples from healthy controls. In the same cerebella, PC axons in lobule HV were 2.2-fold thicker than those in Crus I. Across lobules, axon caliber positively correlated with NEFH expression. In ET cerebella, we identified motor lobule-specific PC axon pathology with a 1.5-fold reduction in caliber and increased axon variability in lobule HV, while Crus I axons were unaffected. Tremor severity and duration in ET correlated with axon diameter variability selectively in lobule HV PCs. Given that axonal caliber is a major determinant of neural signaling capacity, our results (1) suggest that disrupted cerebellar corticonuclear signaling is occurring in ET, (2) provide evidence of region-specific PC subtypes in the human cerebellum and offer insight into how selective PC vulnerability may contribute to the pathophysiology of cerebellar degeneration.
Collapse
Affiliation(s)
- James Widner
- Movement Disorder Section, Dept. of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Phyllis L. Faust
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center and the New York Presbyterian Hospital, New York, New York, USA
| | - Elan D. Louis
- Movement Disorder Section, Dept. of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Hirofumi Fujita
- Movement Disorder Section, Dept. of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
7
|
Shih LC. Emerging Deep Brain Stimulation Targets in the Cerebellum for Tremor. CEREBELLUM (LONDON, ENGLAND) 2025; 24:38. [PMID: 39869292 DOI: 10.1007/s12311-025-01789-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/10/2025] [Indexed: 01/28/2025]
Abstract
Deep brain stimulation (DBS) for essential tremor is remarkably effective, leading to over 80% reduction in standardized tremor ratings. However, for certain types of tremor, such as those accompanied by ataxia or dystonia, conventional DBS targets have shown poor efficacy. Various rationales for using cerebellar DBS stimulation to treat tremor have been advanced, but the varied approaches leave many questions unanswered: which anatomic target, stimulation settings, and indications seem most promising for this emerging approach. This article reviews the clinical experience published to date and explores some of the pre-clinical and human physiology data that might support a role for further systematic investigation of cerebellar DBS for clinical use. Four tremor disorders to date have been targeted with cerebellar DBS in humans: essential tremor, post-stroke tremor, dystonic tremor, and tremor associated with degenerative cerebellar ataxias, like spinocerebellar ataxia type 3. The dentate nucleus is the most frequently chosen target, but key stereotactic and imaging details are missing from many of the case reports. Interestingly, consensus on laterality has not been definitively established as there are conflicting models of the hypothesized mechanism of action of DBS of the dentate nuclei, and conflicting reports of benefit on the tremor ipsilateral to and contralateral toto the affected limb. Several points are highlighted, including the prediction from in vivo preclinical physiology studies and interventional studies, the remaining uncertainty regarding the preferred laterality of targets, and the lack of clear prioritization of tremor etiologies to be targeted in future rigorously designed interventional studies (e.g., preferably repeated n-of-1 or sham-controlled studies involving more than one patient).
Collapse
Affiliation(s)
- Ludy C Shih
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Sarica A, Gramigna V, Arcuri F, Crasà M, Calomino C, Nisticò R, Bianco MG, Quattrone A, Quattrone A. Differential tractography identifies a distinct pattern of white matter alterations in essential tremor with or without resting tremor. Neuroimage Clin 2025; 45:103734. [PMID: 39808856 PMCID: PMC11782870 DOI: 10.1016/j.nicl.2025.103734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/29/2024] [Accepted: 01/09/2025] [Indexed: 01/16/2025]
Abstract
Essential Tremor (ET) is characterized by action tremor often associated with resting tremor (rET). Although previous studies have identified widespread brain white matter (WM) alterations in ET patients, differences between ET and rET have been less explored. In this study we employed differential tractography to investigate WM microstructural alterations in these tremor disorders. We conducted a Diffusion Tensor Imaging (DTI) study on age- and sex-matched cohorts: 25 healthy controls (HC), 30 ET, and 30 rET patients. Differential tractography using DSI Studio was employed to pairwise compare fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) among cohorts. ET and rET patients compared to HC exhibited similar widespread MD increase especially in basal ganglia and brainstem projections. WM changes were more pronounced in the left cerebral hemisphere and cerebellum (crus I and II) in ET, while in rET patients WM alterations were prevalent in right cerebral hemisphere and cerebellum crus I. Small FA decrease was found in rET but not in ET patients. ET patients showed changes in the left non-decussating dentato-rubro-thalamic tract (ndDRTT), whereas rET patients showed changes in both left ndDRTT and right decussating DRTT. In conclusion, our findings confirmed the DRTT involvement in essential tremor and demonstrated that ET and rET exhibited similar microstructural WM changes in the brain, with different hemispheric involvement-greater on the left side in ET and on the right side in rET-suggesting that these tremor disorders may be distinct subtypes of the same disease.
Collapse
Affiliation(s)
- Alessia Sarica
- Neuroscience Research Center, Department of Medical and Surgical Sciences, Magna Graecia University, 88100, Catanzaro, Italy
| | - Vera Gramigna
- Neuroscience Research Center, Department of Medical and Surgical Sciences, Magna Graecia University, 88100, Catanzaro, Italy
| | - Fulvia Arcuri
- Neuroscience Research Center, Department of Medical and Surgical Sciences, Magna Graecia University, 88100, Catanzaro, Italy
| | - Marianna Crasà
- Neuroscience Research Center, Department of Medical and Surgical Sciences, Magna Graecia University, 88100, Catanzaro, Italy
| | - Camilla Calomino
- Neuroscience Research Center, Department of Medical and Surgical Sciences, Magna Graecia University, 88100, Catanzaro, Italy
| | - Rita Nisticò
- Neuroscience Research Center, Department of Medical and Surgical Sciences, Magna Graecia University, 88100, Catanzaro, Italy
| | - Maria Giovanna Bianco
- Neuroscience Research Center, Department of Medical and Surgical Sciences, Magna Graecia University, 88100, Catanzaro, Italy
| | - Andrea Quattrone
- Neuroscience Research Center, Department of Medical and Surgical Sciences, Magna Graecia University, 88100, Catanzaro, Italy; Institute of Neurology, Magna Graecia University, Catanzaro, Italy.
| | - Aldo Quattrone
- Neuroscience Research Center, Department of Medical and Surgical Sciences, Magna Graecia University, 88100, Catanzaro, Italy
| |
Collapse
|
9
|
Agúndez JAG, Macías Y, Alonso-Navarro H, García-Martín E, Álvarez I, Pastor P, Benito-León J, López-Alburquerque T, Jiménez-Jiménez FJ. Association Between Common Variants in the LAG3/ CD4 Genes and Risk for Essential Tremor. Int J Mol Sci 2024; 25:13403. [PMID: 39769168 PMCID: PMC11676344 DOI: 10.3390/ijms252413403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Many clinical, neuroimaging, neuropathological, epidemiological, and genetic data suggest a relationship between essential tremor (ET) and Parkinson's disease (PD). Several hypothesis-based gene association studies attempted to find a genetic association between these diseases. Recent case-control association studies in Chinese and Spanish populations showed a marginal association between the CD4 rs1922452 and CD4 rs951818 single nucleotide variants (SNVs) and the risk of PD. The proteins encoded by the CD4 and LAG3 genes have an important role in modulating inflammatory responses, and some recent data associated inflammatory markers to ET. This study investigates a possible association between the most common SNVs in the LAG3/CD4 genes and the risk of ET in the Spanish Caucasian population. We genotyped 267 patients diagnosed with familial ET and 270 age- and sex-matched controls using specific TaqMan assays for CD4 rs1922452, CD4 rs951818, and LAG3 rs870849 variants. We found a decreased risk for ET in carriers of the LAG3 rs870849 C/C genotype and the LAG3 rs870849C allelic variant exclusively in men. The mean age of onset of ET was not related to any of the variants studied. These data suggest no association of the gene variants studied with the overall risk for ET, except for a slight decrease in risk in male ET patients carrying the variant LAG3 rs870849C. However, such an association lost significance after correcting for multiple comparisons.
Collapse
Affiliation(s)
- José A. G. Agúndez
- University Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, 10071 Cáceres, Spain; (J.A.G.A.); (Y.M.); (E.G.-M.)
| | - Yolanda Macías
- University Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, 10071 Cáceres, Spain; (J.A.G.A.); (Y.M.); (E.G.-M.)
| | | | - Elena García-Martín
- University Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, 10071 Cáceres, Spain; (J.A.G.A.); (Y.M.); (E.G.-M.)
| | - Ignacio Álvarez
- Fundació per la Recerça Biomèdica i Social Mútua de Terrassa, 08221 Terrassa, Spain; (I.Á.); (P.P.)
- Movement Disorders Unit, Department of Neurology, Hospital Universitari Mutua de Terrassa, 08221 Terrassa, Spain
| | - Pau Pastor
- Fundació per la Recerça Biomèdica i Social Mútua de Terrassa, 08221 Terrassa, Spain; (I.Á.); (P.P.)
- Movement Disorders Unit, Department of Neurology, Hospital Universitari Mutua de Terrassa, 08221 Terrassa, Spain
- Hospital Universitari Germans Trias y Pujol, 08916 Badalona, Spain
| | - Julián Benito-León
- Service of Neurology, Department of Medicine, Hospital Doce de Octubre, Universidad Complutense, 28040 Madrid, Spain;
- CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos III, 28222 Madrid, Spain
| | | | - Félix Javier Jiménez-Jiménez
- Section of Neurology, Hospital Universitario del Sureste, 28500 Arganda del Rey, Spain;
- Department of Medicine-Neurology, Hospital “Príncipe de Asturias”, Universidad de Alcalá, 28801 Alcalá de Henares, Spain
| |
Collapse
|
10
|
Erdem M, Soker EB, Ozdogru D, Balal M, Ciloglu E. Evaluation of retinal microvascular changes with OCT-A in Parkinson disease and essential tremor. Medicine (Baltimore) 2024; 103:e40752. [PMID: 39654240 PMCID: PMC11630959 DOI: 10.1097/md.0000000000040752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/28/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024] Open
Abstract
This study aimed to evaluate the presence and comparison of microvascular abnormalities in essential tremor (ET) and Parkinson disease (PD) using optical coherence tomography angiography (OCT-A) and to show the relationship between retinal microvascular changes and disease stage in the patient group. A total of 176 eyes, including 26 PD diagnosed according to the United Kingdom PD Society Brain Bank criteria, 31 ET diagnosed according to the Washington heights-inwood genetic study of ET (WHIGET) criteria and 31 healthy controls, were included in the study. Unified PD assessment scale (UPDRS) motor scores, non-motor symptom scale (NMS), modified Hoehn&Yahr stages (mH&Y) and Fahn-Toloso-Marin grading scale were recorded. All patients were evaluated in terms of visual acuity, fundus examination, intraocular pressure measurements, and refractive errors in Ophthalmology department. Deep macular vascular density was significantly decreased in PD compared to both the controls and ET(P < .05). In the measurements in the inferior quadrant of the retinal nerve fiber layer (RNFL) of the optic disc (OD), the values of the controls were significantly higher than those of PD in both eyes (P = .014 and P = .010). Radial peripapillary capillarity density in the left eye was substantially lower in ET than in controls (P = .045). In both eyes, OD radial peripapillary capillarity inside the disc small values of PD were significantly lower than those of ET and controls (P < .05). In our study, deep macular vascular density, RNFL and radial peripapillary capillarity were significantly lower in PD compared with ET and control groups, and radial peripapillary capillarity was lower in ET compared with control group. This study provides valuable information regarding the potential of OCT-A as a diagnostic tool for PD and ET.
Collapse
Affiliation(s)
- Miray Erdem
- Department of Neurology, Adana City Training and Research Hospital, Adana, Türkiye
| | - Elif Banu Soker
- Department of Neurology, Adana City Training and Research Hospital, Adana, Türkiye
| | - Derya Ozdogru
- Department of Neurology, Adana City Training and Research Hospital, Adana, Türkiye
| | - Mehmet Balal
- Department of Neurology, Çukurova University Faculty of Medicine, Adana, Türkiye
| | - Emine Ciloglu
- Department of Ophthalmology, Adana City Training and Research Hospital, Adana, Türkiye
| |
Collapse
|
11
|
Louis ED, Sharma VD, Hajjar I, Hernandez N. Serum Neurofilament Light-Chain Levels in Essential Tremor: A Replication Study. NEURODEGENER DIS 2024; 24:141-147. [PMID: 39626650 DOI: 10.1159/000542922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 11/14/2024] [Indexed: 12/13/2024] Open
Abstract
INTRODUCTION Essential tremor (ET) is a highly prevalent neurological disease. At present, there are no clinical biomarkers. Neurofilament light (NfL) has been studied as a measure of neuronal damage in a considerable number of neurological disorders. There have been three studies of ET, and results are inconsistent. METHODS Forty ET cases were enrolled in a research study between February and November 2023 and compared to two control groups from study 1 (n = 41) and study 2 (n = 185). Total tremor score was a measure of the severity of action tremor. Blood samples were analyzed for serum NfL level on the Simoa® platform using an NF-Light™ kit as a marker of axonal injury. RESULTS Serum log NfL levels were higher in ET cases than controls in study 1 (p < 0.001) and study 2 (p < 0.001). In a multivariate linear regression model, ET cases (p = 0.03) and individuals of older age (p < 0.001) had higher serum log NfL levels than controls (combined in studies 1 and 2). There was no association in ET cases between serum log NfL level and total tremor score (Pearson's r = 0.08, p = 0.63). CONCLUSION This new study further validates the elevation in serum NfL levels in ET, now representing the third study to do so. In combination, the converging data suggest that there is an overall increase in serum NfL levels in ET. The demonstration of elevated serum levels of NfL in ET adds an additional piece of evidence that there is neuronal damage in ET.
Collapse
Affiliation(s)
- Elan D Louis
- Department of Neurology, University of Texas Southwestern, Dallas, Texas, USA
- Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Vibhash D Sharma
- Department of Neurology, University of Texas Southwestern, Dallas, Texas, USA
- Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ihab Hajjar
- Department of Neurology, University of Texas Southwestern, Dallas, Texas, USA
- Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Nora Hernandez
- Department of Neurology, University of Texas Southwestern, Dallas, Texas, USA
| |
Collapse
|
12
|
Simard M, Mélançon K, Berthiaume L, Tremblay C, Pshevorskiy L, Julien P, Rajput AH, Rajput A, Calon F. Postmortem Fatty Acid Abnormalities in the Cerebellum of Patients with Essential Tremor. CEREBELLUM (LONDON, ENGLAND) 2024; 23:2341-2359. [PMID: 39215908 PMCID: PMC11585516 DOI: 10.1007/s12311-024-01736-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Fatty acids play many critical roles in brain function but have not been investigated in essential tremor (ET), a frequent movement disorder suspected to involve cerebellar dysfunction. Here, we report a postmortem comparative analysis of fatty acid profiles by gas chromatography in the cerebellar cortex from ET patients (n = 15), Parkinson's disease (PD) patients (n = 15) and Controls (n = 17). Phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylinositol (PI)/ phosphatidylserine (PS) were separated by thin-layer chromatography and analyzed separately. First, the total amounts of fatty acids retrieved from the cerebellar cortex were lower in ET patients compared with PD patients, including monounsaturated (MUFA) and polyunsaturated fatty acids (PUFA). The diagnosis of ET was associated with lower cerebellar levels of saturated fatty acids (SFA) and PUFA (DHA and ARA) in the PE fraction specifically, but with a higher relative content of dihomo-γ-linolenic acid (DGLA; 20:3 ω-6) in the PC fraction. In contrast, a diagnosis of PD was associated with higher absolute concentrations of SFA, MUFA and ω-6 PUFA in the PI + PS fractions. However, relative PI + PS contents of ω-6 PUFA were lower in both PD and ET patients. Finally, linear regression analyses showed that the ω-3:ω-6 PUFA ratio was positively associated with age of death, but inversely associated with insoluble α-synuclein. Although it remains unclear how these FA changes in the cerebellum are implicated in ET or PD pathophysiology, they may be related to an ongoing neurodegenerative process or to dietary intake differences. The present findings provide a window of opportunity for lipid-based therapeutic nutritional intervention.
Collapse
Affiliation(s)
- Mélissa Simard
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
| | - Koralie Mélançon
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Room T-2-67 (CHUL) 2705 boul. Laurier, Québec, QC, G1V 4G2, Canada
| | - Line Berthiaume
- Faculté de Médecine, Université Laval, Québec, QC, Canada
- Axe Endocrinologie et Néphrologie, Centre de Recherche du CHU de Québec, Université Laval, Québec, QC, Canada
| | - Cyntia Tremblay
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Room T-2-67 (CHUL) 2705 boul. Laurier, Québec, QC, G1V 4G2, Canada
| | - Laura Pshevorskiy
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Room T-2-67 (CHUL) 2705 boul. Laurier, Québec, QC, G1V 4G2, Canada
| | - Pierre Julien
- Faculté de Médecine, Université Laval, Québec, QC, Canada
- Axe Endocrinologie et Néphrologie, Centre de Recherche du CHU de Québec, Université Laval, Québec, QC, Canada
| | - Ali H Rajput
- Division of Neurology, Royal University Hospital, University of Saskatchewan, Saskatoon, SK, Canada
| | - Alex Rajput
- Division of Neurology, Royal University Hospital, University of Saskatchewan, Saskatoon, SK, Canada
| | - Frédéric Calon
- Faculté de Pharmacie, Université Laval, Québec, QC, Canada.
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Room T-2-67 (CHUL) 2705 boul. Laurier, Québec, QC, G1V 4G2, Canada.
| |
Collapse
|
13
|
Louis ED, Kuo SH, Faust PL. Purkinje Cell Dendritic Swellings: A Postmortem Study of Essential Tremor and Other Cerebellar Degenerative Disorders. CEREBELLUM (LONDON, ENGLAND) 2024; 23:2383-2396. [PMID: 39230844 DOI: 10.1007/s12311-024-01739-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 09/05/2024]
Abstract
Under stress, Purkinje cells (PCs) undergo a variety of reactive morphological changes. These can include swellings of neuronal processes. While axonal swellings, "torpedoes", have been well-studied, dendritic swellings (DS) have not been the centerpiece of study. Surprisingly little is known about their frequency or relationship to other morphological changes in degenerating PCs. Leveraging a large brain bank, we (1) examined the morphology of DS, (2) quantified DS, and (2) examined correlations between counts of DS versus 16 other PC morphological changes in a broad range of cerebellar degenerative disorders. There were 159 brains - 100 essential tremor (ET), 13 Friedreich's ataxia, and 46 spinocerebellar ataxia (SCA) (14 SCA1, 7 SCA2, 13 SCA3, 5 SCA6, 5 SCA7, and 2 SCA8). DS were a feature of PCs across all these disorders, with varying morphologies and changes elsewhere in the dendritic arbor. On Luxol fast blue/hematoxylin and eosin-stained sections, the median number of DS per PC ranged from 0.001 in ET to 0.025 in SCA8. Bielschowsky-stained sections yielded higher counts, from 0.003 in ET to 0.042 in SCA6. Torpedo counts exceeded DS counts by one order of magnitude. DS counts were more robustly correlated with torpedo counts than with counts for any of the other PC morphological changes. In summary, DS ranged in prevalence across cerebellar degenerative disorders, from 1/1,000 to 42/1,000 PCs. Across disorders of cerebellar degeneration, these swellings of the dendritic compartment were most robustly correlated with swellings of the axonal compartment, suggesting a similar type of cellular response to duress.
Collapse
Affiliation(s)
- Elan D Louis
- Department of Neurology, University of Texas Southwestern, 5323 Harry Hines Blvd, Dallas, TX, 75390-8813, USA.
- Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Sheng-Han Kuo
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
| | - Phyllis L Faust
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York Presbyterian Hospital, New York, NY, USA
| |
Collapse
|
14
|
Fanning A, Kuo SH. Clinical Heterogeneity of Essential Tremor: Understanding Neural Substrates of Action Tremor Subtypes. CEREBELLUM (LONDON, ENGLAND) 2024; 23:2497-2510. [PMID: 37022657 PMCID: PMC10556200 DOI: 10.1007/s12311-023-01551-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/21/2023] [Indexed: 04/07/2023]
Abstract
Essential tremor (ET) is a common movement disorder affecting millions of people. Studies of ET patients and perturbations in animal models have provided a foundation for the neural networks involved in its pathophysiology. However, ET encompasses a wide variability of phenotypic expression, and this may be the consequence of dysfunction in distinct subcircuits in the brain. The cerebello-thalamo-cortical circuit is a common substrate for the multiple subtypes of action tremor. Within the cerebellum, three sets of cerebellar cortex-deep cerebellar nuclei connections are important for tremor. The lateral hemispheres and dentate nuclei may be involved in intention, postural and isometric tremor. The intermediate zone and interposed nuclei could be involved in intention tremor. The vermis and fastigial nuclei could be involved in head and proximal upper extremity tremor. Studying distinct cerebellar circuitry will provide important framework for understanding the clinical heterogeneity of ET.
Collapse
Affiliation(s)
- Alexander Fanning
- Department of Neurology, Columbia University, New York, NY, 10032, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, 10032, USA
| | - Sheng-Han Kuo
- Department of Neurology, Columbia University, New York, NY, 10032, USA.
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
15
|
Paparella G, Angelini L, Margiotta R, Passaretti M, Birreci D, Costa D, Cannavacciuolo A, De Riggi M, Alunni Fegatelli D, Bologna M. Insight into the Relationship Between Motor and Cognitive Symptoms in Essential Tremor. CEREBELLUM (LONDON, ENGLAND) 2024; 23:2050-2059. [PMID: 38748348 PMCID: PMC11489240 DOI: 10.1007/s12311-024-01704-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 10/20/2024]
Abstract
Essential tremor (ET) is a heterogeneous disorder characterized by bilateral upper limbs action tremor and, possibly, neurological signs of uncertain significance, including voluntary movement abnormalities and cognitive disturbances, i.e., the so-called 'soft' signs configuring the ET-plus definition. While motor and cognitive disturbances often coexist in ET, their interrelationship remains largely unexplored. Here we aim to further investigate the relationship between motor symptoms, objectively assessed through kinematic analysis, and cognitive dysfunctions in ET. Seventy ET patients underwent clinical examination, as well as kinematic recordings of tremor and finger tapping and a thorough cognitive assessment. We then tested clinic-demographic and kinematic differences between patients with and without cognitive abnormalities, i.e., with mild cognitive impairment (MCI). Correlation analysis served to explore potential associations between kinematic and cognitive data. Forty-three ET patients (61.42%) had MCI. ET-MCI patients exhibited reduced movement velocity during finger tapping compared to those with normal cognition (p < 0.001). Lower movement velocity during finger tapping was associated with poorer cognitive performance. Namely, we observed a correlation between movement velocity and performance on the Babcock Story Immediate and Delayed Recall Test (r = 0.52 and r = 0.45, both p < 0.001), as well as the interference memory task at 10 and 30 s (r = 0.3, p = 0.008 and r = 0.2, p = 0.03). In this study, we have provided data for a better pathophysiological interpretation of motor and cognitive signs in ET, including the role played by the cerebellum or extra-cerebellar areas, which possibly underpin both signs.
Collapse
Affiliation(s)
- Giulia Paparella
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, IS, Italy
| | | | - Roberta Margiotta
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | | | - Daniele Birreci
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | | | | | - Martina De Riggi
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Danilo Alunni Fegatelli
- Department of Public Health and Infectious Disease, Sapienza University of Rome, Rome, Italy
| | - Matteo Bologna
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy.
- IRCCS Neuromed, Pozzilli, IS, Italy.
| |
Collapse
|
16
|
Louis ED. Six Myths and Misconceptions about Essential Tremor. Tremor Other Hyperkinet Mov (N Y) 2024; 14:49. [PMID: 39346807 PMCID: PMC11428667 DOI: 10.5334/tohm.948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024] Open
Abstract
There are myths and misperceptions about most human diseases, and neurological diseases are no exception. In many instances, myths and misconceptions reflect what is no more than the collective failure of the field to catch up with the state of the science in that field. Hence, one may perhaps refer to these as "lags" rather than myths. As the field of medicine attempts to be evidence-based, it is best to remain true to published data and the state of the science. In this paper, I review six myths and misconceptions about ET. Myth 1 relates to the natural history and prognosis of ET. Myths 2 and 3 relate to the biological basis of ET, whereas myths 4 and 5 relate to the expression of the core clinical feature of ET. Finally, myth 6 focuses on the issue of disease classification. The myths are as follows: Myth 1: "ET is not associated with a shorter life expectancy". Myth 2: "The pathophysiology of ET remains unclear". Myth 3: "There have also been studies that do not show any cerebellar degeneration". Myth 4: "ET is a postural or a kinetic tremor". Myth 5: "Action tremor in ET is usually bilateral and symmetric". Myth 6: "ET plus". As neurologists, we are not ignorant of feedback loops. A regular review of facts should help to frame one's output. As such, one's formulations and output will be firmly grounded in data.
Collapse
Affiliation(s)
- Elan D. Louis
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
17
|
Liufu M, Leveroni ZM, Shridhar S, Zhou N, Yu JY. Optimizing real-time phase detection in diverse rhythmic biological signals for phase-specific neuromodulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.24.609522. [PMID: 39253473 PMCID: PMC11383035 DOI: 10.1101/2024.08.24.609522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Closed-loop, phase-specific neurostimulation is a powerful method to modulate ongoing brain activity for clinical and research applications. Phase-specific stimulation relies on estimating the phase of an ongoing oscillation in real time and issuing a control command at a target phase. Phase detection algorithms based on Fast Fourier transform (FFT) are widely used due to their computational efficiency and robustness. However, it is unclear how algorithm performance depends on the spectral properties of the input signal and how algorithm parameters can be optimized. We used offline simulation to evaluate the performance of three algorithms (endpoint-corrected Hilbert Transform, Hilbert Transform and phase mapping) on three rhythmic biological signals with distinct spectral properties (rodent hippocampal theta potential, human EEG alpha and human essential tremor). First, we found that algorithm performance was more strongly influenced by signal amplitude and frequency variation compared with signal to noise ratio. Second, our simulations showed that the size of the data window for phase estimation was critical for the performance of FFT-based algorithms, where the optimal data window corresponds to the period of the oscillation. We validated this prediction with real time phase detection of hippocampal theta oscillations in freely behaving rats performing spatial navigation. Our findings define the relationship between signal properties and algorithm performance and provide a convenient method for optimizing FFT-based phase detection algorithms.
Collapse
|
18
|
Ellis EG, Meyer GM, Kaasinen V, Corp DT, Pavese N, Reich MM, Joutsa J. Multimodal neuroimaging to characterize symptom-specific networks in movement disorders. NPJ Parkinsons Dis 2024; 10:154. [PMID: 39143114 PMCID: PMC11324766 DOI: 10.1038/s41531-024-00774-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024] Open
Abstract
Movement disorders, such as Parkinson's disease, essential tremor, and dystonia, are characterized by their predominant motor symptoms, yet diseases causing abnormal movement also encompass several other symptoms, including non-motor symptoms. Here we review recent advances from studies of brain lesions, neuroimaging, and neuromodulation that provide converging evidence on symptom-specific brain networks in movement disorders. Although movement disorders have traditionally been conceptualized as disorders of the basal ganglia, cumulative data from brain lesions causing parkinsonism, tremor and dystonia have now demonstrated that this view is incomplete. Several recent studies have shown that lesions causing a given movement disorder occur in heterogeneous brain locations, but disrupt common brain networks, which appear to be specific to each motor phenotype. In addition, findings from structural and functional neuroimaging in movement disorders have demonstrated that brain abnormalities extend far beyond the brain networks associated with the motor symptoms. In fact, neuroimaging findings in each movement disorder are strongly influenced by the constellation of patients' symptoms that also seem to map to specific networks rather than individual anatomical structures or single neurotransmitters. Finally, observations from deep brain stimulation have demonstrated that clinical changes, including both symptom improvement and side effects, are dependent on the modulation of large-scale networks instead of purely local effects of the neuromodulation. Combined, this multimodal evidence suggests that symptoms in movement disorders arise from distinct brain networks, encouraging multimodal imaging studies to better characterize the underlying symptom-specific mechanisms and individually tailor treatment approaches.
Collapse
Affiliation(s)
- Elizabeth G Ellis
- Turku Brain and Mind Center, University of Turku, Turku, Finland.
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia.
| | - Garance M Meyer
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Valtteri Kaasinen
- Clinical Neurosciences, University of Turku, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
| | - Daniel T Corp
- Turku Brain and Mind Center, University of Turku, Turku, Finland
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia
| | - Nicola Pavese
- Institute of Clinical Medicine, Department of Nuclear Medicine & PET, Aarhus University, Aarhus, Denmark
- Translational and Clinical Research Institute, Newcastle University, Upon Tyn, UK
| | - Martin M Reich
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080, Würzburg, Germany
| | - Juho Joutsa
- Turku Brain and Mind Center, University of Turku, Turku, Finland.
- Clinical Neurosciences, University of Turku, Turku, Finland.
- Neurocenter, Turku University Hospital, Turku, Finland.
| |
Collapse
|
19
|
Benarroch E. What Is the Role of the Dentate Nucleus in Normal and Abnormal Cerebellar Function? Neurology 2024; 103:e209636. [PMID: 38954796 DOI: 10.1212/wnl.0000000000209636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024] Open
|
20
|
Grotewold N, Albin RL. Update: Protective and risk factors for Parkinson disease. Parkinsonism Relat Disord 2024; 125:107026. [PMID: 38879999 PMCID: PMC11846500 DOI: 10.1016/j.parkreldis.2024.107026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Abstract
We review the epidemiologic literature on potential protective and risk factors in Parkinson's Disease (PD). Prior research identified numerous possible protective and risk factors. Potential protective factors include tobacco abuse, physical activity, urate levels, NSAID use, calcium channel blocker use, statin use, and use of some α1-adrenergic antagonists. Some potential protective factors could be products of reverse causation, including increased serum urate, tobacco abuse, and coffee-tea-caffeine consumption. Potential risk factors include traumatic brain injury, pesticide exposure, organic solvent exposure, lead exposure, air pollution, Type 2 Diabetes, some dairy products, cardiovascular disease, and some infections including Hepatitis C, H. pylori, and COVID-19. Potential non-environmental risk factors include bipolar disorder, essential tremor, bullous pemphigoid, and inflammatory bowel disease. There is an inverse relationship with PD and risk of most cancers. Though many potential protective and risk factors for PD were identified, research has not yet led to unique, rigorous prevention trials or successful disease-modifying interventions. While efforts to reduce exposure to some industrial toxicants are well justified, PD incidence might be most effectively reduced by mitigation of risks, such as Type 2 Diabetes, air pollution, traumatic brain injury, or physical inactivity, that are general public health intervention targets.
Collapse
Affiliation(s)
- Nikolas Grotewold
- Dept. of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Roger L Albin
- Dept. of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA; GRECC & Neurology Service, VAAAHS, Ann Arbor, MI, 48105, USA; University of Michigan Morris K. Udall Center of Excellence for Parkinson's Disease Research, Ann Arbor, MI, 48109, USA; University of Michigan Parkinson's Foundation Research Center of Excellence, USA.
| |
Collapse
|
21
|
Louis ED. Featuring the Features of the Featureless Tremor: A Statement about Essential Tremor. Tremor Other Hyperkinet Mov (N Y) 2024; 14:40. [PMID: 39070060 PMCID: PMC11276397 DOI: 10.5334/tohm.931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024] Open
Affiliation(s)
- Elan D. Louis
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
22
|
Zhang L, Cui S, Xi X, Bi H, Huang B. Research hotspots and frontiers of essential tremor from 2013 to 2023: a visualization analysis based on CiteSpace. Front Aging Neurosci 2024; 16:1380851. [PMID: 39109267 PMCID: PMC11300259 DOI: 10.3389/fnagi.2024.1380851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/28/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND ET, one of the most prevalent neurological disorders, presents a significant challenge in terms of disability. Despite the growing focus on ET in recent years, comprehensive bibliometric analysis has been lacking. METHODS This study delves into essential tremor research covering the period from 2013 to 2023, utilizing the Web of Science (WOS) database. Employing CiteSpace for quantitative analysis, it examines an array of metrics including annual publication trends, contributions from countries and institutions, authorship patterns, key terminologies, and patterns of reference co-citation. The primary objective is to use CiteSpace for a detailed visual exploration of the literature over the last decade, pinpointing the evolving landscape and key areas of focus in essential tremor research, and thus providing a foundation for future investigative endeavors. RESULTS There were 2,224 literary works included in all. The amount of published works has been steadily rising in recent years. Of them, the majority originate from the United States, Louis, Elan D. is the publisher of the most publications (161 articles), and Movement Disorders is the journal that receives the most citations. The key words contribution and co-cited literatures suggest that the main research hotspots in recent years are the physiological and pathological mechanism of essential tremor, the determination of optimal targets for deep brain stimulation (DBS) and surgery transcranial magnetic resonance-guided focused ultrasound (MRgFUS) in the surgical management of essential tremor and the innovative research of botulinum toxin administration method.
Collapse
Affiliation(s)
- Linlin Zhang
- Nantong Fourth People’s Hospital, Nantong, China
| | - Shifang Cui
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaoming Xi
- Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Hongyan Bi
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
| | - Bin Huang
- Nantong Fourth People’s Hospital, Nantong, China
| |
Collapse
|
23
|
Salinas M, Salinas VH, McGurn M, Hernandez N, Louis ED. Serum Neurofilament Light-Chain Concentrations in Essential Tremor: a Case-Control Study. CEREBELLUM (LONDON, ENGLAND) 2024; 23:951-956. [PMID: 37466893 DOI: 10.1007/s12311-023-01583-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/28/2023] [Indexed: 07/20/2023]
Abstract
Essential tremor (ET) is a common neurological disorder, with clinical and pathophysiological links to the cerebellum. Inquiries into the etiology, pathophysiology, and nosology of ET stand to benefit from the identification of disease biomarkers. Serum neurofilament light chain (NfL) has emerged as a novel signature of conditions in which neuronal injury reflects an outcome of the ongoing disease process. We sought to investigate the concentrations of NfL in ET patients and healthy controls. In this case-control study, our powered study population of 41 ET patients and 40 age-matched healthy controls underwent clinical assessments and measurement of serum NfL concentration using Simoa technology. Serum NfL was elevated in ET patients - mean log-transformed serum NfL concentration = 1.23 ± 0.19 (95% confidence interval [CI] = 1.17-1.29) vs. 1.08 ± 0.15 (95% CI = 1.03-1.13), p = 0.0002. This difference persisted after accounting for age, sex and Montreal Cognitive Assessment score in a multiple linear regression model (p = 0.002) and in an age-matched sample subset of 35 ET cases and 35 controls (p = 0.006). There was no association between tremor severity and serum NfL levels (p = 0.73). In this sample of ET patients and controls, serum NfL concentrations were significantly higher in ET. Studies in additional cohorts of ET cases would be of value in attempting to replicate these results and assessing diagnostic utility.
Collapse
Affiliation(s)
- Meagen Salinas
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA.
- Neurology Section, VA North Texas Health Care System, Dallas, TX, USA.
| | - Victor H Salinas
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
- Neurology Section, VA North Texas Health Care System, Dallas, TX, USA
| | - Maisie McGurn
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Nora Hernandez
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| | - Elan D Louis
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, 75390, USA
| |
Collapse
|
24
|
Iorio-Morin C, Mathieu D, Franzini A, Hodaie M, Villeneuve SA, Hamel A, Lozano AM. Radiosurgical thalamotomy for essential tremor: state of the art, current challenges and future directions. Expert Rev Neurother 2024; 24:597-605. [PMID: 38713485 DOI: 10.1080/14737175.2024.2351512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/01/2024] [Indexed: 05/08/2024]
Abstract
INTRODUCTION Essential tremor (ET) is the most frequent movement disorder, affecting up to 5% of adults > 65 years old. In 30-50% of cases, optimal medical management provides insufficient tremor relief and surgical options are considered. Thalamotomy is a time-honored intervention, which can be performed using radiofrequency (RF), stereotactic radiosurgery (SRS), or magnetic resonance-guided focused ultrasounds (MRgFUS). While the latter has received considerable attention in the last decade, SRS has consistently been demonstrated as an effective and well-tolerated option. AREAS COVERED This review discusses the evidence on SRS thalamotomy for ET. Modern workflows and emerging techniques are detailed. Current outcomes are analyzed, with a specific focus on tremor reduction, complications and radiological evolution of the lesions. Challenges for the field are highlighted. EXPERT OPINION SRS thalamotomy improves tremor in > 80% patients. The efficacy appears comparable to other modalities, including DBS, RF and MRgFUS. Side effects result mostly from idiosyncratic hyper-responses to radiation, which occur in up to 10% of treatments, are usually self-resolving, and are symptomatic in < 4% of patients. Future research should focus on accumulating more data on bilateral treatments, collecting long-term outcomes, refining targeting, and improving lesion consistency.
Collapse
Affiliation(s)
- Christian Iorio-Morin
- Division of Neurosurgery, Department of Surgery, Université de Sherbrooke, Sherbrooke, Canada
| | - David Mathieu
- Division of Neurosurgery, Department of Surgery, Université de Sherbrooke, Sherbrooke, Canada
| | - Andrea Franzini
- Department of Neurosurgery, IRCCS Humanitas Research Hospital, Milan, Rozzano, Italy
| | - Mojgan Hodaie
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | | | - Andréanne Hamel
- Division of Neurosurgery, Department of Surgery, Université de Sherbrooke, Sherbrooke, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
25
|
Yang Y, Zheng C, Chen B, Hernandez NC, Faust PL, Cai Z, Louis ED, Matuskey D. Decreased Synaptic Vesicle Glycoprotein 2A Binding in the Human Postmortem Essential Tremor Cerebellum: Evidence of Reduction in Synaptic Density. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1053-1060. [PMID: 37783917 DOI: 10.1007/s12311-023-01611-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/27/2023] [Indexed: 10/04/2023]
Abstract
OBJECTIVE Despite being one of the most prevalent neurological diseases, the pathophysiology of essential tremor (ET) is not fully understood. Neuropathological studies have identified numerous degenerative changes in the cerebellum of ET patients, however. These data align with considerable clinical and neurophysiological data linking ET to the cerebellum. While neuroimaging studies have variably shown mild atrophy in the cerebellum, marked atrophy is not a clear feature of the cerebellum in ET and a search for a more suitable neuroimaging signature of neurodegeneration is in order. Postmortem studies in ET have examined different neuropathological alterations in the cerebellum, but as of yet have not focused on measures of generalized synaptic markers. This pilot study focuses on synaptic vesicle glycoprotein 2A (SV2A), a protein expressed in practically all synapses in the brain, as a measure of synaptic density in postmortem ET cases. METHODS The current study utilized autoradiography with the SV2A radioligand [18F]SDM-16 to assess synaptic density in the cerebellar cortex and dentate nucleus in three ET cases and three age-matched controls. RESULTS Using [18F]SDM-16, SV2A was 53% and 46% lower in the cerebellar cortex and dentate nucleus, respectively, in ET cases compared to age-matched controls. CONCLUSION In this pilot study, using in vitro SV2A autoradiography, we have observed significantly lower synaptic density in the cerebellar cortex and dentate nucleus of ET cases. Future research could expand on our sample size and focus on in vivo imaging in ET to explore whether SV2A imaging could serve as a much-needed disease biomarker.
Collapse
Affiliation(s)
- Yanghong Yang
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Chao Zheng
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Baosheng Chen
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Nora C Hernandez
- Department of Neurology, University of Texas Southwestern School of Medicine, Dallas, TX, USA
| | - Phyllis L Faust
- Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons and the New York Presbyterian Hospital, New York, NY, USA
| | - Zhengxin Cai
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Elan D Louis
- Department of Neurology, University of Texas Southwestern School of Medicine, Dallas, TX, USA
| | - David Matuskey
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA.
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA.
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
26
|
Dogan H, Bilen S, Ergin Beton O. Executive dysfunction accompanying essential tremor. APPLIED NEUROPSYCHOLOGY. ADULT 2024; 31:128-133. [PMID: 34874215 DOI: 10.1080/23279095.2021.2002865] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Essential tremor (ET) is one of the most common neurological diseases. New evidence suggest that ET is associated with cognitive disorders other than motor symptoms. We aimed to investigate executive dysfunctions, which are comorbid cognitive deficiencies that may accompany ET. The study was conducted as an observational, case-control study in the Neurology Department of Ankara City Hospital in a 3-month period. The "Fahn-Tolosa-Marin Tremor Evaluation Scale" was used to rate tremor severity. Both patients and control group were subjected to the Mini Mental Test, followed by the Stroop TBAG test (TBAG is composed of the first letters of "TUBİTAK Temel Bilimler Araştırma Grubu," which means Scientific and Technological Research Council of Turkey Basic Sciences Research Group), word fluency (category fluency), phonemic fluency (K), and abstract thinking (binary similarities, proverb interpretation) tests. Both the patient and the control group consisted of 20 women and 20 men, with age, gender, and educational background compatible. Mean age of the patient group was 34.80 ± 13.23 years, while it was 34.95 ± 10.21 years in control group. In the ET group, statistically significant impairment was detected in the Stroop Test section 5 duration and error + correction number, category fluency, binary similarity, and phonemic fluency tests compared to the control group. There was a correlation between the severity of tremor and especially Stroop, category fluency, and binary similarity tests such that, as the severity of tremor increased, these test scores deteriorated. In ET patients, an impairment, accompanying tremor, may be present in executive functions that are a part of frontal lobe functions even in younger patients. This finding may suggest that impairment in the cerebellum-thalamus-frontal lobe connection may play a role in ET pathology.
Collapse
|
27
|
Kawazoe T, Sugaya K, Nakata Y, Okitsu M, Takahashi K. Two distinct degenerative types of nigrostriatal dopaminergic neuron in the early stage of parkinsonian disorders. Clin Park Relat Disord 2024; 10:100242. [PMID: 38405025 PMCID: PMC10883825 DOI: 10.1016/j.prdoa.2024.100242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/27/2024] Open
Abstract
Introduction The present study characterized the degeneration of nigrostriatal dopaminergic neurons in the early stages of parkinsonian disorders using integrative neuroimaging analysis with neuromelanin-sensitive MRI and 123I-FP-CIT dopamine transporter (DAT) SPECT. Methods Thirty-one, 30, and 29 patients with progressive supranuclear palsy (PSP), corticobasal syndrome (CBS) with abnormal specific binding ratio (SBR) in either hemisphere (mean ± 2SD), and parkinsonism-predominant multiple system atrophy (MSA-P), respectively, were enrolled. Neuromelanin-related contrast (NRC) in the substantia nigra (NRCSN) and locus coeruleus (NRCLC) and the SBR of DAT SPECT were measured. All the patients underwent both examinations simultaneously within five years after symptom onset. After adjusting for interhemispheric asymmetry on neuromelanin-related MRI contrast using the Z-score, linear regression analysis of the NRCSN and SBR was performed for the most- and least-affected hemispheres, as defined by the interhemispheric differences per variable (SBR, NRCSN, standardized [SBR + NRCSN]) in each patient. Results Although the variables did not differ significantly between PSP and CBS, a significant correlation was found for CBS in the most-affected hemisphere for all the definitions, including the clinically defined, most-affected hemisphere. No significant correlation was found between the NRCSN and SBR for any of the definitions in either PSP or MSA-P. Conclusion Together with the findings of our previous study of dementia with Lewy bodies (DLB) and Parkinson's disease (PD), the present findings indicated that neural degeneration in the disorders examined may be categorized by the significance of the NRCSN-SBR correlation in PD and CBS and its non-significance in DLB, PSP, and MSA-P.
Collapse
Affiliation(s)
- Tomoya Kawazoe
- Department of Neurology, Tokyo Metropolitan Neurological Hospital (TMNH), Tokyo, Japan
| | - Keizo Sugaya
- Department of Neurology, Tokyo Metropolitan Neurological Hospital (TMNH), Tokyo, Japan
| | | | - Masato Okitsu
- Department of Neurology, Tokyo Metropolitan Neurological Hospital (TMNH), Tokyo, Japan
| | - Kazushi Takahashi
- Department of Neurology, Tokyo Metropolitan Neurological Hospital (TMNH), Tokyo, Japan
| |
Collapse
|
28
|
Franthal S, Khalil M, Kern D, Gattermeyer L, Buchmann A, Katschnig‐Winter P, Kögl M, Demjaha R, Tafrali C, Hofer E, Schmidt R, Schwingenschuh P. Elevated serum neurofilament light chain protein in patients with essential tremor. Eur J Neurol 2024; 31:e16143. [PMID: 37975778 PMCID: PMC11235714 DOI: 10.1111/ene.16143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND AND PURPOSE Quantification of neurofilament light chain protein in serum (sNfL) enables the neuro-axonal damage in peripheral blood to be reliably assessed and monitored. There is a long-standing debate whether essential tremor represents a 'benign' tremor syndrome or whether it is linked to neurodegeneration. This study aims to investigate sNfL concentrations in essential tremor compared to healthy controls (cross-sectionally and longitudinally) and to assess whether sNfL is associated with motor and nonmotor markers of disease progression. METHODS Data of patients with essential tremor from our prospective registry on movement disorders (PROMOVE) were retrospectively analysed. Age-, sex- and body-mass-index-matched healthy controls were recruited from an ongoing community-dwelling aging cohort. sNfL was quantified by an ultra-sensitive single molecule array (Simoa). All participants underwent detailed clinical examination at baseline and after approximately 5 years of follow-up. RESULTS Thirty-seven patients with clinically diagnosed essential tremor were included and 37 controls. The essential tremor group showed significantly higher sNfL levels compared to healthy controls at baseline and follow-up. sNfL levels increased over time in both groups, and the slope of sNfL increase was similar in the essential tremor and healthy control groups. Comparing patients with a disease duration under 5 years to those with a longer disease duration, the former group had a significantly greater increase of sNfL over time, which strongly correlated to worsening of tremor and cognition. CONCLUSION Our findings indicate that neurodegeneration, possibly happening at an early disease stage, might play a role in the pathophysiology of essential tremor.
Collapse
Affiliation(s)
| | - Michael Khalil
- Department of NeurologyMedical University of GrazGrazAustria
| | - Daniela Kern
- Department of NeurologyMedical University of GrazGrazAustria
| | | | | | | | - Mariella Kögl
- Department of NeurologyMedical University of GrazGrazAustria
| | - Rina Demjaha
- Department of NeurologyMedical University of GrazGrazAustria
| | - Cansu Tafrali
- Department of NeurologyMedical University of GrazGrazAustria
| | - Edith Hofer
- Department of NeurologyMedical University of GrazGrazAustria
| | | | | |
Collapse
|
29
|
Ruff DS, Balbo I, Lai R, Dieng D, Hennessey C, Vennam K, Dwork AJ, McCreary M, Louis ED, Faust PL, Kuo S. Reduced Bergmann glial process terminations and lateral appendages in essential tremor. Ann Clin Transl Neurol 2024; 11:377-388. [PMID: 38098226 PMCID: PMC10863904 DOI: 10.1002/acn3.51958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/29/2023] [Accepted: 11/12/2023] [Indexed: 02/15/2024] Open
Abstract
OBJECTIVE Postmortem examination of the essential tremor cerebellum has revealed a variety of pathological changes centered in and around Purkinje cells. Studies have predominantly focused on cerebellar neuronal connections. Bergmann glial morphology has not yet been studied in essential tremor. Among their many roles, Bergmann glia in the cerebellar cortex ensheath Purkinje cell synapses and provide neuroprotection. Specifically, the complex radial processes and lateral appendages of Bergmann glia are structural domains that modulate Purkinje cell synaptic transmission. In this study, we investigate whether Bergmann glia morphology is altered in the essential tremor cerebellum. METHODS We applied the Golgi-Kopsch method and used computerized three-dimensional cell reconstruction to visualize Bergmann glia in the postmortem cerebellum of 34 cases and 17 controls. We quantified morphology of terminal structures (number of terminations and lateral appendage density) and morphology of radial processes (total process length, branch length, branch order, and branch volume) in each glial cell. We quantified number of branches and volume as well. RESULTS Essential tremor cases had a 31.9% decrease in process terminations and a 35.7% decrease in lateral appendage density in Bergmann glia. Total process length and branch length did not differ between essential tremor cases and controls. We found also a reduction in number of secondary and tertiary branches and tertiary branches volume. INTERPRETATION These findings suggest that Bergmann glia in essential tremor cases have more alterations in their terminal structures, with a relative preservation of radial processes, and highlight a potential role for these astrocytes in the disease pathophysiology.
Collapse
Affiliation(s)
- David S. Ruff
- Department of NeurologyColumbia UniversityNew YorkNew York10032USA
- Initiative for Columbia Ataxia and TremorColumbia UniversityNew YorkNew York10032USA
| | - Ilaria Balbo
- Department of NeurologyColumbia UniversityNew YorkNew York10032USA
- Initiative for Columbia Ataxia and TremorColumbia UniversityNew YorkNew York10032USA
| | - Ruo‐Yah Lai
- Department of NeurologyColumbia UniversityNew YorkNew York10032USA
- Initiative for Columbia Ataxia and TremorColumbia UniversityNew YorkNew York10032USA
| | - Diarra Dieng
- Department of NeurologyColumbia UniversityNew YorkNew York10032USA
- Initiative for Columbia Ataxia and TremorColumbia UniversityNew YorkNew York10032USA
| | - Charlotte Hennessey
- Department of NeurologyColumbia UniversityNew YorkNew York10032USA
- Initiative for Columbia Ataxia and TremorColumbia UniversityNew YorkNew York10032USA
| | - Krish Vennam
- Department of NeurologyColumbia UniversityNew YorkNew York10032USA
- Initiative for Columbia Ataxia and TremorColumbia UniversityNew YorkNew York10032USA
| | - Andrew J. Dwork
- Department of Pathology and Cell BiologyColumbia University Medical Center, The New York Presbyterian HospitalNew YorkNew York10032USA
- Department of PsychiatryColumbia UniversityNew YorkNew YorkUSA
| | - Morgan McCreary
- Department of NeurologyUniversity of Texas SouthwesternDallasTexas75390USA
| | - Elan D. Louis
- Department of NeurologyUniversity of Texas SouthwesternDallasTexas75390USA
| | - Phyllis L. Faust
- Initiative for Columbia Ataxia and TremorColumbia UniversityNew YorkNew York10032USA
- Department of Pathology and Cell BiologyColumbia University Medical Center, The New York Presbyterian HospitalNew YorkNew York10032USA
| | - Sheng‐Han Kuo
- Department of NeurologyColumbia UniversityNew YorkNew York10032USA
- Initiative for Columbia Ataxia and TremorColumbia UniversityNew YorkNew York10032USA
| |
Collapse
|
30
|
Bolton TAW, Van De Ville D, Régis J, Witjas T, Girard N, Levivier M, Tuleasca C. Dynamic functional changes upon thalamotomy in essential tremor depend on baseline brain morphometry. Sci Rep 2024; 14:2605. [PMID: 38297028 PMCID: PMC10831051 DOI: 10.1038/s41598-024-52410-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 01/18/2024] [Indexed: 02/02/2024] Open
Abstract
Patients with drug-resistant essential tremor (ET) may undergo Gamma Knife stereotactic radiosurgical thalamotomy (SRS-T), where the ventro-intermediate nucleus of the thalamus (Vim) is lesioned by focused beams of gamma radiations to induce clinical improvement. Here, we studied SRS-T impacts on left Vim dynamic functional connectivity (dFC, n = 23 ET patients scanned before and 1 year after intervention), and on surface-based morphometric brain features (n = 34 patients, including those from dFC analysis). In matched healthy controls (HCs), three dFC states were extracted from resting-state functional MRI data. In ET patients, state 1 spatial stability increased upon SRS-T (F1,22 = 19.13, p = 0.004). More frequent expression of state 3 over state 1 before SRS-T correlated with greater clinical recovery in a way that depended on the MR signature volume (t6 = 4.6, p = 0.004). Lower pre-intervention spatial variability in state 3 expression also did (t6 = - 4.24, p = 0.005) and interacted with the presence of familial ET so that these patients improved less (t6 = 4.14, p = 0.006). ET morphometric profiles showed significantly lower similarity to HCs in 13 regions upon SRS-T (z ≤ - 3.66, p ≤ 0.022), and a joint analysis revealed that before thalamotomy, morphometric similarity and states 2/3 mean spatial similarity to HCs were anticorrelated, a relationship that disappeared upon SRS-T (z ≥ 4.39, p < 0.001). Our results show that left Vim functional dynamics directly relates to upper limb tremor lowering upon intervention, while morphometry instead has a supporting role in reshaping such dynamics.
Collapse
Affiliation(s)
- Thomas A W Bolton
- Department of Clinical Neurosciences, Neurosurgery Service and Gamma Knife Center, Centre Hospitalier Universitaire Vaudois, 1011, Lausanne, Switzerland.
- Department of Radiology, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), 1011, Lausanne, Switzerland.
| | - Dimitri Van De Ville
- Neuro-X Institute, Ecole Polytechnique Fédérale de Lausanne, 1202, Geneva, Switzerland
- Department of Radiology and Medical Informatics, University of Geneva, 1202, Geneva, Switzerland
| | - Jean Régis
- Stereotactic and Functional Neurosurgery Service and Gamma Knife Unit, Assistance Publique-Hôpitaux de Marseille, Centre Hospitalier Universitaire de la Timone, 13005, Marseille, France
| | - Tatiana Witjas
- Neurology Department, Assistance Publique-Hôpitaux de Marseille, Centre Hospitalier Universitaire de la Timone, 13005, Marseille, France
| | - Nadine Girard
- Department of Diagnostic and Interventional Neuroradiology, Centre de Résonance Magnétique Biologique et Médicale, Assistance Publique-Hôpitaux de Marseille, Centre Hospitalier Universitaire de la Timone, 13005, Marseille, France
| | - Marc Levivier
- Department of Clinical Neurosciences, Neurosurgery Service and Gamma Knife Center, Centre Hospitalier Universitaire Vaudois, 1011, Lausanne, Switzerland
- Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), 1015, Lausanne, Switzerland
| | - Constantin Tuleasca
- Department of Clinical Neurosciences, Neurosurgery Service and Gamma Knife Center, Centre Hospitalier Universitaire Vaudois, 1011, Lausanne, Switzerland
- Faculty of Biology and Medicine (FBM), University of Lausanne (UNIL), 1015, Lausanne, Switzerland
- Signal Processing Laboratory (LTS 5), Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| |
Collapse
|
31
|
Guehl D, Guillaud E, Langbour N, Doat E, Auzou N, Courtin E, Branchard O, Engelhardt J, Benazzouz A, Eusebio A, Cuny E, Burbaud P. Usefulness of thalamic beta activity for closed-loop therapy in essential tremor. Sci Rep 2023; 13:22332. [PMID: 38102180 PMCID: PMC10724233 DOI: 10.1038/s41598-023-49511-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023] Open
Abstract
A partial loss of effectiveness of deep brain stimulation of the ventral intermediate nucleus of the thalamus (VIM) has been reported in some patients with essential tremor (ET), possibly due to habituation to permanent stimulation. This study focused on the evolution of VIM local-field potentials (LFPs) data over time to assess the long-term feasibility of closed-loop therapy based on thalamic activity. We performed recordings of thalamic LFPs in 10 patients with severe ET using the ACTIVA™ PC + S (Medtronic plc.) allowing both recordings and stimulation in the same region. Particular attention was paid to describing the evolution of LFPs over time from 3 to 24 months after surgery when the stimulation was Off. We demonstrated a significant decrease in high-beta LFPs amplitude during movements inducing tremor in comparison to the rest condition 3 months after surgery (1.91 ± 0.89 at rest vs. 1.27 ± 1.37 µV2/Hz during posture/action for N = 8/10 patients; p = 0.010), 12 months after surgery (2.92 ± 1.75 at rest vs. 2.12 ± 1.78 µV2/Hz during posture/action for N = 7/10 patients; p = 0.014) and 24 months after surgery (2.32 ± 0.35 at rest vs 0.75 ± 0.78 µV2/Hz during posture/action for 4/6 patients; p = 0.017). Among the patients who exhibited a significant decrease of high-beta LFP amplitude when stimulation was Off, this phenomenon was observed at least twice during the follow-up. Although the extent of this decrease in high-beta LFPs amplitude during movements inducing tremor may vary over time, this thalamic biomarker of movement could potentially be usable for closed-loop therapy in the long term.
Collapse
Affiliation(s)
- Dominique Guehl
- Service de Neurophysiologie Clinique de l'enfant et de l'adulte, Hôpital Pellegrin, Pôle des Neurosciences Cliniques, CHU de Bordeaux, Bordeaux, France.
- Institut des Maladies Neurodégénératives, Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000, Bordeaux, France.
| | - Etienne Guillaud
- Institute of Cognitive and Integrative Neurosciences, Univ. Bordeaux, CNRS, INCIA, UMR 5287, F-33000, Bordeaux, France
| | - Nicolas Langbour
- Centre de Recherche en Psychiatrie, CH de la Milétrie, 86000, Poitiers, France
| | - Emilie Doat
- Institute of Cognitive and Integrative Neurosciences, Univ. Bordeaux, CNRS, INCIA, UMR 5287, F-33000, Bordeaux, France
| | - Nicolas Auzou
- Institut des Maladies Neurodégénératives Clinique (IMNc), Pôle des Neurosciences Cliniques, CHU de Bordeaux, Bordeaux, France
| | - Edouard Courtin
- Service de Neurophysiologie Clinique de l'enfant et de l'adulte, Hôpital Pellegrin, Pôle des Neurosciences Cliniques, CHU de Bordeaux, Bordeaux, France
| | | | | | - Abdelhamid Benazzouz
- Institut des Maladies Neurodégénératives, Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000, Bordeaux, France
| | - Alexandre Eusebio
- Department of Neurology and Movement Disorders, APHM, Hôpitaux Universitaire de Marseille, Marseille, France
- Institut de Neurosciences de la Timone, UMR 7289, Aix Marseille Univ, CNRS, Marseille, France
| | - Emmanuel Cuny
- Service de Neurochirurgie, CHU de Bordeaux, Bordeaux, France
| | - Pierre Burbaud
- Service de Neurophysiologie Clinique de l'enfant et de l'adulte, Hôpital Pellegrin, Pôle des Neurosciences Cliniques, CHU de Bordeaux, Bordeaux, France
- Institut des Maladies Neurodégénératives, Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000, Bordeaux, France
| |
Collapse
|
32
|
Zhong HJ, Wang SQ, Zhang RX, Zhuang YP, Li L, Yi SZ, Li Y, Wu L, Ding Y, Zhang J, Xie X, He XX, Wu Q. Supplementation with high-GABA-producing Lactobacillus plantarum L5 ameliorates essential tremor triggered by decreased gut bacteria-derived GABA. Transl Neurodegener 2023; 12:58. [PMID: 38093327 PMCID: PMC10717605 DOI: 10.1186/s40035-023-00391-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/19/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND The γ-aminobutyric acid (GABA) hypothesis posits a role of GABA deficiency in the central nervous system in the pathogenesis and progression of essential tremor (ET). However, the specific causative factor for GABA deficiency is not clear. The gut microbiota in mammals has recently been considered as a significant source of GABA. Furthermore, the GABA-based signals originating from the intestine can be transmitted to the brain through the "enteric nervous system-vagus nerve-brain" axis. However, the plausible contribution of gut microbiota to ET seems inspiring but remains obscure. METHODS Fecal samples from patients with ET and healthy controls were examined by metagenomic sequencing to compare the composition of gut microbiota and the expression of genes involved in GABA biosynthesis. The impact of gut microbiota on ET was explored through transplantation of fecal microbiota from patients with ET into the murine ET model. Lactic acid bacteria producing high amounts of GABA were identified through whole-genome sequencing and ultra-performance liquid chromatography-tandem mass spectrometry. Subsequently, mice were treated with the high-GABA-producing strain Lactobacillus plantarum L5. Tremor severity, behavioral tests, pro-inflammatory cytokines, GABA concentration, and gut microbiota composition were examined in these mice. RESULTS The gut microbiota of patients with ET demonstrated an impaired GABA-producing capacity and a reduced fecal GABA concentration. Transplantation of the gut microbiota from patients with ET induced an extension of tremor duration and impaired mobility in the murine model of ET. L5 exhibited an augmented GABA-producing capacity, with the De Man-Rogosa-Sharpe culture broth containing 262 mg/l of GABA. In addition, administration of L5 significantly decreased the tremor severity and enhanced the movement capability and grasping ability of ET mice. In vivo mechanistic experiments indicated that L5 reshaped the gut microbial composition, supplemented the mucosa-associated microbiota with GABA-producing capacity, increased the GABA concentrations in the cerebellum, and diminished inflammation in the central nervous system. CONCLUSIONS These findings highlight that deficiency of GABA-producing gut microbes plays an essential role in the pathogenesis of ET and that L5 is a promising candidate for treating ET.
Collapse
Affiliation(s)
- Hao-Jie Zhong
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510000, China
- Department of Gastroenterology, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510000, China
| | - Si-Qi Wang
- Department of Gastroenterology, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510000, China
| | - Ruo-Xin Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510000, China
| | - Yu-Pei Zhuang
- Department of Gastroenterology, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510000, China
| | - Longyan Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510000, China
| | - Shuo-Zhao Yi
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510000, China
| | - Ying Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510000, China
| | - Lei Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510000, China
- Department of Gastroenterology, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510000, China
| | - Yu Ding
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510000, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510000, China
| | - Xinqiang Xie
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510000, China.
| | - Xing-Xiang He
- Department of Gastroenterology, the First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, 510000, China.
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510000, China.
| |
Collapse
|
33
|
Hirano S, Sugiyama A, Arai K. Noradrenergic Pathway to the Cerebellum: the Study Must Go On. CEREBELLUM (LONDON, ENGLAND) 2023; 22:1052-1054. [PMID: 36149525 DOI: 10.1007/s12311-022-01479-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
In 1967, Andén, Fuxe, and Ungerstedt demonstrated the presence of monoamine-containing fibers in the rat cerebellum. Over the past 50 years, this finding has provided clinical relevance of the noradrenergic system to the cerebellum. Cerebellar dysfunction and noradrenergic system may relate to tremor in Parkinson disease and essential tremor, motor learning, and the vestibulo-ocular reflex in spinocerebellar ataxias. Cognition and emotion may also be linked to the cerebellar noradrenergic system, in relation to the symptoms of Alzheimer disease, dementia with Lewy bodies, and attention-deficit/hyperactivity disorder. Despite recent technological advances in neuroimaging for evaluating the noradrenergic system, we need more evidence to understand the precise pathophysiological relationship between the cerebellum and the noradrenergic system and its clinical implications.
Collapse
Affiliation(s)
- Shigeki Hirano
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan.
- Department of Functional Brain Imaging, Institute for Quantum Medical Science Directorate, National Institute for Quantum Science and Technology, Chiba, Japan.
| | - Atsuhiko Sugiyama
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kimihito Arai
- Department of Neurology, National Hospital Organization Chibahigashi National Hospital, Chiba, Japan
| |
Collapse
|
34
|
Bal N, Şengül Y, Behmen MB, Powell A, Louis ED. Vestibular reflexes in essential tremor: abnormalities of ocular and cervical vestibular-evoked myogenic potentials are associated with the cerebellum and brainstem involvement. J Neural Transm (Vienna) 2023; 130:1553-1559. [PMID: 37199795 DOI: 10.1007/s00702-023-02652-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/12/2023] [Indexed: 05/19/2023]
Abstract
This study utilized cervical vestibular-evoked myogenic potentials tests (cVEMP) and ocular vestibular-evoked myogenic potentials tests (oVEMP) to investigate the vestibulocollic and vestibuloocular reflex arcs and to evaluate cerebellar and brainstem involvement) in essential tremor (ET). Eighteen cases with ET and 16 age- and gender-matched healthy control subjects (HCS) were included in the present study. Otoscopic and neurologic examinations were performed on all participants, and both cervical and ocular VEMP tests were performed. Pathological cVEMP results were increased in the ET group (64.7%) compared to the HCS (41,2%; p > 0.05). The latencies of P1 and N1 waves were shorter in the ET group than in HCS (p = 0.01 and p = 0.001). Pathological oVEMP responses were significantly higher in the ET group (72.2%) compared to the HCS (37.5%; p = 0.01). There was no statistically significant difference in oVEMP N1-P1 latencies between groups (p > 0.05). Because the ET group had high pathological responses to the oVEMP, but not the cVEMP, the upper brainstem pathways may be more affected by ET.
Collapse
Affiliation(s)
- Nilüfer Bal
- Department of Audiology, Faculty of Health Sciences, Bezmialem Vakıf University, Istanbul, Turkey.
- Subdepartment of Audiology, Department of Otolarygology, Faculty of Medicine, Subdepartment of Audiology, Marmara University, Istanbul, Turkey.
| | - Yıldızhan Şengül
- Department of Neurology, Faculty of Medicine, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Meliha Başöz Behmen
- Department of Audiology, Faculty of Health Sciences, Bezmialem Vakıf University, Istanbul, Turkey
| | - Allison Powell
- Department of Neurology, University Texas Southwestern Med. Center, Dallas, Texas, USA
| | - Elan D Louis
- Department of Neurology, University Texas Southwestern Med. Center, Dallas, Texas, USA
| |
Collapse
|
35
|
Martuscello RT, Sivaprakasam K, Hartstone W, Kuo SH, Konopka G, Louis ED, Faust PL. Gene Expression Analysis of Laser-Captured Purkinje Cells in the Essential Tremor Cerebellum. CEREBELLUM (LONDON, ENGLAND) 2023; 22:1166-1181. [PMID: 36242761 PMCID: PMC10359949 DOI: 10.1007/s12311-022-01483-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/28/2022] [Indexed: 12/13/2022]
Abstract
Essential tremor (ET) is a common, progressive neurological disease characterized by an 8-12-Hz kinetic tremor. Despite its high prevalence, the patho-mechanisms of tremor in ET are not fully known. Through comprehensive studies in postmortem brains, we identified major morphological changes in the ET cerebellum that reflect cellular damage in Purkinje cells (PCs), suggesting that PC damage is central to ET pathogenesis. We previously performed a transcriptome analysis in ET cerebellar cortex, identifying candidate genes and several dysregulated pathways. To directly target PCs, we purified RNA from PCs isolated by laser capture microdissection and performed the first ever PC-specific RNA-sequencing analysis in ET versus controls. Frozen postmortem cerebellar cortex from 24 ETs and 16 controls underwent laser capture microdissection, obtaining ≥2000 PCs per sample. RNA transcriptome was analyzed via differential gene expression, principal component analysis (PCA), and gene set enrichment analyses (GSEA). We identified 36 differentially expressed genes, encompassing multiple cellular processes. Some ET (13/24) had greater dysregulation of these genes and segregated from most controls and remaining ETs in PCA. Characterization of genes/pathways enriched in this PCA and GSEA identified multiple pathway dysregulations in ET, including RNA processing/splicing, synapse organization/ion transport, and oxidative stress/inflammation. Furthermore, a different set of pathways characterized marked heterogeneity among ET patients. Our data indicate a range of possible mechanisms for the pathogenesis of ET. Significant heterogeneity among ET combined with dysregulation of multiple cellular processes supports the notion that ET is a family of disorders rather than one disease entity.
Collapse
Affiliation(s)
- Regina T Martuscello
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center and the New York Presbyterian Hospital, 630 W 168th Street, P&S 15-405, New York, NY, 10032, USA
| | - Karthigayini Sivaprakasam
- Peter O'Donnell Jr. Brain Institute, Department of Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, USA
| | - Whitney Hartstone
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center and the New York Presbyterian Hospital, 630 W 168th Street, P&S 15-405, New York, NY, 10032, USA
| | - Sheng-Han Kuo
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, 650 W 168th Street, BB302, New York, NY, USA
| | - Genevieve Konopka
- Peter O'Donnell Jr. Brain Institute, Department of Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, USA
| | - Elan D Louis
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Suite NL9.114, Dallas, TX, USA
| | - Phyllis L Faust
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center and the New York Presbyterian Hospital, 630 W 168th Street, P&S 15-405, New York, NY, 10032, USA.
| |
Collapse
|
36
|
Duanmu X, Wen J, Tan S, Guo T, Zhou C, Wu H, Wu J, Cao Z, Liu X, Chen J, Wu C, Qin J, Gu L, Yan Y, Zhang B, Zhang M, Guan X, Xu X. Aberrant dentato-rubro-thalamic pathway in action tremor but not rest tremor: A multi-modality magnetic resonance imaging study. CNS Neurosci Ther 2023; 29:4160-4171. [PMID: 37408389 PMCID: PMC10651946 DOI: 10.1111/cns.14339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 05/14/2023] [Accepted: 06/24/2023] [Indexed: 07/07/2023] Open
Abstract
AIMS The purpose of this study was to clarify the dentato-rubro-thalamic (DRT) pathway in action tremor in comparison to normal controls (NC) and disease controls (i.e., rest tremor) by using multi-modality magnetic resonance imaging (MRI). METHODS This study included 40 essential tremor (ET) patients, 57 Parkinson's disease (PD) patients (29 with rest tremor, 28 without rest tremor), and 41 NC. We used multi-modality MRI to comprehensively assess major nuclei and fiber tracts of the DRT pathway, which included decussating DRT tract (d-DRTT) and non-decussating DRT tract (nd-DRTT), and compared the differences in DRT pathway components between action and rest tremor. RESULTS Bilateral dentate nucleus (DN) in the ET group had excessive iron deposition compared with the NC group. Compared with the NC group, significantly decreased mean diffusivity and radial diffusivity were observed in the left nd-DRTT in the ET group, which were negatively correlated with tremor severity. No significant difference in each component of the DRT pathway was observed between the PD subgroup or the PD and NC. CONCLUSION Aberrant changes in the DRT pathway may be specific to action tremor and were indicating that action tremor may be related to pathological overactivation of the DRT pathway.
Collapse
Affiliation(s)
- Xiaojie Duanmu
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jiaqi Wen
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Sijia Tan
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Tao Guo
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Cheng Zhou
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Haoting Wu
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jingjing Wu
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Zhengye Cao
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiaocao Liu
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jingwen Chen
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Chenqing Wu
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Jianmei Qin
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Luyan Gu
- Department of Neurology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Yaping Yan
- Department of Neurology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Baorong Zhang
- Department of Neurology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Minming Zhang
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiaojun Guan
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiaojun Xu
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
37
|
Rizzo G, Martino D, Avanzino L, Avenanti A, Vicario CM. Social cognition in hyperkinetic movement disorders: a systematic review. Soc Neurosci 2023; 18:331-354. [PMID: 37580305 DOI: 10.1080/17470919.2023.2248687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 07/10/2023] [Accepted: 08/09/2023] [Indexed: 08/16/2023]
Abstract
Numerous lines of research indicate that our social brain involves a network of cortical and subcortical brain regions that are responsible for sensing and controlling body movements. However, it remains unclear whether movement disorders have a systematic impact on social cognition. To address this question, we conducted a systematic review examining the influence of hyperkinetic movement disorders (including Huntington disease, Tourette syndrome, dystonia, and essential tremor) on social cognition. Following the PRISMA guidelines and registering the protocol in the PROSPERO database (CRD42022327459), we analyzed 50 published studies focusing on theory of mind (ToM), social perception, and empathy. The results from these studies provide evidence of impairments in ToM and social perception in all hyperkinetic movement disorders, particularly during the recognition of negative emotions. Additionally, individuals with Huntington's Disease and Tourette syndrome exhibit empathy disorders. These findings support the functional role of subcortical structures (such as the basal ganglia and cerebellum), which are primarily responsible for movement disorders, in deficits related to social cognition.
Collapse
Affiliation(s)
- Gaetano Rizzo
- Dipartimento di Scienze Cognitive, Psicologiche, Pedagogiche e degli studi culturali, Università di Messina, Messina, Italy
| | - Davide Martino
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Laura Avanzino
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy
| | - Alessio Avenanti
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, Cesena, Italy
- Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Universidad Católica del Maule, Talca, Chile
| | - Carmelo Mario Vicario
- Dipartimento di Scienze Cognitive, Psicologiche, Pedagogiche e degli studi culturali, Università di Messina, Messina, Italy
| |
Collapse
|
38
|
Lenka A, Louis ED. Developing a Staging Scheme for Essential Tremor: A Discussion of Organizing Principles. Tremor Other Hyperkinet Mov (N Y) 2023; 13:43. [PMID: 37954035 PMCID: PMC10637291 DOI: 10.5334/tohm.812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023] Open
Abstract
Essential tremor (ET) is a chronic, progressive neurological disease that may negatively affect patients' lives. While there has been considerable progress in ET research, some fundamental issues remain unaddressed. One such issue is disease staging. Staging schemes have inherent value and are part of the dialogue that clinicians have with other movement disorders patients. We highlight the value of and challenges with developing a staging system for ET and organize a discussion around the potential steps in developing such a system. Diseases for which there are staging schemes generally have a number of shared characteristics. ET has numerous features that would lend themselves to a staging scheme: emerging evidence supporting the existence of a premotor phase of disease, insidious onset, progressive worsening of arm tremor, spread of tremor to other body regions, the observation that patients seem to be at increased risk for other conditions within the same organ (i.e., emergence of Parkinson's disease and Alzheimer's disease in excessive numbers of ET patients), pathological changes in the cerebellum whose evolution can be ordered from (i) those that compromise the physical integrity and physiological function of Purkinje cells, (ii) subsequent changes that are reparative and regenerative, and (iii) eventual cell death. Challenges to formulating a staging scheme are the absence of both a biological marker and an "end stage" of disease. The sum of combined evidence suggests that a staging scheme would be of value. We provide initial thoughts as to how to begin to structure such a staging scheme.
Collapse
Affiliation(s)
- Abhishek Lenka
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Elan D Louis
- Department of Neurology, University of Texas Southwestern, Dallas, TX, USA
| |
Collapse
|
39
|
Blondiaux F, Lebrun L, Hanseeuw BJ, Crevecoeur F. Impairments of saccadic and reaching adaptation in essential tremor are linked to movement execution. J Neurophysiol 2023; 130:1092-1102. [PMID: 37791388 DOI: 10.1152/jn.00165.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/05/2023] [Accepted: 09/27/2023] [Indexed: 10/05/2023] Open
Abstract
Essential tremor (ET) is a neurological disorder characterized by involuntary oscillations of the limbs. Previous studies have hypothesized that ET is a cerebellar disorder and reported impairments in motor adaptation. However, recent advances have highlighted that motor adaptation involves several components linked to anticipation and control, all dependent on cerebellum. We studied the contribution of both components in adaptation to better understand the adaptation impairments observed in ET from a behavioral perspective. To address this question, we investigated behavioral markers of adaptation in ET patients (n = 20) and age-matched neurologically intact volunteers (n = 20) in saccadic and upper limb adaptation tasks, probing compensation for target jumps and for velocity-dependent force fields, respectively. We found that both groups adapted their movements to the novel contexts; however, ET patients adapted to a lesser extent compared with neurologically intact volunteers. Importantly, components of the movement linked to anticipation were preserved in the ET group, whereas components linked to movement execution appeared responsible for the adaptation deficit in this group. Altogether, our results suggest that execution deficits may be a specific functional consequence of the alteration of neural pathways associated with ET.NEW & NOTEWORTHY We tested essential tremor patients' adaptation abilities in classical tasks including saccadic adaptation to target jumps and reaching adaptation to force field disturbances. Patients' adaptation was present but impaired in both tasks. Interestingly, the deficits were mainly present during movement execution, whereas the anticipatory components of movements were similar to neurologically intact volunteers. These findings reinforce the hypothesis of a cerebellar origin for essential tremor and detail the motor adaptation impairments previously found in this disorder.
Collapse
Affiliation(s)
- Florence Blondiaux
- Institute for Information and Communication Technologies, Electronics and Applied Mathematics, UCLouvain, Louvain-la-Neuve, Belgium
- Institute of Neuroscience, UCLouvain, Brussels, Belgium
| | - Louisien Lebrun
- Institute of Neuroscience, UCLouvain, Brussels, Belgium
- Neurology Department, Saint-Luc University Hospital, Brussels, Belgium
| | - Bernard J Hanseeuw
- Institute of Neuroscience, UCLouvain, Brussels, Belgium
- Neurology Department, Saint-Luc University Hospital, Brussels, Belgium
- Gordon Center for Medical Imaging, Radiology Department, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States
- Louvain Aging Brain Lab, Walloon Excellence in Life Sciences and Biotechnology (WELBIO), UCLouvain, Brussels, Belgium
| | - Frédéric Crevecoeur
- Institute for Information and Communication Technologies, Electronics and Applied Mathematics, UCLouvain, Louvain-la-Neuve, Belgium
- Institute of Neuroscience, UCLouvain, Brussels, Belgium
| |
Collapse
|
40
|
Younger E, Ellis EG, Parsons N, Pantano P, Tommasin S, Caeyenberghs K, Benito-León J, Romero JP, Joutsa J, Corp DT. Mapping Essential Tremor to a Common Brain Network Using Functional Connectivity Analysis. Neurology 2023; 101:e1483-e1494. [PMID: 37596042 PMCID: PMC10585696 DOI: 10.1212/wnl.0000000000207701] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/09/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND AND OBJECTIVES The cerebello-thalamo-cortical circuit plays a critical role in essential tremor (ET). However, abnormalities have been reported in multiple brain regions outside this circuit, leading to inconsistent characterization of ET pathophysiology. Here, we test whether these mixed findings in ET localize to a common functional network and whether this network has therapeutic relevance. METHODS We conducted a systematic literature search to identify studies reporting structural or metabolic brain abnormalities in ET. We then used 'coordinate network mapping,' which leverages a normative connectome (n = 1,000) of resting-state fMRI data to identify regions commonly connected to findings across all studies. To assess whether these regions may be relevant for the treatment of ET, we compared our network with a therapeutic network derived from lesions that relieved ET. Finally, we investigated whether the functional connectivity of this ET symptom network is abnormal in an independent cohort of patients with ET as compared with healthy controls. RESULTS Structural and metabolic brain abnormalities in ET were located in heterogeneous regions throughout the brain. However, these coordinates were connected to a common functional brain network, including the cerebellum, thalamus, motor cortex, precuneus, inferior parietal lobe, and insula. The cerebellum was identified as the hub of this network because it was the only brain region that was both functionally connected to the findings of over 90% of studies and significantly different in connectivity compared with a control data set of other movement disorders. This network was strikingly similar to the therapeutic network derived from lesions improving ET, with key regions aligning in the thalamus and cerebellum. Furthermore, positive functional connectivity between the cerebellar network hub and the sensorimotor cortices was significantly reduced in patients with ET compared with healthy controls, and connectivity within this network was correlated with tremor severity and cognitive functioning. DISCUSSION These findings suggest that the cerebellum is the central hub of a network commonly connected to structural and metabolic abnormalities in ET. This network may have therapeutic utility in refining and informing new targets for neuromodulation of ET.
Collapse
Affiliation(s)
- Ellen Younger
- From the Cognitive Neuroscience Unit (E.Y., E.G.E., N.P., K.C., D.T.C.), School of Psychology, Deakin University, Geelong, Australia; Human Neuroscience (P.P., S.T.), Sapienza University of Rome; IRCCS NEUROMED (P.P.), Pozzilli, Italy; Department of Neurology (J.B.-L.) and Research Institute (i+12), University Hospital "12 de Octubre"; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED) (J.B.-L.); Department of Medicine (J.B.-L.), Complutense University; Facultad de Ciencias Experimentales (J.P.R.), Universidad Francisco de Vitoria; Brain Damage Unit (J.P.R.), Hospital Beata María Ana, Madrid, Spain; Turku Brain and Mind Center (J.J.), Clinical Neurosciences, University of Turku; Turku PET Centre (J.J.), Neurocenter, Turku University Hospital, Finland; and Center for Brain Circuit Therapeutics (D.T.C.), Department of Neurology, Psychiatry, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.
| | - Elizabeth G Ellis
- From the Cognitive Neuroscience Unit (E.Y., E.G.E., N.P., K.C., D.T.C.), School of Psychology, Deakin University, Geelong, Australia; Human Neuroscience (P.P., S.T.), Sapienza University of Rome; IRCCS NEUROMED (P.P.), Pozzilli, Italy; Department of Neurology (J.B.-L.) and Research Institute (i+12), University Hospital "12 de Octubre"; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED) (J.B.-L.); Department of Medicine (J.B.-L.), Complutense University; Facultad de Ciencias Experimentales (J.P.R.), Universidad Francisco de Vitoria; Brain Damage Unit (J.P.R.), Hospital Beata María Ana, Madrid, Spain; Turku Brain and Mind Center (J.J.), Clinical Neurosciences, University of Turku; Turku PET Centre (J.J.), Neurocenter, Turku University Hospital, Finland; and Center for Brain Circuit Therapeutics (D.T.C.), Department of Neurology, Psychiatry, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Nicholas Parsons
- From the Cognitive Neuroscience Unit (E.Y., E.G.E., N.P., K.C., D.T.C.), School of Psychology, Deakin University, Geelong, Australia; Human Neuroscience (P.P., S.T.), Sapienza University of Rome; IRCCS NEUROMED (P.P.), Pozzilli, Italy; Department of Neurology (J.B.-L.) and Research Institute (i+12), University Hospital "12 de Octubre"; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED) (J.B.-L.); Department of Medicine (J.B.-L.), Complutense University; Facultad de Ciencias Experimentales (J.P.R.), Universidad Francisco de Vitoria; Brain Damage Unit (J.P.R.), Hospital Beata María Ana, Madrid, Spain; Turku Brain and Mind Center (J.J.), Clinical Neurosciences, University of Turku; Turku PET Centre (J.J.), Neurocenter, Turku University Hospital, Finland; and Center for Brain Circuit Therapeutics (D.T.C.), Department of Neurology, Psychiatry, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Patrizia Pantano
- From the Cognitive Neuroscience Unit (E.Y., E.G.E., N.P., K.C., D.T.C.), School of Psychology, Deakin University, Geelong, Australia; Human Neuroscience (P.P., S.T.), Sapienza University of Rome; IRCCS NEUROMED (P.P.), Pozzilli, Italy; Department of Neurology (J.B.-L.) and Research Institute (i+12), University Hospital "12 de Octubre"; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED) (J.B.-L.); Department of Medicine (J.B.-L.), Complutense University; Facultad de Ciencias Experimentales (J.P.R.), Universidad Francisco de Vitoria; Brain Damage Unit (J.P.R.), Hospital Beata María Ana, Madrid, Spain; Turku Brain and Mind Center (J.J.), Clinical Neurosciences, University of Turku; Turku PET Centre (J.J.), Neurocenter, Turku University Hospital, Finland; and Center for Brain Circuit Therapeutics (D.T.C.), Department of Neurology, Psychiatry, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Silvia Tommasin
- From the Cognitive Neuroscience Unit (E.Y., E.G.E., N.P., K.C., D.T.C.), School of Psychology, Deakin University, Geelong, Australia; Human Neuroscience (P.P., S.T.), Sapienza University of Rome; IRCCS NEUROMED (P.P.), Pozzilli, Italy; Department of Neurology (J.B.-L.) and Research Institute (i+12), University Hospital "12 de Octubre"; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED) (J.B.-L.); Department of Medicine (J.B.-L.), Complutense University; Facultad de Ciencias Experimentales (J.P.R.), Universidad Francisco de Vitoria; Brain Damage Unit (J.P.R.), Hospital Beata María Ana, Madrid, Spain; Turku Brain and Mind Center (J.J.), Clinical Neurosciences, University of Turku; Turku PET Centre (J.J.), Neurocenter, Turku University Hospital, Finland; and Center for Brain Circuit Therapeutics (D.T.C.), Department of Neurology, Psychiatry, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Karen Caeyenberghs
- From the Cognitive Neuroscience Unit (E.Y., E.G.E., N.P., K.C., D.T.C.), School of Psychology, Deakin University, Geelong, Australia; Human Neuroscience (P.P., S.T.), Sapienza University of Rome; IRCCS NEUROMED (P.P.), Pozzilli, Italy; Department of Neurology (J.B.-L.) and Research Institute (i+12), University Hospital "12 de Octubre"; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED) (J.B.-L.); Department of Medicine (J.B.-L.), Complutense University; Facultad de Ciencias Experimentales (J.P.R.), Universidad Francisco de Vitoria; Brain Damage Unit (J.P.R.), Hospital Beata María Ana, Madrid, Spain; Turku Brain and Mind Center (J.J.), Clinical Neurosciences, University of Turku; Turku PET Centre (J.J.), Neurocenter, Turku University Hospital, Finland; and Center for Brain Circuit Therapeutics (D.T.C.), Department of Neurology, Psychiatry, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Julián Benito-León
- From the Cognitive Neuroscience Unit (E.Y., E.G.E., N.P., K.C., D.T.C.), School of Psychology, Deakin University, Geelong, Australia; Human Neuroscience (P.P., S.T.), Sapienza University of Rome; IRCCS NEUROMED (P.P.), Pozzilli, Italy; Department of Neurology (J.B.-L.) and Research Institute (i+12), University Hospital "12 de Octubre"; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED) (J.B.-L.); Department of Medicine (J.B.-L.), Complutense University; Facultad de Ciencias Experimentales (J.P.R.), Universidad Francisco de Vitoria; Brain Damage Unit (J.P.R.), Hospital Beata María Ana, Madrid, Spain; Turku Brain and Mind Center (J.J.), Clinical Neurosciences, University of Turku; Turku PET Centre (J.J.), Neurocenter, Turku University Hospital, Finland; and Center for Brain Circuit Therapeutics (D.T.C.), Department of Neurology, Psychiatry, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Juan Pablo Romero
- From the Cognitive Neuroscience Unit (E.Y., E.G.E., N.P., K.C., D.T.C.), School of Psychology, Deakin University, Geelong, Australia; Human Neuroscience (P.P., S.T.), Sapienza University of Rome; IRCCS NEUROMED (P.P.), Pozzilli, Italy; Department of Neurology (J.B.-L.) and Research Institute (i+12), University Hospital "12 de Octubre"; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED) (J.B.-L.); Department of Medicine (J.B.-L.), Complutense University; Facultad de Ciencias Experimentales (J.P.R.), Universidad Francisco de Vitoria; Brain Damage Unit (J.P.R.), Hospital Beata María Ana, Madrid, Spain; Turku Brain and Mind Center (J.J.), Clinical Neurosciences, University of Turku; Turku PET Centre (J.J.), Neurocenter, Turku University Hospital, Finland; and Center for Brain Circuit Therapeutics (D.T.C.), Department of Neurology, Psychiatry, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Juho Joutsa
- From the Cognitive Neuroscience Unit (E.Y., E.G.E., N.P., K.C., D.T.C.), School of Psychology, Deakin University, Geelong, Australia; Human Neuroscience (P.P., S.T.), Sapienza University of Rome; IRCCS NEUROMED (P.P.), Pozzilli, Italy; Department of Neurology (J.B.-L.) and Research Institute (i+12), University Hospital "12 de Octubre"; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED) (J.B.-L.); Department of Medicine (J.B.-L.), Complutense University; Facultad de Ciencias Experimentales (J.P.R.), Universidad Francisco de Vitoria; Brain Damage Unit (J.P.R.), Hospital Beata María Ana, Madrid, Spain; Turku Brain and Mind Center (J.J.), Clinical Neurosciences, University of Turku; Turku PET Centre (J.J.), Neurocenter, Turku University Hospital, Finland; and Center for Brain Circuit Therapeutics (D.T.C.), Department of Neurology, Psychiatry, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Daniel T Corp
- From the Cognitive Neuroscience Unit (E.Y., E.G.E., N.P., K.C., D.T.C.), School of Psychology, Deakin University, Geelong, Australia; Human Neuroscience (P.P., S.T.), Sapienza University of Rome; IRCCS NEUROMED (P.P.), Pozzilli, Italy; Department of Neurology (J.B.-L.) and Research Institute (i+12), University Hospital "12 de Octubre"; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED) (J.B.-L.); Department of Medicine (J.B.-L.), Complutense University; Facultad de Ciencias Experimentales (J.P.R.), Universidad Francisco de Vitoria; Brain Damage Unit (J.P.R.), Hospital Beata María Ana, Madrid, Spain; Turku Brain and Mind Center (J.J.), Clinical Neurosciences, University of Turku; Turku PET Centre (J.J.), Neurocenter, Turku University Hospital, Finland; and Center for Brain Circuit Therapeutics (D.T.C.), Department of Neurology, Psychiatry, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
41
|
Yoo SW, Ha S, Lyoo CH, Kim Y, Yoo JY, Kim JS. Exploring the link between essential tremor and Parkinson's disease. NPJ Parkinsons Dis 2023; 9:134. [PMID: 37714868 PMCID: PMC10504235 DOI: 10.1038/s41531-023-00577-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/04/2023] [Indexed: 09/17/2023] Open
Abstract
Epidemiological studies have reported a link between essential tremor (ET) and Parkinson's disease (PD). Recent studies have suggested ET as a possible neurodegenerative disease whose subgroup contained Lewy bodies in the brainstem, as in PD. PD with antedated ET (PDconv) might exhibit traits different from those of the pure form of ET or PD. This study aimed to unveil the interplay between PD and premorbid ET, which might be the core pathobiology that differentiates PDconv from PD. The study included 51 ET, 32 PDconv, and 95 PD patients who underwent positron emission tomography using 18F-N-(3-fluoropropyl)-2beta-carbon ethoxy-3beta-(4-iodophenyl) nortropane and 123I-meta-iodobenzylguanidine myocardial scintigraphy to analyze central dopaminergic and peripheral noradrenergic integrity. The results show that PDconv group followed the typical striatal pathology of PD but with a delay in noradrenergic impairment as it caught up with the denervating status of PD a few years after PD diagnosis. Whereas the two PD subtypes displayed similar patterns of presynaptic dopamine transporter deficits, ET patients maintained high densities in all subregions except thalamus. Presynaptic dopaminergic availability decreased in a linear or quadratic fashion across the three groups (ET vs. PDconv vs. PD). The age at onset and duration of ET did not differ between pure ET and PDconv patients and did not influence the striatal monoamine status. The myocardium in PDconv patients was initially less denervated than in PD patients, but it degenerated more rapidly. These findings suggest that PDconv could be a distinctive subclass in which the pathobiology of PD interacts with that of ET in the early phase of the disease.
Collapse
Affiliation(s)
- Sang-Won Yoo
- Department of Neurology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seunggyun Ha
- Division of Nuclear Medicine, Department of Radiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chul Hyoung Lyoo
- Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yuna Kim
- Department of Neurology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ji-Yeon Yoo
- Department of Neurology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Joong-Seok Kim
- Department of Neurology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
42
|
Martuscello RT, Chen ML, Reiken S, Sittenfeld LR, Ruff DS, Ni CL, Lin CC, Pan MK, Louis ED, Marks AR, Kuo SH, Faust PL. Defective cerebellar ryanodine receptor type 1 and endoplasmic reticulum calcium 'leak' in tremor pathophysiology. Acta Neuropathol 2023; 146:301-318. [PMID: 37335342 PMCID: PMC10350926 DOI: 10.1007/s00401-023-02602-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/06/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023]
Abstract
Essential Tremor (ET) is a prevalent neurological disease characterized by an 8-10 Hz action tremor. Molecular mechanisms of ET remain poorly understood. Clinical data suggest the importance of the cerebellum in disease pathophysiology, and pathological studies indicate Purkinje Cells (PCs) incur damage. Our recent cerebellar cortex and PC-specific transcriptome studies identified alterations in calcium (Ca2+) signaling pathways that included ryanodine receptor type 1 (RyR1) in ET. RyR1 is an intracellular Ca2+ release channel located on the Endoplasmic Reticulum (ER), and in cerebellum is predominantly expressed in PCs. Under stress conditions, RyR1 undergoes several post-translational modifications (protein kinase A [PKA] phosphorylation, oxidation, nitrosylation), coupled with depletion of the channel-stabilizing binding partner calstabin1, which collectively characterize a "leaky channel" biochemical signature. In this study, we found markedly increased PKA phosphorylation at the RyR1-S2844 site, increased RyR1 oxidation and nitrosylation, and calstabin1 depletion from the RyR1 complex in postmortem ET cerebellum. Decreased calstabin1-RyR1-binding affinity correlated with loss of PCs and climbing fiber-PC synapses in ET. This 'leaky' RyR1 signature was not seen in control or Parkinson's disease cerebellum. Microsomes from postmortem cerebellum demonstrated excessive ER Ca2+ leak in ET vs. controls, attenuated by channel stabilization. We further studied the role of RyR1 in tremor using a mouse model harboring a RyR1 point mutation that mimics constitutive site-specific PKA phosphorylation (RyR1-S2844D). RyR1-S2844D homozygous mice develop a 10 Hz action tremor and robust abnormal oscillatory activity in cerebellar physiological recordings. Intra-cerebellar microinfusion of RyR1 agonist or antagonist, respectively, increased or decreased tremor amplitude in RyR1-S2844D mice, supporting a direct role of cerebellar RyR1 leakiness for tremor generation. Treating RyR1-S2844D mice with a novel RyR1 channel-stabilizing compound, Rycal, effectively dampened cerebellar oscillatory activity, suppressed tremor, and normalized cerebellar RyR1-calstabin1 binding. These data collectively support that stress-associated ER Ca2+ leak via RyR1 may contribute to tremor pathophysiology.
Collapse
Affiliation(s)
- Regina T Martuscello
- Department of Pathology and Cell Biology, Columbia University Medical Center Vagelos College of Physicians and Surgeons and the New York Presbyterian Hospital, 630 W 168th Street, PH Stem 15-124, New York, NY, 10032, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
| | - Meng-Ling Chen
- Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, 650 W 168th Street, BB305, New York, NY, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
| | - Steven Reiken
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, 1150 St Nicholas Ave, New York, NY, USA
| | - Leah R Sittenfeld
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, 1150 St Nicholas Ave, New York, NY, USA
| | - David S Ruff
- Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, 650 W 168th Street, BB305, New York, NY, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
| | - Chun-Lun Ni
- Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, 650 W 168th Street, BB305, New York, NY, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
| | - Chih-Chun Lin
- Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, 650 W 168th Street, BB305, New York, NY, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
| | - Ming-Kai Pan
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Elan D Louis
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, USA
| | - Andrew R Marks
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, 1150 St Nicholas Ave, New York, NY, USA
| | - Sheng-Han Kuo
- Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, 650 W 168th Street, BB305, New York, NY, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
| | - Phyllis L Faust
- Department of Pathology and Cell Biology, Columbia University Medical Center Vagelos College of Physicians and Surgeons and the New York Presbyterian Hospital, 630 W 168th Street, PH Stem 15-124, New York, NY, 10032, USA.
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA.
| |
Collapse
|
43
|
Huang P, Zhang P, Du J, Gao C, Liu J, Tan Y, Chen S. Association of fecal short-chain fatty acids with clinical severity and gut microbiota in essential tremor and its difference from Parkinson's disease. NPJ Parkinsons Dis 2023; 9:115. [PMID: 37460569 DOI: 10.1038/s41531-023-00554-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 06/26/2023] [Indexed: 07/20/2023] Open
Abstract
Diagnosis of essential tremor (ET) at an early stage can be difficult, especially when distinguishing it from healthy controls (HCs) and Parkinson's disease (PD). Recently, stool sample analysis of gut microbiota and its metabolites provides new ways to detect novel biomarkers for neurodegenerative diseases. Short-chain fatty acids (SCFAs), as the main metabolites of gut microbiota, were reduced in the feces of PD. However, fecal SCFAs in ET have never been investigated. We aimed to investigate the fecal SCFA levels in ET, assess their relationships with clinical symptoms and gut microbiota, and identify their potential diagnostic abilities. Fecal SCFAs and gut microbiota in 37 ET, 37 de novo PD and 35 HC were measured. Constipation, autonomic dysfunction and tremor severity were evaluated by scales. ET had lower fecal propionic, butyric and isobutyric acid levels than HC. Combined propionic, butyric and isobutyric acid distinguished ET from HC with an AUC of 0.751 (95% CI: 0.634-0.867). ET had lower fecal isovaleric and isobutyric acid levels than PD. Isovaleric and isobutyric acid differentiated ET from PD with an AUC of 0.743 (95% CI: 0.629-0.857). Fecal propionic acid was negatively correlated with constipation and autonomic dysfunction. Isobutyric and isovaleric acid were negatively associated with tremor severity. Lowered fecal SCFAs were related to a decreased abundance of Faecalibacterium and Catenibacterium in ET. In conclusion, fecal SCFAs were decreased in ET and correlated with clinical severity and gut microbiota changes. Fecal propionic, butyric, isobutyric and isovaleric acid might be potential diagnostic and differential diagnostic biomarkers for ET.
Collapse
Affiliation(s)
- Pei Huang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Pingchen Zhang
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Juanjuan Du
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Chao Gao
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Jin Liu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Yuyan Tan
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| | - Shengdi Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
- Lab for Translational Research of Neurodegenerative Diseases, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), Shanghai Tech University, 201210, Shanghai, China.
| |
Collapse
|
44
|
Lenka A, Pandey S. Dystonia and tremor: Do they have a shared biology? INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 169:413-439. [PMID: 37482399 DOI: 10.1016/bs.irn.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Dystonia and tremor are the two most commonly encountered hyperkinetic movement disorders encountered in clinical practice. While there has been substantial progress in the research on these two disorders, there also exists a lot of gray areas. Entities such as dystonic tremor and tremor associated with dystonia occupy a major portion of the "gray zone". In addition, there is a marked clinical heterogeneity and overlap of several clinical and epidemiological features among dystonia and tremor. These facts raise the possibility that dystonia and tremor could be having shared biology. In this chapter, we revisit critical aspects of this possibility that may have important clinical and research implications in the future. We comprehensively review the points in favor and against the theory that dystonia and tremor have shared biology from clinical, epidemiological, genetic and neuroimaging studies.
Collapse
Affiliation(s)
- Abhishek Lenka
- Parkinson's Disease Center and Movement Disorders Clinic, Baylor College of Medicine, Houston, TX, United States
| | - Sanjay Pandey
- Department of Neurology, Amrita Hospital, Faridabad, Delhi National Capital Region, India.
| |
Collapse
|
45
|
Louis ED, Faust PL. Prevalence of Lewy pathology in essential tremor is twice as high as expected: A plausible explanation for the enhanced risk for Parkinson disease seen in essential tremor cases. J Neuropathol Exp Neurol 2023; 82:454-455. [PMID: 36943259 PMCID: PMC10117153 DOI: 10.1093/jnen/nlad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Affiliation(s)
- Elan D Louis
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Phyllis L Faust
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center and the New York Presbyterian Hospital, New York, New York, USA
| |
Collapse
|
46
|
Okitsu M, Sugaya K, Nakata Y, Kawazoe T, Ikezawa J, Okiyama R, Takahashi K. Degeneration of nigrostriatal dopaminergic neurons in the early to intermediate stage of dementia with Lewy bodies and Parkinson's disease. J Neurol Sci 2023; 449:120660. [PMID: 37084522 DOI: 10.1016/j.jns.2023.120660] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 04/22/2023]
Abstract
OBJECTIVE To investigate differences in nigrostriatal dopaminergic neuron degeneration between dementia with Lewy bodies (DLB) and Parkinson's disease (PD) in the early to intermediate stage of these diseases. METHODS An integrative neuroimaging analysis was developed using 3-Tesla neuromelanin-sensitive MRI and 123I-FP-CIT dopamine transporter SPECT, and the relationship and laterality of three variables, including neuromelanin-related contrast in the substantia nigra (NRCSN) and locus coeruleus (NRCLC) and the specific binding ratio (SBR) in the striatum, were examined in detail. Patients with DLB and PD and control subjects (n = 29, 52, and 18, respectively) were enrolled. RESULTS A significantly greater decrease in the SBR in the bilateral hemispheres was observed in DLB than in PD. After adjusting for the interhemispheric asymmetry in neuromelanin-related MRI contrast by using the Z-score, linear regression between the NRCSN and SBR was performed for the most-affected/least-affected sides of the hemispheres as defined by the interhemispheric differences in each variable (SBR, NRCSN, standardized [SBR + NRCSN]). In DLB, the highest, albeit statistically non-significant, correlation was observed in the SBR-based, most-affected side. In PD, the highest correlation was observed in the (SBR + NRCSN)-based, most-affected side, which approximated the value of the clinically-defined, most-affected side. A non-significant correlation was observed only in the (SBR + NRCSN)-based or clinically-defined, least-affected side. CONCLUSION Loss of the soma and presynaptic terminals may occur independently in DLB with a large decrease in the presynaptic terminals. The close relationship observed between the degeneration of the soma and presynaptic terminals suggested that axon degeneration may dominate in PD.
Collapse
Affiliation(s)
- Masato Okitsu
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Keizo Sugaya
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan.
| | - Yasuhiro Nakata
- Department of Neuroradiology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Tomoya Kawazoe
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Jun Ikezawa
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Ryoichi Okiyama
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| | - Kazushi Takahashi
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Tokyo, Japan
| |
Collapse
|
47
|
Lu J, Zhou C, Pu J, Tian J, Yin X, Lv D, Guan X, Guo T, Zhang M, Zhang B, Yan Y, Zhao G. Brain microstructural changes in essential tremor patients and correlations with clinical characteristics: a diffusion kurtosis imaging study. J Neurol 2023; 270:2106-2116. [PMID: 36609498 DOI: 10.1007/s00415-023-11557-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Essential tremor (ET) is the second most common movement disorder; however, the pathophysiological mechanism of ET is unclear. We aimed to investigate the microstructural degeneration of gray matter (GM) and white matter (WM) and their correlations with cognition and tremor in patients with ET. METHODS The participants were 63 patients with ET and 63 matched healthy controls (HCs) who underwent 3D-T1 weighted and diffusion kurtosis images (DKI). Microstructural degeneration was measured using high-level diffusion parameters derived from DKI. A voxel-wise analysis of the means of the GM-based spatial statistics and tract-based spatial statistics were conducted to assess differences in diffusion parameters between the ET and HC groups. The volume differences between the two groups were also assessed, and tremor severity and multi-domain cognitive performance were evaluated. Finally, the relationship between microstructural degeneration and clinical characteristics were assessed. RESULTS The ET group had significantly lower mean kurtosis of the temporal, parietal, and occipital lobes and the cerebellum and lower radial kurtosis in several tracts. These microstructural changes in GM and WM were correlated with tremor and cognitive scores. However, no significant difference in volume was found between the groups. CONCLUSION Our findings suggest that ET entails extensive GM and WM microstructural alterations, which support the neurodegenerative hypothesis of ET. Our study contributes to a better understanding of the mechanisms underlying tremor and cognitive impairment in ET.
Collapse
Affiliation(s)
- Jinyu Lu
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, China
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Cheng Zhou
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Jiali Pu
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Jun Tian
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Xinzhen Yin
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Dayao Lv
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, China
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Xiaojun Guan
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Tao Guo
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Baorong Zhang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
| | - Yaping Yan
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
| | - Guohua Zhao
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, Zhejiang, China.
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
| |
Collapse
|
48
|
Kuo SH. GABA A Receptor Subtype Specificity in Essential Tremor. Neurotherapeutics 2023; 20:372-374. [PMID: 36765025 PMCID: PMC10121954 DOI: 10.1007/s13311-023-01341-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2022] [Indexed: 02/12/2023] Open
Affiliation(s)
- Sheng-Han Kuo
- Department of Neurology, Columbia University Medical Center, New York, NY, USA.
- Initiative for Columbia Ataxia and Tremor, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
49
|
Huang YH, Lee MT, Hsueh HY, Knutson DE, Cook J, Mihovilovic MD, Sieghart W, Chiou LC. Cerebellar α6GABA A Receptors as a Therapeutic Target for Essential Tremor: Proof-of-Concept Study with Ethanol and Pyrazoloquinolinones. Neurotherapeutics 2023; 20:399-418. [PMID: 36696034 PMCID: PMC10121996 DOI: 10.1007/s13311-023-01342-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2022] [Indexed: 01/26/2023] Open
Abstract
Ethanol has been shown to suppress essential tremor (ET) in patients at low-to-moderate doses, but its mechanism(s) of action remain unknown. One of the ET hypotheses attributes the ET tremorgenesis to the over-activated firing of inferior olivary neurons, causing synchronic rhythmic firings of cerebellar Purkinje cells. Purkinje cells, however, also receive excitatory inputs from granule cells where the α6 subunit-containing GABAA receptors (α6GABAARs) are abundantly expressed. Since ethanol is a positive allosteric modulator (PAM) of α6GABAARs, such action may mediate its anti-tremor effect. Employing the harmaline-induced ET model in male ICR mice, we evaluated the possible anti-tremor effects of ethanol and α6GABAAR-selective pyrazoloquinolinone PAMs. The burrowing activity, an indicator of well-being in rodents, was measured concurrently. Ethanol significantly and dose-dependently attenuated action tremor at non-sedative doses (0.4-2.4 g/kg, i.p.). Propranolol and α6GABAAR-selective pyrazoloquinolinones also significantly suppressed tremor activity. Neither ethanol nor propranolol, but only pyrazoloquinolinones, restored burrowing activity in harmaline-treated mice. Importantly, intra-cerebellar micro-injection of furosemide (an α6GABAAR antagonist) had a trend of blocking the effect of pyrazoloquinolinone Compound 6 or ethanol on harmaline-induced tremor. In addition, the anti-tremor effects of Compound 6 and ethanol were synergistic. These results suggest that low doses of ethanol and α6GABAAR-selective PAMs can attenuate action tremor, at least partially by modulating cerebellar α6GABAARs. Thus, α6GABAARs are potential therapeutic targets for ET, and α6GABAAR-selective PAMs may be a potential mono- or add-on therapy.
Collapse
Affiliation(s)
- Ya-Hsien Huang
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, No. 1, Jen-Ai Rd., Section 1, Taipei, 10051, Taiwan
| | - Ming Tatt Lee
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, No. 1, Jen-Ai Rd., Section 1, Taipei, 10051, Taiwan
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, 56000, Malaysia
| | - Han-Yun Hsueh
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, No. 1, Jen-Ai Rd., Section 1, Taipei, 10051, Taiwan
| | - Daniel E Knutson
- Department of Chemistry and Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA
| | - James Cook
- Department of Chemistry and Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA
| | | | - Werner Sieghart
- Center for Brain Research, Department of Molecular Neurosciences, Medical University Vienna, Vienna, 1090, Austria
| | - Lih-Chu Chiou
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, No. 1, Jen-Ai Rd., Section 1, Taipei, 10051, Taiwan.
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan.
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
50
|
Louis ED, Martuscello RT, Gionco JT, Hartstone WG, Musacchio JB, Portenti M, McCreary M, Kuo SH, Vonsattel JPG, Faust PL. Histopathology of the cerebellar cortex in essential tremor and other neurodegenerative motor disorders: comparative analysis of 320 brains. Acta Neuropathol 2023; 145:265-283. [PMID: 36607423 PMCID: PMC10461794 DOI: 10.1007/s00401-022-02535-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/14/2022] [Accepted: 12/22/2022] [Indexed: 01/07/2023]
Abstract
In recent years, numerous morphologic changes have been identified in the essential tremor (ET) cerebellar cortex, distinguishing ET from control brains. These findings have not been fully contextualized within a broader degenerative disease spectrum, thus limiting their interpretability. Building off our prior study and now doubling the sample size, we conducted comparative analyses in a postmortem series of 320 brains on the severity and patterning of cerebellar cortex degenerative changes in ET (n = 100), other neurodegenerative disorders of the cerebellum [spinocerebellar ataxias (SCAs, n = 47, including 13 SCA3 and 34 SCA1, 2, 6, 7, 8, 14); Friedreich's ataxia (FA, n = 13); multiple system atrophy (MSA), n = 29], and other disorders that may involve the cerebellum [Parkinson's disease (PD), n = 62; dystonia, n = 19] versus controls (n = 50). We generated data on 37 quantitative morphologic metrics, grouped into 8 broad categories: Purkinje cell (PC) loss, heterotopic PCs, PC dendritic changes, PC axonal changes (torpedoes), PC axonal changes (other than torpedoes), PC axonal changes (torpedo-associated), basket cell axonal hypertrophy, and climbing fiber-PC synaptic changes. Principal component analysis of z scored raw data across all diagnoses (11,651 data items) revealed that diagnostic groups were not uniform with respect to pathology. Dystonia and PD each differed from controls in only 4/37 and 5/37 metrics, respectively, whereas ET differed in 21, FA in 10, SCA3 in 10, MSA in 21, and SCA1/2/6/7/8/14 in 27. Pathological changes were generally on the milder end of the degenerative spectrum in ET, FA and SCA3, and on the more severe end of that spectrum in SCA1/2/6/7/8/14. Comparative analyses across morphologic categories demonstrated differences in relative expression, defining distinctive patterns of changes in these groups. In summary, we present a robust and reproducible method that identifies somewhat distinctive signatures of degenerative changes in the cerebellar cortex that mark each of these disorders.
Collapse
Affiliation(s)
- Elan D Louis
- Department of Neurology, University of Texas Southwestern, 5323 Harry Hines Blvd, Dallas, TX, 75390-8813, USA.
| | - Regina T Martuscello
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center and the New York Presbyterian Hospital, New York, NY, USA
| | - John T Gionco
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center and the New York Presbyterian Hospital, New York, NY, USA
| | - Whitney G Hartstone
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center and the New York Presbyterian Hospital, New York, NY, USA
| | - Jessica B Musacchio
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center and the New York Presbyterian Hospital, New York, NY, USA
| | - Marisa Portenti
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center and the New York Presbyterian Hospital, New York, NY, USA
| | - Morgan McCreary
- Department of Neurology, University of Texas Southwestern, 5323 Harry Hines Blvd, Dallas, TX, 75390-8813, USA
| | - Sheng-Han Kuo
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Jean-Paul G Vonsattel
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center and the New York Presbyterian Hospital, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Phyllis L Faust
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center and the New York Presbyterian Hospital, New York, NY, USA
| |
Collapse
|