1
|
Hutchings AJ, Hambrecht B, Veh A, Giridhar NJ, Zare A, Angerer C, Ohnesorge T, Schenke M, Selvaraj BT, Chandran S, Sterneckert J, Petri S, Seeger B, Briese M, Stigloher C, Bischler T, Hermann A, Damme M, Sendtner M, Lüningschrör P. Plekhg5 controls the unconventional secretion of Sod1 by presynaptic secretory autophagy. Nat Commun 2024; 15:8622. [PMID: 39366938 PMCID: PMC11452647 DOI: 10.1038/s41467-024-52875-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 09/23/2024] [Indexed: 10/06/2024] Open
Abstract
Increasing evidence suggests an essential function for autophagy in unconventional protein secretion (UPS). However, despite its relevance for the secretion of aggregate-prone proteins, the mechanisms of secretory autophagy in neurons have remained elusive. Here we show that the lower motoneuron disease-associated guanine exchange factor Plekhg5 drives the UPS of Sod1. Mechanistically, Sod1 is sequestered into autophagosomal carriers, which subsequently fuse with secretory lysosomal-related organelles (LROs). Exocytosis of LROs to release Sod1 into the extracellular milieu requires the activation of the small GTPase Rab26 by Plekhg5. Deletion of Plekhg5 in mice leads to the accumulation of Sod1 in LROs at swollen presynaptic sites. A reduced secretion of toxic ALS-linked SOD1G93A following deletion of Plekhg5 in SOD1G93A mice accelerated disease onset while prolonging survival due to an attenuated microglia activation. Using human iPSC-derived motoneurons we show that reduced levels of PLEKHG5 cause an impaired secretion of ALS-linked SOD1. Our findings highlight an unexpected pathophysiological mechanism that converges two motoneuron disease-associated proteins into a common pathway.
Collapse
Affiliation(s)
- Amy-Jayne Hutchings
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Bita Hambrecht
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Alexander Veh
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Neha Jadhav Giridhar
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Abdolhossein Zare
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Christina Angerer
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Thorben Ohnesorge
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Maren Schenke
- Institute for Food Quality and Safety, Research Group Food Toxicology and Alternative/Complementary Methods to Animal Experiments, University of Veterinary Medicine Hannover, Hannover, Germany
- Bloomberg School of Public Health, Center for Alternatives to Animal Testing, Johns Hopkins University, Baltimore, MD, USA
| | - Bhuvaneish T Selvaraj
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
- UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh, EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Siddharthan Chandran
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
- UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh, EH16 4SB, UK
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Jared Sterneckert
- Center for Regenerative Therapies TU Dresden, Fetscherstr. 105, 01307, Dresden, Germany
- Medical Faculty Carl Gustav Carus of TU Dresden, Dresden, Germany
| | - Susanne Petri
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Bettina Seeger
- Institute for Food Quality and Safety, Research Group Food Toxicology and Alternative/Complementary Methods to Animal Experiments, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Michael Briese
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Christian Stigloher
- Imaging Core Facility, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | - Thorsten Bischler
- Core Unit Systems Medicine, University of Würzburg, D-97080, Würzburg, Germany
| | - Andreas Hermann
- Translational Neurodegeneration Section Albrecht-Kossel, Department of Neurology, University Medical Center Rostock, Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock, University Medical Center Rostock, Rostock, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Rostock/Greifswald, 18147, Rostock, Germany
| | - Markus Damme
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Olshausenstr. 40, 24098, Kiel, Germany
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Patrick Lüningschrör
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany.
| |
Collapse
|
2
|
Opie-Martin S, Iacoangeli A, Topp SD, Abel O, Mayl K, Mehta PR, Shatunov A, Fogh I, Bowles H, Limbachiya N, Spargo TP, Al-Khleifat A, Williams KL, Jockel-Balsarotti J, Bali T, Self W, Henden L, Nicholson GA, Ticozzi N, McKenna-Yasek D, Tang L, Shaw PJ, Chio A, Ludolph A, Weishaupt JH, Landers JE, Glass JD, Mora JS, Robberecht W, Damme PV, McLaughlin R, Hardiman O, van den Berg L, Veldink JH, Corcia P, Stevic Z, Siddique N, Silani V, Blair IP, Fan DS, Esselin F, de la Cruz E, Camu W, Basak NA, Siddique T, Miller T, Brown RH, Al-Chalabi A, Shaw CE. The SOD1-mediated ALS phenotype shows a decoupling between age of symptom onset and disease duration. Nat Commun 2022; 13:6901. [PMID: 36371497 PMCID: PMC9653399 DOI: 10.1038/s41467-022-34620-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022] Open
Abstract
Superoxide dismutase (SOD1) gene variants may cause amyotrophic lateral sclerosis, some of which are associated with a distinct phenotype. Most studies assess limited variants or sample sizes. In this international, retrospective observational study, we compare phenotypic and demographic characteristics between people with SOD1-ALS and people with ALS and no recorded SOD1 variant. We investigate which variants are associated with age at symptom onset and time from onset to death or censoring using Cox proportional-hazards regression. The SOD1-ALS dataset reports age of onset for 1122 and disease duration for 883 people; the comparator population includes 10,214 and 9010 people respectively. Eight variants are associated with younger age of onset and distinct survival trajectories; a further eight associated with younger onset only and one with distinct survival only. Here we show that onset and survival are decoupled in SOD1-ALS. Future research should characterise rarer variants and molecular mechanisms causing the observed variability.
Collapse
Affiliation(s)
- Sarah Opie-Martin
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9NU, UK
| | - Alfredo Iacoangeli
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9NU, UK
- Department of Biostatistics and Health Informatics, Institute of Psychiatry Psychology & Neuroscience, King's College London, SE5 8AF, London, UK
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust and King's College London, London, UK
| | - Simon D Topp
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9NU, UK
| | - Olubunmi Abel
- Homerton University Hospital, Homerton Row, London, E9 6SR, UK
| | - Keith Mayl
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9NU, UK
| | - Puja R Mehta
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9NU, UK
| | - Aleksey Shatunov
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9NU, UK
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Blue Block 1.09, Sherrington Building, Crown St, Liverpool, L693BX, UK
- Institute of Medicine, North-Eastern Federal University, 58 Belinsky str, Yakutsk, 677000, Russia
| | - Isabella Fogh
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9NU, UK
| | - Harry Bowles
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9NU, UK
| | - Naomi Limbachiya
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9NU, UK
| | - Thomas P Spargo
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9NU, UK
| | - Ahmad Al-Khleifat
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9NU, UK
| | - Kelly L Williams
- Macquarie University Centre for MND Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | | | - Taha Bali
- Department of Neurology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Wade Self
- Department of Neurology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Lyndal Henden
- Macquarie University Centre for MND Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Garth A Nicholson
- Macquarie University Centre for MND Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
- Concord Clinical School, ANZAC Research Institute, Concord Repatriation Hospital, Sydney, NSW, 2139, Australia
| | - Nicola Ticozzi
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, 20095, Cusano Milanino, MiIan, Italy
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, Center for Neurotechnology and Brain Therapeutics, Università degli Studi di Milano, Milan, Italy
| | - Diane McKenna-Yasek
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 02125, USA
| | - Lu Tang
- Department of Neurology, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, PR China
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, S10 2HQ, UK
| | - Adriano Chio
- Rita Levi Montalcini' Department of Neuroscience, University of Turin, Turin, Italy
- Neurology 1, AOU Città della Salute e della Scienza of Torino, Turin, 10124, Torino, Italy
| | - Albert Ludolph
- Department of Neurology, Ulm University, Oberer Eselsberg 45, 89081, Ulm, Germany
- German Center for Neurodegenerative Diseases, DZNE, Ulm, Germany
| | - Jochen H Weishaupt
- Department of Neurology, University of Ulm, Oberer Eselsberg 45, 89081, Ulm, Germany
- Division of Neurodegenerative Disorders, Department of Neurology, Mannheim Center for Translational Neuroscience, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - John E Landers
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 02125, USA
| | - Jonathan D Glass
- Department Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Jesus S Mora
- ALS Unit, Department of Neurology, Hospital San Rafael, 28016, Madrid, Spain
| | - Wim Robberecht
- Neurology Department, Univeristy Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Philip Van Damme
- Neurology Department, Univeristy Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
- Neuroscience Department, KU Leuven and Center for Brain & Disease Research VIB Leuven, Leuven, Belgium
| | - Russell McLaughlin
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - Orla Hardiman
- Academic Unit of Neurology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, D02 PN40, Ireland
| | - Leonard van den Berg
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands
| | - Jan H Veldink
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands
| | - Phillippe Corcia
- Centre de Référence pour la SLA et les Autres Maladies du Motoneurone (FILSLAN), 2 Avenue Martin Luther King, 87042, Limoges Cedex, France
- Centre de Compétences Neuropathies Amyloïdes Familiales et Autres Neuropathies Périphériques Rares (NNERF), Poitiers, France
| | - Zorica Stevic
- Neurology Clinic, Clinical Center of Serbia, School of Medicine, University of Belgrade, Studentski trg 1, Belgrade, Serbia
| | - Nailah Siddique
- Neuromuscular Disorders Program, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60208, USA
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, 20095, Cusano Milanino, MiIan, Italy
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, Center for Neurotechnology and Brain Therapeutics, Università degli Studi di Milano, Milan, Italy
| | - Ian P Blair
- Macquarie University Centre for MND Research, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Dong-Sheng Fan
- Department of Neurology, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing, 100191, PR China
| | - Florence Esselin
- Reference Center for ALS and Other Rare Motoneuron Disorders, University Hospital Gui de Chauliac, 34295, Montpellier, France
| | - Elisa de la Cruz
- Reference Center for ALS and Other Rare Motoneuron Disorders, University Hospital Gui de Chauliac, 34295, Montpellier, France
| | - William Camu
- Reference Center for ALS and Other Rare Motoneuron Disorders, University Hospital Gui de Chauliac, 34295, Montpellier, France
| | - Nazli A Basak
- Koç University, School of Medicine Translational Medicine Research Center KUTTAM-NDAL, 34450, Sarıyer, Istanbul, Turkey
| | - Teepu Siddique
- Neuromuscular Disorders Program, Northwestern University, Feinberg School of Medicine, Chicago, IL, 60208, USA
| | - Timothy Miller
- Department of Neurology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Robert H Brown
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, 02125, USA
| | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9NU, UK
| | - Christopher E Shaw
- UK Dementia Research Institute Centre at King's College London, School of Neuroscience, King's College London, Strand, London, WC2R 2LS, UK.
- Centre for Brain Research, University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand.
| |
Collapse
|
3
|
Taha DM, Clarke BE, Hall CE, Tyzack GE, Ziff OJ, Greensmith L, Kalmar B, Ahmed M, Alam A, Thelin EP, Garcia NM, Helmy A, Sibley CR, Patani R. Astrocytes display cell autonomous and diverse early reactive states in familial amyotrophic lateral sclerosis. Brain 2022; 145:481-489. [PMID: 35042241 PMCID: PMC9014746 DOI: 10.1093/brain/awab328] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 07/14/2021] [Accepted: 08/08/2021] [Indexed: 01/01/2023] Open
Abstract
Amyotrophic lateral sclerosis is a rapidly progressive and fatal disease. Although astrocytes are increasingly recognized contributors to the underlying pathogenesis, the cellular autonomy and uniformity of astrocyte reactive transformation in different genetic forms of amyotrophic lateral sclerosis remain unresolved. Here we systematically examine these issues by using highly enriched and human induced pluripotent stem cell-derived astrocytes from patients with VCP and SOD1 mutations. We show that VCP mutant astrocytes undergo cell-autonomous reactive transformation characterized by increased expression of complement component 3 (C3) in addition to several characteristic gene expression changes. We then demonstrate that isochronic SOD1 mutant astrocytes also undergo a cell-autonomous reactive transformation, but that this is molecularly distinct from VCP mutant astrocytes. This is shown through transcriptome-wide analyses, identifying divergent gene expression profiles and activation of different key transcription factors in SOD1 and VCP mutant human induced pluripotent stem cell-derived astrocytes. Finally, we show functional differences in the basal cytokine secretome between VCP and SOD1 mutant human induced pluripotent stem cell-derived astrocytes. Our data therefore reveal that reactive transformation can occur cell autonomously in human amyotrophic lateral sclerosis astrocytes and with a striking degree of early molecular and functional heterogeneity when comparing different disease-causing mutations. These insights may be important when considering astrocyte reactivity as a putative therapeutic target in familial amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Doaa M Taha
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK.,The Francis Crick Institute, London NW1 1AT, UK.,Zoology Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| | - Benjamin E Clarke
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK.,The Francis Crick Institute, London NW1 1AT, UK
| | - Claire E Hall
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK.,The Francis Crick Institute, London NW1 1AT, UK
| | - Giulia E Tyzack
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK.,The Francis Crick Institute, London NW1 1AT, UK
| | - Oliver J Ziff
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK.,The Francis Crick Institute, London NW1 1AT, UK
| | - Linda Greensmith
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Bernadett Kalmar
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Mhoriam Ahmed
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Aftab Alam
- Division of Neurosurgery and Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Eric P Thelin
- Division of Neurosurgery and Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Nuria Marco Garcia
- Division of Neurosurgery and Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Adel Helmy
- Division of Neurosurgery and Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Christopher R Sibley
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh EH8 9JZ, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK.,Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK.,Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Rickie Patani
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK.,The Francis Crick Institute, London NW1 1AT, UK
| |
Collapse
|