1
|
Li C, Zeng A, Li L, Zhao W. Emerging Roles of Plant-Derived Extracellular Vesicles in Biotherapeutics: Advances, Applications, and Future Perspectives. Adv Biol (Weinh) 2025:e2500008. [PMID: 40197701 DOI: 10.1002/adbi.202500008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/27/2025] [Indexed: 04/10/2025]
Abstract
Extracellular vesicles (EVs) are nanoscale luminal vesicles, which play an important role in intercellular communication through surface signaling and molecular cargo delivery (proteins, lipids, nucleic acids, etc.). Recently, plant-derived extracellular vesicles (PDVs) containing multiple biological activities have received increasing attention due to their better biocompatibility and lower cytotoxicity in healthy tissues. In the biomedical field, PDVs are employed as cargo delivery vehicles, enabling diverse functionalities through engineering modification techniques. Nonetheless, there are certain issues with the study of PDVs, such as the lack of standardization in the identification and isolation criteria. This review provides a quick overview of the biogenesis, physicochemical properties, isolation techniques, and biomedical applications of PDVs in current studies, while critically analyzing the current challenges and opportunities. This paper is expected to provide some theoretical guidance for the development of PDVs and further biomedical applications.
Collapse
Affiliation(s)
- Cheng Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
| | - Aoqiong Zeng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
| | - Li Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
| | - Wei Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
2
|
Premathilaka C, Kodithuwakku S, Midekessa G, Godakumara K, Ul Ain Reshi Q, Andronowska A, Orro T, Fazeli A. Bovine fecal extracellular vesicles: A novel noninvasive tool for understanding gut physiology and pathophysiology in calves. J Dairy Sci 2025; 108:4116-4130. [PMID: 39892598 DOI: 10.3168/jds.2024-25920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/31/2024] [Indexed: 02/04/2025]
Abstract
Dairy calf gut health is linked with development and future production. Fecal extracellular vesicles (fEV) have emerged as a noninvasive tool in elucidating gut physiology and pathophysiology. Because feces is a complex matrix, the enrichment of extracellular vesicles (EV) from ruminant or preruminant feces is difficult. Nevertheless, if enriched, they have great potential as a gut health diagnostic and monitoring tool in dairy calves. Therefore, this study aimed to devise a protocol to enrich and characterize fEV from preweaning calves. We developed an fEV enrichment method by combination of differential centrifugation and double size exclusion chromatography and then characterized the fEV from the healthy calves. The study also assessed sample storage conditions, and the results indicated that storing preprocessed fecal samples at -80°C effectively preserves EV without introducing additional nanoparticles. Finally, fEV from 10-d-old healthy and Cryptosporidium spp.-positive calves were enriched, and a comparative analysis of fEV characteristics between the 2 groups was performed. Characterization results on EV specific protein biomarkers, size profile, total protein content, zeta potential, and morphology clearly established the enrichment of fEV with the developed protocol. The fEV analysis for calves positive and negative for Cryptosporidium spp. revealed a significant decrease in average nanoparticle size and zeta potential values in Cryptosporidium spp.-infected calves. Furthermore, the enriched fEV carried protein and nucleic acid cargo which could be further analyzed for other biomarkers to predict the gut physiology and pathophysiology of calves. In conclusion, our study has successfully optimized a protocol to enrich high purity grade EV from calf feces and displayed potential diagnostic application as a noninvasive tool.
Collapse
Affiliation(s)
- Chanaka Premathilaka
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia
| | - Suranga Kodithuwakku
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia; Department of Animal Science, Faculty of Agriculture, University of Peradeniya, 20400 Peradeniya, Sri Lanka
| | - Getnet Midekessa
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia; Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, Tartu University, 50411 Tartu, Estonia
| | - Kasun Godakumara
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia
| | - Qurat Ul Ain Reshi
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia; Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, Tartu University, 50411 Tartu, Estonia
| | - Aneta Andronowska
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland
| | - Toomas Orro
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia
| | - Alireza Fazeli
- Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, 51006 Tartu, Estonia; Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, Faculty of Medicine, Tartu University, 50411 Tartu, Estonia; Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, S10 2SF Sheffield, UK.
| |
Collapse
|
3
|
Tesarova T, Fiala O, Hora M, Vaclavikova R. Non-coding transcriptome profiles in clear-cell renal cell carcinoma. Nat Rev Urol 2025; 22:151-174. [PMID: 39242964 DOI: 10.1038/s41585-024-00926-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 09/09/2024]
Abstract
Clear-cell renal cell carcinoma (ccRCC) is a common urological malignancy with an increasing incidence. The development of molecular biomarkers that can predict the response to treatment and guide personalized therapy selection would substantially improve patient outcomes. Dysregulation of non-coding RNA (ncRNA) has been shown to have a role in the pathogenesis of ccRCC. Thus, an increasing number of studies are being carried out with a focus on the identification of ncRNA biomarkers in ccRCC tissue samples and the connection of these markers with patients' prognosis, pathological stage and grade (including metastatic potential), and therapy outcome. RNA sequencing analysis led to the identification of several ncRNA biomarkers that are dysregulated in ccRCC and might have a role in ccRCC development. These ncRNAs have the potential to be prognostic and predictive biomarkers for ccRCC, with prospective applications in personalized treatment selection. Research on ncRNA biomarkers in ccRCC is advancing, but clinical implementation remains preliminary owing to challenges in validation, standardization and reproducibility. Comprehensive studies and integration of ncRNAs into clinical trials are essential to accelerate the clinical use of these biomarkers.
Collapse
Affiliation(s)
- Tereza Tesarova
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic.
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.
| | - Ondrej Fiala
- Department of Oncology and Radiotherapeutics, Faculty of Medicine in Pilsen and University Hospital, Charles University, Pilsen, Czech Republic
- Laboratory of Cancer Treatment and Tissue Regeneration, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Milan Hora
- Department of Urology, Faculty of Medicine in Pilsen and University Hospital, Charles University, Pilsen, Czech Republic
| | - Radka Vaclavikova
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| |
Collapse
|
4
|
Olson P, Wagner J. Established and emerging liquid biomarkers for prostate cancer detection: A review. Urol Oncol 2025; 43:3-14. [PMID: 38871601 DOI: 10.1016/j.urolonc.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/03/2024] [Accepted: 05/18/2024] [Indexed: 06/15/2024]
Abstract
Prostate cancer remains one of the most frequently diagnosed cancers among men in the world today. Since its introduction in 1987 and FDA approval in 1994, prostate specific antigen (PSA) has reduced prostate cancer specific mortality considerably. However, the positive and negative predictive value of PSA is less than ideal and can lead to the over-detection of clinically insignificant prostate cancer. In the search for better screening measures to identify this cohort, liquid biomarkers for prostate cancer have emerged. In this review we will explore the commonly used urine and blood based prostate cancer liquid biomarkers. We detail the mechanism of each test and the validation studies that underscore their efficacy. Additionally, we will examine each test's effect on shared decision making as well as their cost efficacy in clinical practice.
Collapse
Affiliation(s)
- Philip Olson
- Division of Urology, University of Connecticut Health Center, Farmington, CT.
| | - Joseph Wagner
- Urology Division, Hartford Healthcare Medical Group, Hartford Hospital, Hartford, CT
| |
Collapse
|
5
|
Hussain MA, Elemam NM, Talaat IM. Androgen Receptor and Non-Coding RNAs' Interaction in Renal Cell Carcinoma. Noncoding RNA 2024; 10:56. [PMID: 39585048 PMCID: PMC11587015 DOI: 10.3390/ncrna10060056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/02/2024] [Accepted: 11/07/2024] [Indexed: 11/26/2024] Open
Abstract
Renal cell carcinoma (RCC), the most prevalent among the urogenital cancers, accounts for around 3% of new cancer cases worldwide. Significantly, the incidence of RCC has doubled in developed world countries, ranking it as the sixth most common cancer in males, who represent two-thirds of RCC cases. Males with RCC exhibit a higher mortality rate and tend to develop a more aggressive form of the disease than females. Sex-related risk factors, including lifestyle and biological variations, explain this difference. The androgen receptor (AR) oncogenic signaling pathway has been extensively studied among the biological factors that affect RCC. Recent advancements in high-throughput RNA sequencing techniques have underscored the significant roles played by noncoding-RNAs (ncRNAs), previously dismissed as "junk". The oncogenic potential of AR is manifested through its dysregulation of the ncRNAs' availability and function, promoting RCC tumorigenesis. This review offers a summary of the most recent findings on the role and molecular mechanisms of the AR in dysregulating the ncRNAs that play a role in the progression of RCC and the possibility of utilizing ncRNAs to target AR as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Manal A. Hussain
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates;
- Pure Lab North, Purelab, Abu Dhabi 134808, United Arab Emirates
| | - Noha M. Elemam
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates;
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Iman M. Talaat
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates;
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Pathology Department, Faculty of Medicine, Alexandria University, Alexandria 21131, Egypt
| |
Collapse
|
6
|
Wang Y, Gao W, Feng B, Shen H, Chen X, Yu S. Surface protein analysis of breast cancer exosomes using visualized strategy on centrifugal disk chip. Int J Biol Macromol 2024; 280:135651. [PMID: 39278429 DOI: 10.1016/j.ijbiomac.2024.135651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/12/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Breast cancer, the most common cancer among women worldwide, lacks specific tumor markers for accurate diagnosis. Recent advances have highlighted tumor-derived exosomes as a promising non-invasive biomarker for cancer detection. Continuous monitoring of surface protein markers on exosomes in the blood could offer valuable insights for breast cancer diagnosis. However, integrating the isolation and detection of exosomes from whole blood is bulky, time-consuming, and requires professional operations. To address this difficulty, we developed a method of integrated centrifugal disk chip (CD chip) exosome enrichment directly from whole blood followed by a colorimetric visualization strategy for multiplex analysis. The disc consists of multi-chambers and multi-microchannels with immediate smartphone-enabled processing of colorimetric results. The combination of CEA + CA125 + EGFR on-chip detection could significantly differentiate the different stages of cancer in tumor-bearing mice and successfully distinguish between breast cancer patients and healthy individuals. Crucially, small volumes (100 μL) of blood samples were adequate. In addition, the chip was simple and fast, with results within 10 min, which provides immediate exosomal information through consecutive blood sampling, which could potentially result in a more timely and well-informed clinical breast cancer diagnosis.
Collapse
Affiliation(s)
- Yanlin Wang
- Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Wenjing Gao
- Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Bin Feng
- Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Hao Shen
- Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Xueqin Chen
- Department of Traditional Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315211, China
| | - Shaoning Yu
- Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
7
|
Zhou F, Pan L, Ma X, Ye J, Xu Z, Yuan C, Shi C, Yang D, Luo Y, Li M, Wang P. In Situ, Fusion-Free, Multiplexed Detection of Small Extracellular Vesicle miRNAs for Cancer Diagnostics. Anal Chem 2024; 96:15665-15673. [PMID: 39298294 DOI: 10.1021/acs.analchem.4c03129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Tumor-derived small extracellular vesicle (sEV) microRNAs (miRNAs) are emerging biomarkers for cancer diagnostics. Conventional sEV miRNA detection methods necessitate the lysis of sEVs, rendering them laborious and time-consuming and potentially leading to damage or loss of miRNAs. Membrane fusion-based in situ detection of sEV miRNAs involves the preparation of probe-loaded vesicles (e.g., liposomes or cellular vesicles), which are typically sophisticated and require specialist equipment. Membrane perforation methods employ chemical treatments that can induce severe miRNA degradation or leaks. Inspired by previous studies that loaded nucleic acids into EVs or cells using hydrophobic tethers for therapeutic applications, herein, we repurposed this strategy by conjugating a hydrophobic tether onto molecular beacons to aid their transportation into sEVs, allowing for in situ detection of miRNAs in a fusion-free and multiplexing manner. This method enables simultaneous detection of multiple miRNA species within serum-derived sEVs for the diagnosis of prostate cancer, breast cancer, and gastric cancer with an accuracy of 83.3%, 81.8%, and 100%, respectively, in a cohort of 66 individuals, indicating that it holds a high application potential in clinical diagnostics.
Collapse
Affiliation(s)
- Fei Zhou
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Li Pan
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiaowei Ma
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jing Ye
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Zhihao Xu
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Caiqing Yuan
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chenzhi Shi
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Donglei Yang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yang Luo
- Center of Clinical Laboratory Medicine, Chongqing People's Hospital, School of Medicine, Chongqing University, Chongqing 400044, China
- College of Life Science and Laboratory Medicine, Kunming Medical University, Kunming 650050, Yunnan, China
| | - Min Li
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Pengfei Wang
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
8
|
Wu J, Chen Y. Unraveling the Connection: Extracellular Vesicles and Non-Small Cell Lung Cancer. Int J Nanomedicine 2024; 19:8139-8157. [PMID: 39139506 PMCID: PMC11321355 DOI: 10.2147/ijn.s477851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/04/2024] [Indexed: 08/15/2024] Open
Abstract
Extracellular vesicles (EVs) are nanoscale lipid bilayer vesicles released during cell activation, cellular damage, or apoptosis. They carry nucleic acids, proteins, and lipids facilitating intercellular communication and activate signaling pathways in target cells. In non-small cell lung cancer (NSCLC), EVs may contribute to tumor growth and metastasis by modulating immune responses, facilitating epithelial-mesenchymal transition, and promoting angiogenesis, while potentially contributing to resistance to chemotherapy drugs. EVs in liquid biopsies serve as non-invasive biomarkers for early cancer detection and diagnosis. Due to their small size, inherent molecular transport properties, and excellent biocompatibility, EVs also act as natural drug delivery vehicles in NSCLC therapy.
Collapse
Affiliation(s)
- Jiankang Wu
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, People’s Republic of China
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine, Changsha, Hunan, People’s Republic of China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan, People’s Republic of China
| | - Yan Chen
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, People’s Republic of China
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, People’s Republic of China
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine, Changsha, Hunan, People’s Republic of China
- Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan, People’s Republic of China
| |
Collapse
|
9
|
Wang Z, Zhou X, Kong Q, He H, Sun J, Qiu W, Zhang L, Yang M. Extracellular Vesicle Preparation and Analysis: A State-of-the-Art Review. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401069. [PMID: 38874129 PMCID: PMC11321646 DOI: 10.1002/advs.202401069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/11/2024] [Indexed: 06/15/2024]
Abstract
In recent decades, research on Extracellular Vesicles (EVs) has gained prominence in the life sciences due to their critical roles in both health and disease states, offering promising applications in disease diagnosis, drug delivery, and therapy. However, their inherent heterogeneity and complex origins pose significant challenges to their preparation, analysis, and subsequent clinical application. This review is structured to provide an overview of the biogenesis, composition, and various sources of EVs, thereby laying the groundwork for a detailed discussion of contemporary techniques for their preparation and analysis. Particular focus is given to state-of-the-art technologies that employ both microfluidic and non-microfluidic platforms for EV processing. Furthermore, this discourse extends into innovative approaches that incorporate artificial intelligence and cutting-edge electrochemical sensors, with a particular emphasis on single EV analysis. This review proposes current challenges and outlines prospective avenues for future research. The objective is to motivate researchers to innovate and expand methods for the preparation and analysis of EVs, fully unlocking their biomedical potential.
Collapse
Affiliation(s)
- Zesheng Wang
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| | - Xiaoyu Zhou
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| | - Qinglong Kong
- The Second Department of Thoracic SurgeryDalian Municipal Central HospitalDalian116033P. R. China
| | - Huimin He
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| | - Jiayu Sun
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
| | - Wenting Qiu
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
| | - Liang Zhang
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| | - Mengsu Yang
- Department of Precision Diagnostic and Therapeutic TechnologyCity University of Hong Kong Shenzhen Futian Research InstituteShenzhenGuangdong518000P. R. China
- Department of Biomedical Sciencesand Tung Biomedical Sciences CentreCity University of Hong KongHong Kong999077P. R. China
- Key Laboratory of Biochip TechnologyBiotech and Health CentreShenzhen Research Institute of City University of Hong KongShenzhen518057P. R. China
| |
Collapse
|
10
|
Erdmann K, Distler F, Gräfe S, Kwe J, Erb HHH, Fuessel S, Pahernik S, Thomas C, Borkowetz A. Transcript Markers from Urinary Extracellular Vesicles for Predicting Risk Reclassification of Prostate Cancer Patients on Active Surveillance. Cancers (Basel) 2024; 16:2453. [PMID: 39001515 PMCID: PMC11240337 DOI: 10.3390/cancers16132453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
Serum prostate-specific antigen (PSA), its derivatives, and magnetic resonance tomography (MRI) lack sufficient specificity and sensitivity for the prediction of risk reclassification of prostate cancer (PCa) patients on active surveillance (AS). We investigated selected transcripts in urinary extracellular vesicles (uEV) from PCa patients on AS to predict PCa risk reclassification (defined by ISUP 1 with PSA > 10 ng/mL or ISUP 2-5 with any PSA level) in control biopsy. Before the control biopsy, urine samples were prospectively collected from 72 patients, of whom 43% were reclassified during AS. Following RNA isolation from uEV, multiplexed reverse transcription, and pre-amplification, 29 PCa-associated transcripts were quantified by quantitative PCR. The predictive ability of the transcripts to indicate PCa risk reclassification was assessed by receiver operating characteristic (ROC) curve analyses via calculation of the area under the curve (AUC) and was then compared to clinical parameters followed by multivariate regression analysis. ROC curve analyses revealed a predictive potential for AMACR, HPN, MALAT1, PCA3, and PCAT29 (AUC = 0.614-0.655, p < 0.1). PSA, PSA density, PSA velocity, and MRI maxPI-RADS showed AUC values of 0.681-0.747 (p < 0.05), with accuracies for indicating a PCa risk reclassification of 64-68%. A model including AMACR, MALAT1, PCAT29, PSA density, and MRI maxPI-RADS resulted in an AUC of 0.867 (p < 0.001) with a sensitivity, specificity, and accuracy of 87%, 83%, and 85%, respectively, thus surpassing the predictive power of the individual markers. These findings highlight the potential of uEV transcripts in combination with clinical parameters as monitoring markers during the AS of PCa.
Collapse
Affiliation(s)
- Kati Erdmann
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (K.E.); (S.G.); (J.K.); (H.H.H.E.); (C.T.); (A.B.)
- National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Florian Distler
- Department of Urology, Nuremberg General Hospital, Paracelsus Medical University, 90419 Nuremberg, Germany; (F.D.); (S.P.)
| | - Sebastian Gräfe
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (K.E.); (S.G.); (J.K.); (H.H.H.E.); (C.T.); (A.B.)
- National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
| | - Jeremy Kwe
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (K.E.); (S.G.); (J.K.); (H.H.H.E.); (C.T.); (A.B.)
| | - Holger H. H. Erb
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (K.E.); (S.G.); (J.K.); (H.H.H.E.); (C.T.); (A.B.)
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Susanne Fuessel
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (K.E.); (S.G.); (J.K.); (H.H.H.E.); (C.T.); (A.B.)
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Sascha Pahernik
- Department of Urology, Nuremberg General Hospital, Paracelsus Medical University, 90419 Nuremberg, Germany; (F.D.); (S.P.)
| | - Christian Thomas
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (K.E.); (S.G.); (J.K.); (H.H.H.E.); (C.T.); (A.B.)
- National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01307 Dresden, Germany
| | - Angelika Borkowetz
- Department of Urology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany; (K.E.); (S.G.); (J.K.); (H.H.H.E.); (C.T.); (A.B.)
- German Cancer Consortium (DKTK), Partner Site Dresden, 01307 Dresden, Germany and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
11
|
Lu SM, Zhang Y, Dong XT, Wang JL, Li Y, Liang LG. Microchip for detection of cell-free DNA in urine to help identify patients with bladder cancer. BJU Int 2024; 133:536-538. [PMID: 38288885 DOI: 10.1111/bju.16271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Affiliation(s)
- Si-Ming Lu
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, China
- Institute of Laboratory Medicine, Zhejiang University, Hangzhou, China
| | - Yu Zhang
- Department of Clinical pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao-Tian Dong
- Department of Laboratory Medicine, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, China
- Institute of Laboratory Medicine, Zhejiang University, Hangzhou, China
| | - Jia-Long Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yang Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Li-Guo Liang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Centre for Clinical Laboratory, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
12
|
Bastian JLD, Zeuschner P, Stöckle M, Junker K, Linxweiler J. Tumor promoting effect of spheroids in an orthotopic prostate cancer mouse model. Sci Rep 2024; 14:8835. [PMID: 38632341 PMCID: PMC11024136 DOI: 10.1038/s41598-024-59052-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/05/2024] [Indexed: 04/19/2024] Open
Abstract
In this study, we aimed to establish a technique for intraprostatic implantation of prostate cancer (PCa) spheroids and to identify the impact of three-dimensional organization of PCa cells on tumor progression and metastasis in a representative in vivo model. 40,000 LNCaP cells were implanted into the prostate of immunodeficient SCID mice either as single cells (n = 8) or as preformed 3D spheroids (n = 8). For a follow up of 20 weeks, tumor growth was monitored by serum PSA and high-resolution 3D ultrasonography. Eventually, animals were sacrificed and autopsied. The organ dissects were analyzed for the presence of metastases by histology (H&E) and immunohistochemistry (AMACR, AR, Ki-67, CK5, CK8, E-Cadherin, Vimentin). Solid intraprostatic tumors developed in 50% of mice after spheroid implantation and in 50% of mice after implantation of a single cells. Primary tumors of LNCaP spheroids evolved earlier, exhibiting a shorter tumor doubling time whilst developing larger tumor volumes, which was reflected by a higher immunohistochemical expression of Ki-67 and AR, too. Spheroid tumors established lung and lymph node metastases in 75% of mice, in contrast to 50% of mice after single cell implantation. Our technique enables a variety of studies regarding the influence of the tumor microenvironment on PCa progression.
Collapse
Affiliation(s)
- Julius Lars Daniel Bastian
- Department of Urology and Pediatric Urology, Saarland University, Kirrbergerstr. 100 Gebäude 6, 66424, Homburg, Germany
| | - Philip Zeuschner
- Department of Urology and Pediatric Urology, Saarland University, Kirrbergerstr. 100 Gebäude 6, 66424, Homburg, Germany
| | - Michael Stöckle
- Department of Urology and Pediatric Urology, Saarland University, Kirrbergerstr. 100 Gebäude 6, 66424, Homburg, Germany
| | - Kerstin Junker
- Department of Urology and Pediatric Urology, Saarland University, Kirrbergerstr. 100 Gebäude 6, 66424, Homburg, Germany
| | - Johannes Linxweiler
- Department of Urology and Pediatric Urology, Saarland University, Kirrbergerstr. 100 Gebäude 6, 66424, Homburg, Germany.
| |
Collapse
|
13
|
Liu Y, Xiao S, Wang D, Qin C, Wei H, Li D. A review on separation and application of plant-derived exosome-like nanoparticles. J Sep Sci 2024; 47:e2300669. [PMID: 38651549 DOI: 10.1002/jssc.202300669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/25/2023] [Accepted: 01/04/2024] [Indexed: 04/25/2024]
Abstract
Exosomes-like nanoparticles (ELNs) (exosomes or extracellular vesicles) are vesicle-like bodies secreted by cells. Plant ELNs (PENs) are membrane vesicles secreted by plant cells, with a lipid bilayer as the basic skeleton, enclosing various active substances such as proteins and nucleic acids, which have many physiological and pathological functions. Recent studies have found that the PENs are widespread within different plant species and their biological functions are increasingly recognized. The effective separation method is also necessary for its function and application. Ultracentrifugation, sucrose density gradient ultracentrifugation, ultrafiltration, polymer-based precipitation methods, etc., are commonly used methods for plant exosome-like nanoparticle extraction. In recent years, emerging methods such as size exclusion chromatography, immunoaffinity capture-based technique, and microfluidic technology have shown advancements compared to traditional methods. The standardized separation process for PENs continues to evolve. In this review, we summarized the recent progress in the biogenesis, components, separation methods, and some functions of PENs. When the research on the separation method of PENs and their unique biological structure is further studied. A brand-new idea for the efficient separation and utilization of PENs can be provided in the future, which has a very broad prospect.
Collapse
Affiliation(s)
- Ying Liu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Siqiu Xiao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Dianbing Wang
- Institute of Biophysics, Chinese Academy of Sciences, Research Center of Biomacromolecules, China Academy of Sciences, National Laboratory of Biomacromolecules, Beijing, China
| | - Chengyu Qin
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Hongling Wei
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Dewen Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin, China
| |
Collapse
|
14
|
Zieren RC, Zondervan PJ, Pienta KJ, Bex A, de Reijke TM, Bins AD. Diagnostic liquid biopsy biomarkers in renal cell cancer. Nat Rev Urol 2024; 21:133-157. [PMID: 37758847 DOI: 10.1038/s41585-023-00818-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2023] [Indexed: 09/29/2023]
Abstract
The clinical presentation of renal cell cancer (RCC) is shifting towards incidental and early detection, creating new challenges in RCC diagnosis. Overtreatment might be reduced with the development of new diagnostic biomarkers to distinguish benign from malignant small renal masses (SRMs). Differently from tissue biopsies, liquid biopsies are obtained from a patient's blood or urine and, therefore, are minimally invasive and suitable for longitudinal monitoring. The most promising types of liquid biopsy biomarkers for RCC diagnosis are circulating tumour cells, extracellular vesicles (EVs) and cell-free DNA. Circulating tumour cell assays have the highest specificity, with low processing time and costs. However, the biological characteristics and low sensitivity limit the use of these markers in SRM diagnostics. Cell-free DNA might complement the diagnosis of high-volume RCC, but the potential for clinical application in SRMs is limited. EVs have the highest biological abundance and the highest sensitivity in identifying low-volume disease; moreover, the molecular characteristics of these markers make EVs suitable for multiple analytical applications. Thus, currently, EV assays have the greatest potential for diagnostic application in RCC (including identification of SRMs). All these liquid biomarkers have potential in clinical practice, pending validation studies. Biomarker implementation will be needed to also improve characterization of RCC subtypes. Last, diagnostic biomarkers might be extended to prognostic or predictive applications.
Collapse
Affiliation(s)
- Richard C Zieren
- Department of Urology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.
- The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | - Patricia J Zondervan
- Department of Urology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Kenneth J Pienta
- The Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Axel Bex
- Specialist Centre for Kidney Cancer, Royal Free Hospital, London, United Kingdom
- Division of Surgery and Interventional Science, University College London, London, United Kingdom
- The Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Theo M de Reijke
- Department of Urology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Adriaan D Bins
- Department of Medical Oncology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Kumar BS. Recent Developments and Application of Mass Spectrometry Imaging in N-Glycosylation Studies: An Overview. Mass Spectrom (Tokyo) 2024; 13:A0142. [PMID: 38435075 PMCID: PMC10904931 DOI: 10.5702/massspectrometry.a0142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/06/2024] [Indexed: 03/05/2024] Open
Abstract
Among the most typical posttranslational modifications is glycosylation, which often involves the covalent binding of an oligosaccharide (glycan) to either an asparagine (N-linked) or a serine/threonine (O-linked) residue. Studies imply that the N-glycan portion of a glycoprotein could serve as a particular disease biomarker rather than the protein itself because N-linked glycans have been widely recognized to evolve with the advancement of tumors and other diseases. N-glycans found on protein asparagine sites have been especially significant. Since N-glycans play clearly defined functions in the folding of proteins, cellular transport, and transmission of signals, modifications to them have been linked to several illnesses. However, because these N-glycans' production is not template driven, they have a substantial morphological range, rendering it difficult to distinguish the species that are most relevant to biology and medicine using standard techniques. Mass spectrometry (MS) techniques have emerged as effective analytical tools for investigating the role of glycosylation in health and illness. This is due to developments in MS equipment, data collection, and sample handling techniques. By recording the spatial dimension of a glycan's distribution in situ, mass spectrometry imaging (MSI) builds atop existing methods while offering added knowledge concerning the structure and functionality of biomolecules. In this review article, we address the current development of glycan MSI, starting with the most used tissue imaging techniques and ionization sources before proceeding on to a discussion on applications and concluding with implications for clinical research.
Collapse
|
16
|
Boddu VK, Zamzow P, Kramer MW, Merseburger AS, Gorantla SP, Klinger M, Cramer L, Sauer T, Gemoll T, von Bubnoff N, Gieseler F, Darabi M. Targeting cancer-derived extracellular vesicles by combining CD147 inhibition with tissue factor pathway inhibitor for the management of urothelial cancer cells. Cell Commun Signal 2024; 22:129. [PMID: 38360687 PMCID: PMC10870545 DOI: 10.1186/s12964-024-01508-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/31/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Extracellular vesicles (EVs), including microvesicles, hold promise for the management of bladder urothelial carcinoma (BLCA), particularly because of their utility in identifying therapeutic targets and their diagnostic potential using easily accessible urine samples. Among the transmembrane glycoproteins highly enriched in cancer-derived EVs, tissue factor (TF) and CD147 have been implicated in promoting tumor progression. In this in vitro study, we explored a novel approach to impede cancer cell migration and metastasis by simultaneously targeting these molecules on urothelial cancer-derived EVs. METHODS Cell culture supernatants from invasive and non-invasive bladder cancer cell lines and urine samples from patients with BLCA were collected. Large, microvesicle-like EVs were isolated using sequential centrifugation and characterized by electron microscopy, nanoparticle tracking analysis, and flow cytometry. The impact of urinary or cell supernatant-derived EVs on cellular phenotypes was evaluated using cell-based assays following combined treatment with a specific CD147 inhibitor alone or in combination with a tissue factor pathway inhibitor (TFPI), an endogenous anticoagulant protein that can be released by low-molecular-weight heparins. RESULTS We observed that EVs obtained from the urine samples of patients with muscle-invasive BLCA and from the aggressive bladder cancer cell line J82 exhibited higher TF activity and CD147 expression levels than did their non-invasive counterparts. The shedding of GFP-tagged CD147 into isolated vesicles demonstrated that the vesicles originated from plasma cell membranes. EVs originating from invasive cancer cells were found to trigger migration, secretion of matrix metalloproteinases (MMPs), and invasion. The same induction of MMP activity was replicated using EVs obtained from urine samples of patients with invasive BLCA. EVs derived from cancer cell clones overexpressing TF and CD147 were produced in higher quantities and exhibited a higher invasive potential than those from control cancer cells. TFPI interfered with the effect when used in conjunction with the CD147 inhibitor, further suppressing homotypic EV-induced migration, MMP production, and invasion. CONCLUSIONS Our findings suggest that combining a CD147 inhibitor with low molecular weight heparins to induce TFPI release may be a promising therapeutic approach for urothelial cancer management. This combination can potentially suppress the tumor-promoting actions of cancer-derived microvesicle-like EVs, including collective matrix invasion.
Collapse
Affiliation(s)
- Vijay Kumar Boddu
- Department of Hematology and Oncology, Section for Experimental Oncology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Piet Zamzow
- Department of Hematology and Oncology, Section for Experimental Oncology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | | | - Axel S Merseburger
- Department of Urology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | | | | | - Lena Cramer
- Department of Hematology and Oncology, Section for Experimental Oncology, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Thorben Sauer
- Department of Surgery, Section for Translational Surgical Oncology and Biobanking, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Timo Gemoll
- Department of Surgery, Section for Translational Surgical Oncology and Biobanking, University Hospital Schleswig-Holstein, Lübeck, Germany
| | - Nikolas von Bubnoff
- Department of Urology, University Hospital Schleswig-Holstein, Lübeck, Germany
- University Cancer Center Schleswig-Holstein (UCCSH), Lübeck, Germany
| | - Frank Gieseler
- Department of Hematology and Oncology, Section for Experimental Oncology, University Hospital Schleswig-Holstein, Lübeck, Germany
- University Cancer Center Schleswig-Holstein (UCCSH), Lübeck, Germany
| | - Masoud Darabi
- Department of Hematology and Oncology, Section for Experimental Oncology, University Hospital Schleswig-Holstein, Lübeck, Germany.
- University Cancer Center Schleswig-Holstein (UCCSH), Lübeck, Germany.
| |
Collapse
|
17
|
Wang Y, Gao W, Sun M, Feng B, Shen H, Zhu J, Chen X, Yu S. A filter-electrochemical microfluidic chip for multiple surface protein analysis of exosomes to detect and classify breast cancer. Biosens Bioelectron 2023; 239:115590. [PMID: 37607449 DOI: 10.1016/j.bios.2023.115590] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/21/2023] [Accepted: 08/10/2023] [Indexed: 08/24/2023]
Abstract
Breast cancer (BC) is a complex disease with high variability and no specific tumor markers available for diagnosis. Exosomes contain rich maternal tumor information and are a novel non-invasive biomarker with the potential for cancer diagnosis and prognosis. However, analysis of exosomal protein markers in blood samples is challenging due to lengthy sample workups and insufficient sensitivity. To address this difficulty, we developed a novel filter-electrochemical microfluidic chip (FEMC) to detect and classify BC directly in whole blood without requiring heavy purification methods. In our system, exosome enrichment was performed using a dual filtration system. The target was directed through a curved channel onto four screen-printed electrodes (SPEs), where it was captured by the previously modified antibodies. Simultaneously, Zr-MOFs encapsulated with a large number of methylene blue molecules (MB@UiO-66) were absorbed on the surface of exosomes due to the high affinity for phosphate groups. This process leads to the amplification of electrical signals. The approach demonstrated that the utilization of BC exosome-associated tumor biomarkers (i.e., PMSA, EGFR, CD81, and CEA), enabled the classification of various BC mouse models samples and clinical BC samples. The entire FEMC assay was completed in 1 h with a limit of detection of 1 × 104 particles/mL. Thus, the FEMC assay can provide real-time detection information, allowing timely and better-informed opportunities for clinical BC diagnosis and typing.
Collapse
Affiliation(s)
- Yanlin Wang
- Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Zhejiang, 315211, China; Department of Intensive Care Unit, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Wenjing Gao
- Department of Intensive Care Unit, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Min Sun
- Department of Intensive Care Unit, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Bin Feng
- Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Zhejiang, 315211, China; Department of Intensive Care Unit, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Hao Shen
- Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Zhejiang, 315211, China; Department of Intensive Care Unit, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Jianhua Zhu
- Department of Intensive Care Unit, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Xueqin Chen
- Department of Traditional Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Shaoning Yu
- Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Zhejiang, 315211, China; Department of Intensive Care Unit, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
18
|
Li Y, Shi X, Jia E, Qin S, Yu F. Extracellular vesicle biomarkers for prostate cancer diagnosis: A systematic review and meta-analysis. Urol Oncol 2023; 41:440-453. [PMID: 37914569 DOI: 10.1016/j.urolonc.2023.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 11/03/2023]
Abstract
Extracellular vesicle (EV) biomarkers have promising diagnostic and screening capabilities for several cancers, and growing evidence indicates that EV biomarkers can be used as diagnostic markers for prostate cancer (CaP). However, data on the diagnostic accuracy of EV biomarkers for CaP diagnosis are conflicting. We performed a systematic review and meta-analysis, aimed to summarize the diagnostic performance of EV biomarkers for CaP. We systematically searched PubMed, Medline, and Web of Science from inception to 12 September 2022 for studies that assessed the diagnostic accuracy of EV biomarkers for CaP. We summarized the pooled sensitivity and specificity calculated using a random-effects model. We identified 19 studies involving 976 CaP patients and 676 noncancerous controls; one study conducted independent validation tests. Ten studies emphasized EV RNAs, 6 on EV proteins, and 9 on biomarker panels. MiR-141, miR-221, and PSMA were the most frequently reported RNAs and proteins for CaP diagnosis. For individual RNAs and proteins, the pooled sensitivity and specificity were 70% (95% CI: 68%-71%), 79% (95% CI: 77%-80%), 85% (95% CI: 81%-87%), and 83% (95% CI: 80%-86%), respectively. The pooled sensitivity and specificity of the EV panels were 84% (95% CI: 82%-86%) and 86% (95% CI: 84%-88%), respectively. The studies may have been somewhat limited by the EV isolation and detection techniques. EV biomarkers showed promising diagnostic capability for CaP. Addressing deficiencies in EV isolation and detection techniques has important implications for the application of these novel noninvasive biomarkers in clinical practice.
Collapse
Affiliation(s)
- Yang Li
- Department of Urology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xianquan Shi
- Department of Ultrasound, Beijing Friendship Hospital of Capital Medical University, Beijing, China
| | - Erna Jia
- Department of Gastroenterology and Hepatology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Shaoyou Qin
- Department of Gastroenterology and Hepatology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Fan Yu
- Department of Gastroenterology and Hepatology, China-Japan Union Hospital of Jilin University, Changchun, China.
| |
Collapse
|
19
|
Sui C, Liao Z, Bai J, Hu D, Yue J, Yang S. Current knowledge on the role of extracellular vesicles in endometrial receptivity. Eur J Med Res 2023; 28:471. [PMID: 37899459 PMCID: PMC10614333 DOI: 10.1186/s40001-023-01459-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/19/2023] [Indexed: 10/31/2023] Open
Abstract
Endometrial receptivity has been widely understood as the capacity of the endometrium to receive implantable embryos. The establishment of endometrial receptivity involves multiple biological processes including decidualization, tissue remodeling, angiogenesis, immune regulation, and oxidative metabolism. Extracellular vesicles (EVs) are lipid-bilayer-membrane nanosized vesicles mediating cell-to-cell communication. Recently, EVs and their cargo have been proven as functional factors in the establishment of endometrial receptivity. In this review, we comprehensively summarized the alteration of endometrium/embryo-derived EVs during the receptive phase and retrospected the current findings which revealed the pivotal role and potential mechanism of EVs to promote successful implantation. Furthermore, we highlight the potentiality and limitations of EVs being translated into clinical applications such as biomarkers of endometrial receptivity or reproductive therapeutic mediators, and point out the direction for further research.
Collapse
Affiliation(s)
- Cong Sui
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095#, Wuhan, 430030, People's Republic of China
| | - Zhiqi Liao
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095#, Wuhan, 430030, People's Republic of China
| | - Jian Bai
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095#, Wuhan, 430030, People's Republic of China
| | - Dan Hu
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095#, Wuhan, 430030, People's Republic of China
| | - Jing Yue
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095#, Wuhan, 430030, People's Republic of China
| | - Shulin Yang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095#, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
20
|
Gluth L, Ochsenfarth C, Pham PNV, Wischermann JM, Komanek T, Roghmann F, Frey UH. Influence of the Anesthetic Technique on Circulating Extracellular Vesicles in Bladder Cancer Patients Undergoing Radical Cystectomy: A Prospective, Randomized Trial. Cells 2023; 12:2503. [PMID: 37887347 PMCID: PMC10605791 DOI: 10.3390/cells12202503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/15/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023] Open
Abstract
Anesthetics have been shown to alter tumor progression and seem to influence surgical cancer outcome. Circulating extracellular vesicles as mediators of intercellular communication are involved in cancer progression and may be influenced by anesthetics. In this prospective, randomized study, effects of anesthetics on extracellular vesicles and associated micro-RNAs in bladder cancer patients undergoing radical cystectomy were tested. Extracellular vesicles from 51 patients at four perioperative time points receiving Propofol or Sevoflurane were extracted with polymer-based methods and quantified with a nanoparticle-tracking analysis. Vesicle-associated micro-RNAs were analyzed with a real-time polymerase chain reaction using array cards and single assays for tumor-associated miR-21-5p, miR-15a-5p, miR-17-5p and miR-451a. Plasma extracellular vesicle concentration (suture: fold change (fc) in Propofol at 4.1 ± 3.9 vs. Sevoflurane at 0.8 ± 0.5; p = 0.003) and associated miRNAs increased significantly (+30% post induction, +9% 30 Min surgery) in the Propofol group. Tumor-associated miRNAs increased during surgery in both groups (fc in miR-21-5p: 24.3 ± 10.2, p = 0.029; fc in miR-15a-5p: 9.7 ± 3.8, p = 0.027; fc in miR-17-5p: 5.4 ± 1.7, p = 0.014), whereas antitumor miR-451a increased in the Propofol group only (fc: 2.5 ± 0.6 vs. 1.0 ± 0.2; p = 0.022). Anesthetics influence extracellular vesicles and associated micro-RNAs of bladder cancer patients during surgery. Increased expression of antitumor micro-RNA may be an explanatory approach for decreased tumor cell viability after Propofol.
Collapse
Affiliation(s)
- Luisa Gluth
- Department of Anesthesiology, Intensive Care, Pain and Palliative Care, Marien Hospital Herne, Ruhr-University Bochum, 44801 Bochum, Germany; (L.G.)
| | - Crista Ochsenfarth
- Department of Anesthesiology, Intensive Care, Pain and Palliative Care, Marien Hospital Herne, Ruhr-University Bochum, 44801 Bochum, Germany; (L.G.)
| | - Phuong Nam Viet Pham
- Department of Anesthesiology, Intensive Care, Pain and Palliative Care, Marien Hospital Herne, Ruhr-University Bochum, 44801 Bochum, Germany; (L.G.)
| | - Jan M. Wischermann
- Department of Anesthesiology, Intensive Care, Pain and Palliative Care, Marien Hospital Herne, Ruhr-University Bochum, 44801 Bochum, Germany; (L.G.)
| | - Thomas Komanek
- Department of Anesthesiology, Intensive Care, Pain and Palliative Care, Marien Hospital Herne, Ruhr-University Bochum, 44801 Bochum, Germany; (L.G.)
| | - Florian Roghmann
- Department of Urology, Marien Hospital Herne, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Ulrich H. Frey
- Department of Anesthesiology, Intensive Care, Pain and Palliative Care, Marien Hospital Herne, Ruhr-University Bochum, 44801 Bochum, Germany; (L.G.)
| |
Collapse
|
21
|
Mehmandar-Oskuie A, Jahankhani K, Rostamlou A, Arabi S, Sadat Razavi Z, Mardi A. Molecular landscape of LncRNAs in bladder cancer: From drug resistance to novel LncRNA-based therapeutic strategies. Biomed Pharmacother 2023; 165:115242. [PMID: 37531786 DOI: 10.1016/j.biopha.2023.115242] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/04/2023] Open
Abstract
Bladder cancer (BC) is a common and serious type of cancer that ranks among the top ten most prevalent malignancies worldwide. Due to the high occurrence rate of BC, the aggressive nature of cancer cells, and their resistance to medication, managing this disease has become a growing challenge in clinical care. Long noncoding RNAs (lncRNAs) are a group of RNA transcripts that do not code for proteins and are more than 200 nucleotides in length. They play a significant role in controlling cellular pathways and molecular interactions during the onset, development and progression of different types of cancers. Recent advancements in high-throughput gene sequencing technology have led to the identification of various differentially expressed lncRNAs in BC, which indicate abnormal expression. In this review, we summarize that these lncRNAs have been found to impact several functions related to the development of BC, including proliferation, cell growth, migration, metastasis, apoptosis, epithelial-mesenchymal transition, and chemo- and radio-resistance. Additionally, lncRNAs may improve prognosis prediction for BC patients, indicating a future use for them as prognostic and diagnostic biomarkers for BC patients. This review highlights that genetic tools and anti-tumor agents, such as CRISPR/Cas systems, siRNA, shRNA, antisense oligonucleotides, and vectors, have been created for use in preclinical cancer models. This has led to a growing interest in using lncRNAs based on positive research findings.
Collapse
Affiliation(s)
- Amirreza Mehmandar-Oskuie
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kasra Jahankhani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arman Rostamlou
- Department of Medical Biology, Faculty of Medicine, University of EGE, IZMIR, Turkey
| | - Sepideh Arabi
- Department of Immunology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Zahra Sadat Razavi
- Department of Immunology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran
| | - Amirhossein Mardi
- Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Science, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Science, Tabriz, Iran.
| |
Collapse
|
22
|
Zenner ML, Kirkpatrick B, Leonardo TR, Schlicht MJ, Saldana AC, Loitz C, Valyi-Nagy K, Maienschein-Cline M, Gann PH, Abern M, Nonn L. Prostate-derived circulating microRNAs add prognostic value to prostate cancer risk calculators. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.10.540236. [PMID: 37214878 PMCID: PMC10197676 DOI: 10.1101/2023.05.10.540236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Prostate cancer is the second leading cause of malignancy-related deaths among American men. Active surveillance is a safe option for many men with less aggressive disease, yet definitively determining low-risk cancer is challenging with biopsy alone. Herein, we sought to identify prostate-derived microRNAs in patient sera and serum extracellular vesicles, and determine if those microRNAs improve upon the current clinical risk calculators for prostate cancer prognosis before and after biopsy. Prostate-derived intracellular and extracellular vesicle-contained microRNAs were identified by small RNA sequencing of prostate cancer patient explants and primary cells. Abundant microRNAs were included in a custom microRNA PCR panel that was queried in whole serum and serum extracellular vesicles from a diverse cohort of men diagnosed with prostate cancer. The levels of these circulating microRNAs significantly differed between indolent and aggressive disease and improved the area under the curve for pretreatment nomograms of prostate cancer disease risk. The microRNAs within the extracellular vesicles had improved prognostic value compared to the microRNAs in the whole serum. In summary, quantifying microRNAs circulating in extracellular vesicles is a clinically feasible assay that may provide additional information for assessing prostate cancer risk stratification.
Collapse
|
23
|
Mao Y, Zhang M, Wang L, Lu Y, Hu X, Chen Z. Role of microRNA carried by small extracellular vesicles in urological tumors. Front Cell Dev Biol 2023; 11:1192937. [PMID: 37333986 PMCID: PMC10272383 DOI: 10.3389/fcell.2023.1192937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023] Open
Abstract
Small extracellular vesicles (sEVs) are minute vesicles secreted by various cells that are capable of transporting cargo, including microRNAs, between donor and recipient cells. MicroRNAs (miRNAs), small non-coding RNAs approximately 22 nucleotides in length, have been implicated in a wide array of biological processes, including those involved in tumorigenesis. Emerging evidence highlights the pivotal role of miRNAs encapsulated in sEVs in both the diagnosis and treatment of urological tumors, with potential implications in epithelial-mesenchymal transition, proliferation, metastasis, angiogenesis, tumor microenvironment and drug resistance. This review provides a brief overview of the biogenesis and functional mechanisms of sEVs and miRNAs, followed by a summarization of recent empirical findings on miRNAs encapsulated in sEVs from three archetypal urologic malignancies: prostate cancer, clear cell renal cell carcinoma, and bladder cancer. We conclude by underscoring the potential of sEV-enclosed miRNAs as both biomarkers and therapeutic targets, with a particular focus on their detection and analysis in biological fluids such as urine, plasma, and serum.
Collapse
Affiliation(s)
- Yiping Mao
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Mengting Zhang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Lanfeng Wang
- Department of Nephrology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yukang Lu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xinyi Hu
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Zhiping Chen
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Department of Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
24
|
Jordaens S, Oeyen E, Willems H, Ameye F, De Wachter S, Pauwels P, Mertens I. Protein Biomarker Discovery Studies on Urinary sEV Fractions Separated with UF-SEC for the First Diagnosis and Detection of Recurrence in Bladder Cancer Patients. Biomolecules 2023; 13:932. [PMID: 37371512 DOI: 10.3390/biom13060932] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
Urinary extracellular vesicles (EVs) are an attractive source of bladder cancer biomarkers. Here, a protein biomarker discovery study was performed on the protein content of small urinary EVs (sEVs) to identify possible biomarkers for the primary diagnosis and recurrence of non-muscle-invasive bladder cancer (NMIBC). The sEVs were isolated by ultrafiltration (UF) in combination with size-exclusion chromatography (SEC). The first part of the study compared healthy individuals with NMIBC patients with a primary diagnosis. The second part compared tumor-free patients with patients with a recurrent NMIBC diagnosis. The separated sEVs were in the size range of 40 to 200 nm. Based on manually curated high quality mass spectrometry (MS) data, the statistical analysis revealed 69 proteins that were differentially expressed in these sEV fractions of patients with a first bladder cancer tumor vs. an age- and gender-matched healthy control group. When the discriminating power between healthy individuals and first diagnosis patients is taken into account, the biomarkers with the most potential are MASP2, C3, A2M, CHMP2A and NHE-RF1. Additionally, two proteins (HBB and HBA1) were differentially expressed between bladder cancer patients with a recurrent diagnosis vs. tumor-free samples of bladder cancer patients, but their biological relevance is very limited.
Collapse
Affiliation(s)
- Stephanie Jordaens
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium
| | - Eline Oeyen
- Health Unit, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
- Centre for Proteomics (CfP), University of Antwerp, 2020 Antwerp, Belgium
| | - Hanny Willems
- Health Unit, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Filip Ameye
- Department of Urology, AZ Maria Middelares, 9000 Ghent, Belgium
| | - Stefan De Wachter
- Department of Urology, Antwerp University Hospital (UZA), 2650 Edegem, Belgium
| | - Patrick Pauwels
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium
- Laboratory of Pathological Anatomy, Antwerp University Hospital (UZA), 2650 Edegem, Belgium
| | - Inge Mertens
- Health Unit, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
- Centre for Proteomics (CfP), University of Antwerp, 2020 Antwerp, Belgium
| |
Collapse
|
25
|
Abstract
Exosomes are nanoscale vesicles derived from endocytosis, formed by fusion of multivesicular bodies with membranes and secreted into the extracellular matrix or body fluids. Many studies have shown that exosomes can be present in a variety of biological fluids, such as plasma, urine, saliva, amniotic fluid, ascites, and sweat, and most types of cells can secrete exosomes. Exosomes play an important role in many aspects of human development, including immunity, cardiovascular diseases, neurodegenerative diseases, and neoplasia. Urine can be an alternative to blood or tissue samples as a potential source of disease biomarkers because of its simple, noninvasive, sufficient, and stable characteristics. Therefore, urinary exosomes have valuable potential for early screening, monitoring disease progression, prognosis, and treatment. The method for isolating urinary exosomes has been perfected, and exosome proteomics is widely used. Therefore, we review the potential use of urinary exosomes for disease diagnosis and summarize the related literature.
Collapse
Affiliation(s)
- Yizhao Wang
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
| | - Man Zhang
- Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
- Clinical Laboratory Medicine, Peking University Ninth School of Clinical Medicine, Beijing, China
- Beijing Key Laboratory of Urinary Cellular Molecular Diagnostics, Beijing, China
| |
Collapse
|
26
|
Goss DM, Vasilescu SA, Sacks G, Gardner DK, Warkiani ME. Microfluidics facilitating the use of small extracellular vesicles in innovative approaches to male infertility. Nat Rev Urol 2023; 20:66-95. [PMID: 36348030 DOI: 10.1038/s41585-022-00660-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2022] [Indexed: 11/09/2022]
Abstract
Sperm are transcriptionally and translationally quiescent and, therefore, rely on the seminal plasma microenvironment for function, survival and fertilization of the oocyte in the oviduct. The male reproductive system influences sperm function via the binding and fusion of secreted epididymal (epididymosomes) and prostatic (prostasomes) small extracellular vesicles (S-EVs) that facilitate the transfer of proteins, lipids and nucleic acids to sperm. Seminal plasma S-EVs have important roles in sperm maturation, immune and oxidative stress protection, capacitation, fertilization and endometrial implantation and receptivity. Supplementing asthenozoospermic samples with normospermic-derived S-EVs can improve sperm motility and S-EV microRNAs can be used to predict non-obstructive azoospermia. Thus, S-EV influence on sperm physiology might have both therapeutic and diagnostic potential; however, the isolation of pure populations of S-EVs from bodily fluids with current conventional methods presents a substantial hurdle. Many conventional techniques lack accuracy, effectiveness, and practicality; yet microfluidic technology has the potential to simplify and improve S-EV isolation and detection.
Collapse
Affiliation(s)
- Dale M Goss
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, Australia
- IVF Australia, Sydney, NSW, Australia
| | - Steven A Vasilescu
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, Australia
- NeoGenix Biosciences pty ltd, Sydney, NSW, Australia
| | - Gavin Sacks
- IVF Australia, Sydney, NSW, Australia
- University of New South Wales, Sydney, NSW, Australia
| | - David K Gardner
- Melbourne IVF, East Melbourne, VIC, Australia.
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia.
| | - Majid E Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, Australia.
| |
Collapse
|
27
|
Schiller EA, Cohen K, Lin X, El-Khawam R, Hanna N. Extracellular Vesicle-microRNAs as Diagnostic Biomarkers in Preterm Neonates. Int J Mol Sci 2023; 24:2622. [PMID: 36768944 PMCID: PMC9916767 DOI: 10.3390/ijms24032622] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
Neonates born prematurely (<37 weeks of gestation) are at a significantly increased risk of developing inflammatory conditions associated with high mortality rates, including necrotizing enterocolitis, bronchopulmonary dysplasia, and hypoxic-ischemic brain damage. Recently, research has focused on characterizing the content of extracellular vesicles (EVs), particularly microRNAs (miRNAs), for diagnostic use. Here, we describe the most recent work on EVs-miRNAs biomarkers discovery for conditions that commonly affect premature neonates.
Collapse
Affiliation(s)
- Emily A. Schiller
- Department of Foundational Medicine, New York University Long Island School of Medicine, Mineola, NY 11501, USA
| | - Koral Cohen
- Department of Foundational Medicine, New York University Long Island School of Medicine, Mineola, NY 11501, USA
| | - Xinhua Lin
- Department of Foundational Medicine, New York University Long Island School of Medicine, Mineola, NY 11501, USA
| | - Rania El-Khawam
- Department of Pediatrics, Division of Neonatology, New York University Langone Long Island Hospital, Mineola, NY 11501, USA
| | - Nazeeh Hanna
- Department of Foundational Medicine, New York University Long Island School of Medicine, Mineola, NY 11501, USA
- Department of Pediatrics, Division of Neonatology, New York University Langone Long Island Hospital, Mineola, NY 11501, USA
| |
Collapse
|
28
|
Nicoliche CYN, da Silva GS, Gomes-de-Pontes L, Schleder GR, Lima RS. Single-Response Electronic Tongue and Machine Learning Enable the Multidetermination of Extracellular Vesicle Biomarkers for Cancer Diagnostics Without Recognition Elements. Methods Mol Biol 2023; 2679:83-94. [PMID: 37300610 DOI: 10.1007/978-1-0716-3271-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Platforms based on impedimetric electronic tongue (nonselective sensor) and machine learning are promising to bring disease screening biosensors into mainstream use toward straightforward, fast, and accurate analyses at the point-of-care, thus contributing to rationalize and decentralize laboratory tests with social and economic impacts being achieved. By combining a low-cost and scalable electronic tongue with machine learning, in this chapter, we describe the simultaneous determination of two extracellular vesicle (EV) biomarkers, i.e., the concentrations of EV and carried proteins, in mice blood with Ehrlich tumor from a single impedance spectrum without using biorecognizing elements. This tumor shows primary features of mammary tumor cells. Pencil HB core electrodes are integrated into polydimethylsiloxane (PDMS) microfluidic chip. The platform shows the highest throughput in comparison with the methods addressed in the literature to determine EV biomarkers.
Collapse
Affiliation(s)
- Caroline Y N Nicoliche
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
- Institute of Chemistry, University of Campinas, Campinas, SP, Brazil
| | | | - Leticia Gomes-de-Pontes
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Gabriel R Schleder
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Renato S Lima
- Brazilian Nanotechnology National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, SP, Brazil.
- Institute of Chemistry, University of Campinas, Campinas, SP, Brazil.
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, Brazil.
- Federal University of ABC, Santo André, SP, Brazil.
| |
Collapse
|
29
|
Serafini FL, Delli Pizzi A, Simeone P, Giammarino A, Mannetta C, Villani M, Izzi J, Buca D, Catitti G, Chiacchiaretta P, Trebeschi S, Miscia S, Caulo M, Lanuti P. Circulating Extracellular Vesicles: Their Role in Patients with Abdominal Aortic Aneurysm (AAA) Undergoing EndoVascular Aortic Repair (EVAR). Int J Mol Sci 2022; 23:ijms232416015. [PMID: 36555653 PMCID: PMC9782915 DOI: 10.3390/ijms232416015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/03/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is a frequent aortic disease. If the diameter of the aorta is larger than 5 cm, an open surgical repair (OSR) or an endovascular aortic repair (EVAR) are recommended. To prevent possible complications (i.e., endoleaks), EVAR-treated patients need to be monitored for 5 years following the intervention, using computed tomography angiography (CTA). However, this radiological method involves high radiation exposure in terms of CTA/year. In such a context, the study of peripheral-blood-circulating extracellular vesicles (pbcEVs) has great potential to identify biomarkers for EVAR complications. We analyzed several phenotypes of pbcEVs using polychromatic flow cytometry in 22 patients with AAA eligible for EVAR. From each enrolled patient, peripheral blood samples were collected at AAA diagnosis, and after 1, 6, and 12 months following EVAR implantation, i.e. during the diagnostic follow-up protocol. Patients developing an endoleak displayed a significant decrease in activated-platelet-derived EVs between the baseline condition and 6 months after EVAR intervention. Furthermore, we also observed, that 1 month after EVAR implantation, patients developing an endoleak showed higher concentrations of activated-endothelial-derived EVs than patients who did not develop one, suggesting their great potential as a noninvasive and specific biomarker for early identification of EVAR complications.
Collapse
Affiliation(s)
- Francesco Lorenzo Serafini
- Unit of Radiology, “SS. Annunziata” Hospital, 66100 Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Sciences, University “G. d’Annunzio”, 66100 Chieti, Italy
| | - Andrea Delli Pizzi
- Unit of Radiology, “SS. Annunziata” Hospital, 66100 Chieti, Italy
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio”, 66100 Chieti, Italy
- Institute of Advanced Biomedical Technologies (ITAB), University “G. d’Annunzio”, 66100 Chieti, Italy
- Correspondence: (A.D.P.); (P.S.)
| | - Pasquale Simeone
- Department of Medicine and Aging Sciences, University “G. d’Annunzio”, 66100 Chieti, Italy
- Center for Advanced Studies and Technologies (CAST), University “G. d’Annunzio”, 66100 Chieti, Italy
- Correspondence: (A.D.P.); (P.S.)
| | | | - Cristian Mannetta
- Unit of Vascular Surgery, “SS. Annunziata” Hospital, 66100 Chieti, Italy
| | - Michela Villani
- Department of Neuroscience, Imaging and Clinical Sciences, University “G. d’Annunzio”, 66100 Chieti, Italy
| | - Jacopo Izzi
- Department of Neuroscience, Imaging and Clinical Sciences, University “G. d’Annunzio”, 66100 Chieti, Italy
| | - Davide Buca
- Department of Medicine and Aging Sciences, University “G. d’Annunzio”, 66100 Chieti, Italy
- Center for Advanced Studies and Technologies (CAST), University “G. d’Annunzio”, 66100 Chieti, Italy
| | - Giulia Catitti
- Department of Medicine and Aging Sciences, University “G. d’Annunzio”, 66100 Chieti, Italy
- Center for Advanced Studies and Technologies (CAST), University “G. d’Annunzio”, 66100 Chieti, Italy
| | - Piero Chiacchiaretta
- Department of Neuroscience, Imaging and Clinical Sciences, University “G. d’Annunzio”, 66100 Chieti, Italy
- Institute of Advanced Biomedical Technologies (ITAB), University “G. d’Annunzio”, 66100 Chieti, Italy
| | - Stefano Trebeschi
- Department of Radiology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Sebastiano Miscia
- Department of Medicine and Aging Sciences, University “G. d’Annunzio”, 66100 Chieti, Italy
- Center for Advanced Studies and Technologies (CAST), University “G. d’Annunzio”, 66100 Chieti, Italy
| | - Massimo Caulo
- Unit of Radiology, “SS. Annunziata” Hospital, 66100 Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Sciences, University “G. d’Annunzio”, 66100 Chieti, Italy
- Institute of Advanced Biomedical Technologies (ITAB), University “G. d’Annunzio”, 66100 Chieti, Italy
| | - Paola Lanuti
- Department of Medicine and Aging Sciences, University “G. d’Annunzio”, 66100 Chieti, Italy
- Center for Advanced Studies and Technologies (CAST), University “G. d’Annunzio”, 66100 Chieti, Italy
| |
Collapse
|
30
|
Li C, Zhu P, Xiang H, Jin Y, Lu B, Shen Y, Wang W, Huang B, Chen Y. 3D-CEUS tracking of injectable chemo-sonodynamic therapy-enabled mop-up of residual renal cell carcinoma after thermal ablation. Mater Today Bio 2022; 18:100513. [PMID: 36569591 PMCID: PMC9771734 DOI: 10.1016/j.mtbio.2022.100513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
Thermal ablation (TA), as a minimally invasive therapeutic technique, has been extensively used to the treatment of solid tumors, such as renal cell carcinoma (RCC), which, unfortunately, still fails to overcome the high risk of local recurrence and distant metastasis since the incomplete ablation cannot be ignored due to various factors such as the indistinguishable tumor margins and limited ablation zone. Herein, we report the injectable thermosensitive hydrogel by confining curcumin (Cur)-loaded hollow mesoporous organosilica nanoparticles (Cur@HMON@gel) which can locate in tumor site more than half a month and mop up the residual RCC under ultrasound (US) irradiation after transforming from colloidal sol status to elastic gel matrix at physiological temperature. Based on the US-triggered accelerated diffusion of the model chemotherapy drug with multi-pharmacologic functions, the sustained and controlled release of Cur has been demonstrated in vitro. Significantly, US is employed as an external energy to trigger Cur, as a sonosensitizer also, to generate reactive oxygen species (ROS) for sonodynamic tumor therapy (SDT) in parallel. Tracking by the three-dimensional contrast-enhanced ultrasound (3D-CEUS) imaging, the typical decreased blood perfusions have been observed since the residual xenograft tumor after incomplete TA were effectively suppressed during the chemo-sonodynamic therapy process. The high in vivo biocompatibility and biodegradability of the multifunctional nanoplatform confined by thermogel provide the potential of their further clinical translation for the solid tumor eradication under the guidance and monitoring of 3D-CEUS.
Collapse
Affiliation(s)
- Cuixian Li
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China,Shanghai Institute of Medical Imaging, Fudan University, Shanghai 200032, PR China
| | - Piao Zhu
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200331, PR China,Corresponding author.
| | - Huijing Xiang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Yunjie Jin
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China,Shanghai Institute of Medical Imaging, Fudan University, Shanghai 200032, PR China
| | - Beilei Lu
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China,Shanghai Institute of Medical Imaging, Fudan University, Shanghai 200032, PR China
| | - Yujia Shen
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China,Shanghai Institute of Medical Imaging, Fudan University, Shanghai 200032, PR China
| | - Wenping Wang
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China,Shanghai Institute of Medical Imaging, Fudan University, Shanghai 200032, PR China,Corresponding author. Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China.
| | - Beijian Huang
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China,Shanghai Institute of Medical Imaging, Fudan University, Shanghai 200032, PR China,Corresponding author. Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China,Corresponding author.
| |
Collapse
|
31
|
Qiu T, Xue M, Li X, Li F, Liu S, Yao C, Chen W. Comparative evaluation of long non-coding RNA-based biomarkers in the urinary sediment and urinary exosomes for non-invasive diagnosis of bladder cancer. Mol Omics 2022; 18:938-947. [PMID: 36164958 DOI: 10.1039/d2mo00107a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Bladder cancer (BC) frequently causes a heavy disease burden for patients because of its easy recurrence. There is still a lack of convenient and effective methods to diagnose or monitor BC in the clinic. Emerging evidence suggests that long non-coding RNAs (lncRNAs) in urine are promising biomarkers for BC diagnosis. This study aimed to evaluate the performance of lncRNAs in urine for BC diagnosis. Seven lncRNAs (UCA1, H19, MALAT1, TUG1, GAS5, RMRP, and LINC01517) were selected as candidates by analyzing The Cancer Genome Atlas database or the literature. Expression of the candidate lncRNAs in the urinary sediment and exosomes was determined in a training cohort (n = 42) and an independent validation cohort (n = 56). Compared with normal controls, the patients with BC had a higher expression of RMRP, UCA1 and MALAT1 in the urinary exosomes and a higher expression of MALAT1 in the urinary sediment. Compared with MALAT1 in the urinary sediment, RMRP, UCA1, and MALAT1 in urinary exosomes exhibited higher combined diagnostic performance for BC diagnosis. Furthermore, higher RMRP expression in urinary exosomes was correlated with advanced tumor stages. A lncRNA panel consisting of urinary exosomal RMRP, UCA1 and MALAT1 was used to establish the support vector machine (SVM) model. An area under receiver operating characteristic (ROC) curve of the lncRNA panel predicted by the SVM model was 0.875 (sensitivity = 80.0% and specificity = 81.4%). Therefore, the lncRNA panel consisting of three urinary exosomal RMRP, UCA1 and MALAT1 has the potential to be biomarkers for BC diagnosis.
Collapse
Affiliation(s)
- Tongtong Qiu
- Department of Clinical Laboratory, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China. .,Department of Clinical Laboratory, Shaanxi Provincial People's Hospital, Xi'an 710068, P. R. China
| | - Mei Xue
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Xu Li
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China
| | - Fangyuan Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China.
| | - Shanshan Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China.
| | - Chenyu Yao
- State Key Laboratory of Special Surface Protection Materials and Application Technology, Wuhan Research Institute of Materials Protection, Wuhan 430030, P. R. China
| | - Wei Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P. R. China.
| |
Collapse
|
32
|
Qian H, Shao X, Zhang H, Wang Y, Liu S, Pan J, Xue W. Diagnosis of urogenital cancer combining deep learning algorithms and surface-enhanced Raman spectroscopy based on small extracellular vesicles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 281:121603. [PMID: 35868057 DOI: 10.1016/j.saa.2022.121603] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
PURPOSE To identify and compare the capacities of serum and serum-derived small extracellular vesicles (EV) in diagnosis of common urogenital cancer combining Surface-enhanced Raman spectroscopy (SERS) and Convolutional Neural Networks (CNN). MATERIALS AND METHODS We collected serum samples from 32 patients with prostate cancer (PCa), 33 patients with renal cell cancer (RCC) and 30 patients with bladder cancer (BCa) as well as 35 healthy control (HC), which were thereafter used to enrich extracellular vesicles by ultracentrifuge. Label-free SERS was utilized to collect Raman spectra from serum and matched EV samples. We constructed CNN models to process SERS data for classification of malignant patients and healthy controls (HCs). RESULTS We collected 650 and 1206 spectra from serum and serum-derived EV, respectively. CNN models of EV spectra revealed high testing accuracies of 79.3%, 78.7% and 74.2% in diagnosis of PCa, RCC and BCa, respectively. In comparison, serum SERS-based CNN model had testing accuracies of 73.0%, 71.1%, 69.2% in PCa, RCC and BCa, respectively. Moreover, CNN models based on EV SERS data show significantly higher diagnostic capacities than matched serum CNN models with the area under curve (AUC) of 0.80, 0.88 and 0.74 in diagnosis of PCa, RCC and BCa, respectively. CONCLUSION Deep learning-based SERS analysis of EV has great potentials in diagnosis of urologic cancer outperforming serum SERS analysis, providing a novel tool in cancer screening.
Collapse
Affiliation(s)
- Hongyang Qian
- Department of Urology, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Xiaoguang Shao
- Department of Urology, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Heng Zhang
- Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, People's Republic of China
| | - Yan Wang
- Department of Urology, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Shupeng Liu
- Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Shanghai Institute for Advanced Communication and Data Science, Shanghai University, Shanghai, People's Republic of China
| | - Jiahua Pan
- Department of Urology, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China.
| | - Wei Xue
- Department of Urology, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China.
| |
Collapse
|
33
|
Tsutsumi K, Ueta E, Kato H, Matsumoto K, Horiguchi S, Okada H. Optimization of Isolation Method for Extracellular Vesicles from Pancreatic Juice and Impact of Protease Activity. Dig Dis Sci 2022; 67:4797-4804. [PMID: 35037137 DOI: 10.1007/s10620-021-07339-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/19/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUNDS Pancreatic juice (PJ) is directly associated with pancreatic lesions, including pancreatic ductal cancer and intraductal papillary mucinous neoplasm-derived cancer. Therefore, EVs secreted from these lesions into PJ can be promising biomarkers for early diagnosis. However, there are limited data from analysis of EVs in PJ samples. AIMS AND METHODS We aimed to determine the stability of EVs in PJ collected using endoscopic naso-pancreatic drainage (ENPD) tubes as well as catheter during endoscopic retrograde cholangiography (ERCP), with or without the impact of positive protease activity, and optimize the EV isolation method. RESULTS Size exclusion chromatography was found to be an optimal isolation method for EVs in PJ as it achieved higher recovery and purity of EVs compared with differential ultracentrifugation and polymer-based precipitation. Approximately 40% of the PJ samples collected during ERCP and more than 90% of those collected using ENPD tubes had positive protease activity. In vitro exposure to room temperature for less than 3 h was harmless to the structure of double-membrane EVs in PJ and the expression levels of TSG101, even with positive protease activity. CONCLUSIONS We clarified the physiobiological status of EVs in PJ and optimized the EV isolation method using suitable PJ samples; these findings can be utilized to discover biomarkers for cancer diagnosis and elucidate their function.
Collapse
Affiliation(s)
- Koichiro Tsutsumi
- Department of Gastroenterology, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama-city, Okayama, 700-8558, Japan.
| | - Eijiro Ueta
- Department of Gastroenterology, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama-city, Okayama, 700-8558, Japan.,Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama, Japan
| | - Hironari Kato
- Department of Gastroenterology, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama-city, Okayama, 700-8558, Japan
| | - Kazuyuki Matsumoto
- Department of Gastroenterology, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama-city, Okayama, 700-8558, Japan
| | - Shigeru Horiguchi
- Department of Gastroenterology, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama-city, Okayama, 700-8558, Japan
| | - Hiroyuki Okada
- Department of Gastroenterology, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama-city, Okayama, 700-8558, Japan.,Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Science, Okayama, Japan
| |
Collapse
|
34
|
Deng J, Zhao S, Li J, Cheng Y, Liu C, Liu Z, Li L, Tian F, Dai B, Sun J. One-Step Thermophoretic AND Gate Operation on Extracellular Vesicles Improves Diagnosis of Prostate Cancer. Angew Chem Int Ed Engl 2022; 61:e202207037. [PMID: 35749531 DOI: 10.1002/anie.202207037] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Indexed: 01/19/2023]
Abstract
Circulating extracellular vesicles (EVs) have emerged as a valuable source of cancer biomarkers. However, the high degree of EV heterogeneity and the complexity of clinical samples pose a challenge in the sensitive identification of tumor-derived EVs. Here we introduce a one-step thermophoretic AND gate operation (Tango) assay that integrates polyethylene glycol (PEG)-enhanced thermophoretic accumulation of EVs and simultaneous AND gate operation on EV membranes by dual-aptamers recognition. By using the Tango assay to detect tumor-derived EVs with co-presence of EpCAM and PSMA directly from serum in a homogeneous, separation-free format, we can discriminate prostate cancer (PCa) patients from benign prostatic hyperplasia (BPH) patients in the diagnostic gray zone with an accuracy of 91 % in 15 min. Our approach streamlines EV enrichment and AND gate operation on EVs in a single assay, providing a rapid, straightforward, and powerful method for precise and non-invasive diagnosis of cancer.
Collapse
Affiliation(s)
- Jinqi Deng
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuai Zhao
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junhong Li
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yangchang Cheng
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Liu
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zheng Liu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Lele Li
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fei Tian
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bo Dai
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jiashu Sun
- Beijing Engineering Research Center for BioNanotechnology, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
35
|
Dong R, Xu Y. Glomerular cell cross talk in diabetic kidney diseases. J Diabetes 2022; 14:514-523. [PMID: 35999686 PMCID: PMC9426281 DOI: 10.1111/1753-0407.13304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/19/2022] [Accepted: 07/29/2022] [Indexed: 11/26/2022] Open
Abstract
Diabetic kidney disease (DKD) is a severe microvascular complication of diabetes mellitus. It is the leading inducement of end-stage renal disease (ESRD), and its global incidence has been increasing at an alarming rate. The strict control of blood pressure and blood glucose can delay the progression of DKD, but intensive treatment is challenging to maintain. Studies to date have failed to find a complete cure. The glomerulus's alterations and injuries play a pivotal role in the initiation and development of DKD. A wealth of data indicates that the interdependent relationship between resident cells in the glomerulus will provide clues to the mechanism of DKD and new ways for therapeutic intervention. This review summarizes the significant findings of glomerular cell cross talk in DKD, focusing on cellular signaling pathways, regulators, and potential novel avenues for treating progressive DKD.
Collapse
Affiliation(s)
- Ruixue Dong
- Faculty of Pharmacy, Macau University of Science and Technology, Taipa, Macau, People's Republic of China
| | - Youhua Xu
- Faculty of Pharmacy, Macau University of Science and Technology, Taipa, Macau, People's Republic of China
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, People's Republic of China
- Department of Endocrinology, Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai, People's Republic of China
| |
Collapse
|
36
|
Tumor suppressive role of microRNA-139-5p in bone marrow mesenchymal stem cells-derived extracellular vesicles in bladder cancer through regulation of the KIF3A/p21 axis. Cell Death Dis 2022; 13:599. [PMID: 35821021 PMCID: PMC9276749 DOI: 10.1038/s41419-022-04936-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/26/2022] [Accepted: 05/11/2022] [Indexed: 01/21/2023]
Abstract
The emerging roles of extracellular vesicles (EVs) in bladder cancer have recently been identified. This study aims to elucidate the role of microRNA-139-5p (miR-139-5p) shuttled by bone marrow mesenchymal stem cells (BMSCs)-derived EVs (BMSCs-EVs) in bladder cancer, with the possible mechanism explored. Expression of miR-139-5p and KIF3A was tested, followed by an analysis of their correlation. EVs were isolated from BMSCs and co-cultured with T24 or BOY-12E cells with miR-139-5p mimic/inhibitor, oe-KIF3A, and/or si-p21 transfected to study the roles of miR-139-5p/KIF3A/p21 in bladder cancer cell functions. A nude mouse model of subcutaneous xenograft tumor was constructed to detect the effect of miR-139-5p in BMSCs-EVs on the tumorigenesis and lung metastasis of bladder cancer cells in vivo. It was identified that miR-139-5p was highly expressed in BMSCs-EVs, but poorly expressed in bladder cancer. BMSCs-EVs transferred miR-139-5p into bladder cancer cells where miR-139-5p inhibited the malignant features of bladder cancer cells in vitro. miR-139-5p in BMSCs-EVs targeted KIF3A and inhibited the expression of KIF3A, thereby activating p21. miR-139-5p in BMSCs-EVs arrested the tumorigenesis and lung metastasis of bladder cancer cells in vivo by modulation of the KIF3A/p21 axis. Altogether, BMSCs-EVs carried miR-139-5p targeted KIF3A to activate p21, thus delaying the occurrence of bladder cancer.
Collapse
|
37
|
Tomiyama E, Fujita K, Matsuzaki K, Narumi R, Yamamoto A, Uemura T, Yamamichi G, Koh Y, Matsushita M, Hayashi Y, Hashimoto M, Banno E, Kato T, Hatano K, Kawashima A, Uemura M, Ukekawa R, Takao T, Takada S, Uemura H, Adachi J, Tomonaga T, Nonomura N. EphA2 on urinary extracellular vesicles as a novel biomarker for bladder cancer diagnosis and its effect on the invasiveness of bladder cancer. Br J Cancer 2022; 127:1312-1323. [PMID: 35794239 DOI: 10.1038/s41416-022-01860-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/25/2022] [Accepted: 05/11/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Urinary extracellular vesicles (uEVs) secreted from bladder cancer contain cancer-specific proteins that are potential diagnostic biomarkers. We identified and evaluated a uEV-based protein biomarker for bladder cancer diagnosis and analysed its functions. METHODS Biomarker candidates, selected by shotgun proteomics, were validated using targeted proteomics of uEVs obtained from 49 patients with and 48 individuals without bladder cancer, including patients with non-malignant haematuria. We developed an enzyme-linked immunosorbent assay (ELISA) for quantifying the uEV protein biomarker without ultracentrifugation and evaluated urine samples from 36 patients with and 36 patients without bladder cancer. RESULTS Thirteen membrane proteins were significantly upregulated in the uEVs from patients with bladder cancer in shotgun proteomics. Among them, eight proteins were validated by target proteomics, and Ephrin type-A receptor 2 (EphA2) was the only protein significantly upregulated in the uEVs of patients with bladder cancer, compared with that of patients with non-malignant haematuria. The EV-EphA2-CD9 ELISA demonstrated good diagnostic performance (sensitivity: 61.1%, specificity: 97.2%). We showed that EphA2 promotes proliferation, invasion and migration and EV-EphA2 promotes the invasion and migration of bladder cancer cells. CONCLUSIONS We established EV-EphA2-CD9 ELISA for uEV-EphA2 detection for the non-invasive early clinical diagnosis of bladder cancer.
Collapse
Affiliation(s)
- Eisuke Tomiyama
- Department of Urology, Osaka University Graduate School of Medicine, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kazutoshi Fujita
- Department of Urology, Osaka University Graduate School of Medicine, Yamadaoka, Suita, Osaka, 565-0871, Japan. .,Department of Urology, Kindai University Faculty of Medicine, Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan.
| | - Kyosuke Matsuzaki
- Department of Urology, Osaka University Graduate School of Medicine, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ryohei Narumi
- Laboratory of Proteome Research, National Institutes of Biomedical Innovation, Health and Nutrition, Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Akinaru Yamamoto
- Department of Urology, Osaka University Graduate School of Medicine, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Toshihiro Uemura
- Department of Urology, Osaka University Graduate School of Medicine, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Gaku Yamamichi
- Department of Urology, Osaka University Graduate School of Medicine, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoko Koh
- Department of Urology, Osaka University Graduate School of Medicine, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Makoto Matsushita
- Department of Urology, Osaka University Graduate School of Medicine, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yujiro Hayashi
- Department of Urology, Osaka University Graduate School of Medicine, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Mamoru Hashimoto
- Department of Urology, Kindai University Faculty of Medicine, Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Eri Banno
- Department of Urology, Kindai University Faculty of Medicine, Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Taigo Kato
- Department of Urology, Osaka University Graduate School of Medicine, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Koji Hatano
- Department of Urology, Osaka University Graduate School of Medicine, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Atsunari Kawashima
- Department of Urology, Osaka University Graduate School of Medicine, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Motohide Uemura
- Department of Urology, Osaka University Graduate School of Medicine, Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ryo Ukekawa
- FUJIFILM Wako Pure Chemical Corporation, Takata-cho, Amagasaki, Hyogo, 661-0963, Japan
| | - Tetsuya Takao
- Department of Urology, Osaka General Medical Center, Bandai-higashi, Sumiyoshi-ku, Osaka, 558-8558, Japan
| | - Shingo Takada
- Department of Urology, Osaka Police Hospital, Kitayama-cho, Tennoji-ku, Osaka, 543-0035, Japan
| | - Hirotsugu Uemura
- Department of Urology, Kindai University Faculty of Medicine, Ohno-Higashi, Osaka-Sayama, Osaka, 589-8511, Japan
| | - Jun Adachi
- Laboratory of Proteome Research, National Institutes of Biomedical Innovation, Health and Nutrition, Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Takeshi Tomonaga
- Laboratory of Proteome Research, National Institutes of Biomedical Innovation, Health and Nutrition, Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine, Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
38
|
Park S, Moon HY. Urinary extracellular vesicle as a potential biomarker of exercise-induced fatigue in young adult males. Eur J Appl Physiol 2022; 122:2175-2188. [PMID: 35781843 PMCID: PMC9463341 DOI: 10.1007/s00421-022-04995-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/18/2022] [Indexed: 11/30/2022]
Abstract
Purpose Previous studies have suggested that circulating extracellular vesicles (EVs) arise after high intensity exercise and urine could reflect the plasma proteome. Herein, we investigated the characteristic of urinary EVs from healthy young adult males who had completed a maximal effort exercise test. Methods Thirteen healthy men completed a 20 m shuttle run test (20 m SRT). Fresh urine samples were collected at first morning, right after, and 1 h rest after 20 m SRT. Also, blood lactate, heart rate, rating of perceived exertion, and blood pressure were measured before, right after, and 1 h rest after 20 m SRT. Urinary EVs were analyzed using Exoview instrument and microRNAs (miRNAs) sequencing on urinary EVs were performed. Results Urinary EVs increased significantly after exercise and returned to baseline value after 1 h of rest. miRNA sequencing on urinary EV revealed alterations in four miRNAs (1 up and 3 down) and nine miRNAs (2 up and 7 down) in pre- vs. post- and post- vs. post-1 h samples, respectively. Lastly, bioinformatic analysis of urinary EV miRNA suggests that predicted target genes could affect PI3K-Akt, mitogen-activated protein kinase, and insulin pathways by exercise. Conclusions Exercise to voluntary exhaustion increased the number of EVs in urine. Also, miRNAs in urinary EVs were altered after exercise. These findings could indicate the possibility of using the urinary EVs as a novel biomarker of acute exercise-induced fatigue.
Collapse
Affiliation(s)
- Suhong Park
- Department of Physical Education, Seoul National University, Seoul, Republic of Korea
| | - Hyo Youl Moon
- Department of Physical Education, Seoul National University, Seoul, Republic of Korea. .,Institute of Sport Science, Seoul National University, 71-1, 407, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
39
|
Bioprobes-regulated precision biosensing of exosomes: From the nanovesicle surface to the inside. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214538] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
40
|
Deng J, Zhao S, Li J, Cheng Y, Liu C, Liu Z, Li L, Tian F, Dai B, Sun J. One‐Step Thermophoretic AND Gate Operation on Extracellular Vesicles Improves Diagnosis of Prostate Cancer. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jinqi Deng
- National Center for Nanoscience and Technology CAS Key Laboratory of Standardization and Measurement for Nanotechnology CHINA
| | - Shuai Zhao
- National Center for Nanoscience and Technology CAS Key Laboratory of Standardization and Measurement for Nanotechnology CHINA
| | - Junhong Li
- Fudan University Shanghai Cancer Center Department of Urology CHINA
| | - Yangchang Cheng
- National Center for Nanoscience and Technology CAS Key Laboratory of Standardization and Measurement for Nanotechnology CHINA
| | - Chao Liu
- National Center for Nanoscience and Technology CAS Key Laboratory of Standardization and Measurement for Nanotechnology CHINA
| | - Zheng Liu
- Fudan University Shanghai Cancer Center Department of Urology CHINA
| | - Lele Li
- National Center for Nanoscience and Technology CAS Key Laboratory of Standardization and Measurement for Nanotechnology CHINA
| | - Fei Tian
- National Center for Nanoscience and Technology CAS Key Laboratory of Standardization and Measurement for Nanotechnology CHINA
| | - Bo Dai
- Fudan University Shanghai Cancer Center Department of Urology CHINA
| | - Jiashu Sun
- National Center for Nanoscience and Technology No.11 Beiyitiao, Zhongguancun Beijing CHINA
| |
Collapse
|
41
|
Lak NSM, van der Kooi EJ, Enciso-Martinez A, Lozano-Andrés E, Otto C, Wauben MHM, Tytgat GAM. Extracellular Vesicles: A New Source of Biomarkers in Pediatric Solid Tumors? A Systematic Review. Front Oncol 2022; 12:887210. [PMID: 35686092 PMCID: PMC9173703 DOI: 10.3389/fonc.2022.887210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/12/2022] [Indexed: 12/12/2022] Open
Abstract
Virtually every cell in the body releases extracellular vesicles (EVs), the contents of which can provide a "fingerprint" of their cellular origin. EVs are present in all bodily fluids and can be obtained using minimally invasive techniques. Thus, EVs can provide a promising source of diagnostic, prognostic, and predictive biomarkers, particularly in the context of cancer. Despite advances using EVs as biomarkers in adult cancers, little is known regarding their use in pediatric cancers. In this review, we provide an overview of published clinical and in vitro studies in order to assess the potential of using EV-derived biomarkers in pediatric solid tumors. We performed a systematic literature search, which yielded studies regarding desmoplastic small round cell tumor, hepatoblastoma, neuroblastoma, osteosarcoma, and rhabdomyosarcoma. We then determined the extent to which the in vivo findings are supported by in vitro data, and vice versa. We also critically evaluated the clinical studies using the GRADE (Grading of Recommendations Assessment, Development, and Evaluation) system, and we evaluated the purification and characterization of EVs in both the in vivo and in vitro studies in accordance with MISEV guidelines, yielding EV-TRACK and PedEV scores. We found that several studies identified similar miRNAs in overlapping and distinct tumor entities, indicating the potential for EV-derived biomarkers. However, most studies regarding EV-based biomarkers in pediatric solid tumors lack a standardized system of reporting their EV purification and characterization methods, as well as validation in an independent cohort, which are needed in order to bring EV-based biomarkers to the clinic.
Collapse
Affiliation(s)
- Nathalie S M Lak
- Research Department, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
| | - Elvera J van der Kooi
- Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
| | | | - Estefanía Lozano-Andrés
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Cees Otto
- Medical Cell Biophysics Group, University of Twente, Enschede, Netherlands
| | - Marca H M Wauben
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Godelieve A M Tytgat
- Research Department, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands.,Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
| |
Collapse
|
42
|
Junker K. [Liquid biopsy to indvidualise therapy in advanced bladder cancer]. Aktuelle Urol 2022; 53:180-187. [PMID: 34875700 DOI: 10.1055/a-1646-9568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Biomarker development is focussing more and more on the analysis of body fluids ("liquid biopsy") due to its advantages compared to tissue analysis. In addition to proteins and lipoproteins, circulating tumour cells (CTCs), extracellular vesicles (EVs) and cell-free nucleic acids (DNA, RNA) can be investigated from body fluids. Treatment of muscle-invasive balder cancer (MIBC) is still challenging. Therefore, new biomarkers are warranted to estimate the metastatic risk, to detect metastatic spread at an early time point and to select the most effective systemic therapy in a given patient. This review gives an overview of liquid biopsy from blood in patients with advanced MIBC and considers CTCs, EVs as well as circulating DNA (ctDNA) and non-coding RNA (ncRNA) and their role for prognostic evaluation and selecting treatment.
Collapse
Affiliation(s)
- Kerstin Junker
- Dept of Urology and Pediatric Urology, Saarland University Hospital and Saarland University Faculty of Medicine, Homburg, Germany
| |
Collapse
|
43
|
Clos-Sansalvador M, Monguió-Tortajada M, Roura S, Franquesa M, Borràs FE. Commonly used methods for extracellular vesicles’ enrichment: implications in downstream analyses and use. Eur J Cell Biol 2022; 101:151227. [DOI: 10.1016/j.ejcb.2022.151227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 02/08/2023] Open
|
44
|
Linxweiler J, Hajili T, Saar M, Maßmann C, Junker K, Stöckle M. Einfluss von lokalen Therapiemaßnahmen auf die Biologie des fortschreitenden Prostatakarzinoms. Urologe A 2022; 61:518-525. [PMID: 35258654 PMCID: PMC9072274 DOI: 10.1007/s00120-022-01788-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2022] [Indexed: 11/29/2022]
Abstract
Hintergrund In den letzten 15 Jahren zeigt sich ein Trend hin zu einem längeren Überleben beim metastasierten Prostatakarzinom. Neben dem durch neue Medikamente bedingten Fortschritt deuten retrospektive Daten auch auf einen möglichen positiven Effekt einer früheren Primärtumorbehandlung hin. Fragestellung Kann eine Primärtumorbehandlung im Falle einer späteren Metastasierung die Prognose der betroffenen Patienten verbessern und wenn ja, über welche Mechanismen? Material und Methode Wir werteten die klinischen Langzeitergebnisse von 115 Patienten aus, die bei T4-Prostatakarzinomen nach induktiver Hormontherapie an unserer Klinik prostatektomiert worden waren. Weiterhin erfolgte eine kritische Durchsicht und Diskussion der zur oben genannten Fragestellung vorhandenen Literatur. Ergebnisse Von den 115 Patienten hatten 84 im weiteren Verlauf ein biochemisches Rezidiv erlitten, waren also definitiv durch die radikale Prostatektomie nicht geheilt. Das tumorspezifische und das Gesamtüberleben dieser 84 Patienten lag nach 150 Monaten bei 61 % bzw. 44 %. Bemerkenswert war die Beobachtung, dass diese Patienten ein überraschend gutes und langes Ansprechen auf eine Hormontherapie zeigten. Von den 84 Patienten waren nach durchschnittlich 95 Monaten Nachbeobachtungszeit noch 47 am Leben. 31 von ihnen, also ungefähr zwei Drittel, standen immer noch unter einer Standardhormontherapie. Nur 13 hatten eine Resistenz gegen die primäre Hormontherapie entwickelt und entsprechend eine tertiäre Hormontherapie erhalten, auf die sie teilweise aber auch wieder langfristig sensibel blieben. Schlussfolgerungen Die Primärtumorentfernung, zumindest unter den beschriebenen Begleitumständen, scheint die Entwicklung einer Hormonresistenz beim metastasierten Prostatakarzinom hinauszögern und in Einzelfällen sogar ganz verhindern zu können.
Collapse
Affiliation(s)
- Johannes Linxweiler
- Klinik für Urologie, Universität des Saarlandes, Kirrberger Str., 66421, Homburg/Saar, Deutschland.
| | - Turkan Hajili
- Klinik für Urologie, Universität des Saarlandes, Kirrberger Str., 66421, Homburg/Saar, Deutschland
- Urologische Klinik, Diako Krankenhaus Flensburg, Flensburg, Deutschland
| | - Matthias Saar
- Klinik für Urologie, Universität des Saarlandes, Kirrberger Str., 66421, Homburg/Saar, Deutschland
- Klinik für Urologie, Universitätsklinikum RWTH Aachen, Aaachen, Deutschland
| | - Christina Maßmann
- Klinik für Urologie, Universität des Saarlandes, Kirrberger Str., 66421, Homburg/Saar, Deutschland
| | - Kerstin Junker
- Klinik für Urologie, Universität des Saarlandes, Kirrberger Str., 66421, Homburg/Saar, Deutschland
| | - Michael Stöckle
- Klinik für Urologie, Universität des Saarlandes, Kirrberger Str., 66421, Homburg/Saar, Deutschland
| |
Collapse
|
45
|
Ramirez-Garrastacho M, Berge V, Linē A, Llorente A. Potential of miRNAs in urinary extracellular vesicles for management of active surveillance in prostate cancer patients. Br J Cancer 2022; 126:492-501. [PMID: 34811506 PMCID: PMC8810884 DOI: 10.1038/s41416-021-01598-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/28/2021] [Accepted: 10/11/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Active surveillance is an alternative to radical treatment for patients with low-risk prostate cancer, which could also benefit some patients with intermediate risk. We have investigated the use of miRNA in urinary extracellular vesicles to stratify these patients. METHODS NGS was performed to profile the miRNAs from small urinary extracellular vesicles in a cohort of 70 patients with prostate cancer ISUP Grade 1, 2 or 3. The most promising candidates were then analysed by RT-qPCR in a new cohort of 60 patients. RESULTS NGS analysis identified nine miRNAs differentially expressed in at least one of the comparisons. The largest differences were found with miR-1290 (Grade 3 vs. 1), miR-320a-3p (Grade 3 vs. 2) and miR-155-5p (Grade 2 vs. 1). Combinations of 2-3 miRNAs were able to differentiate between two ISUP grades with an AUC 0.79-0.88. RT-qPCR analysis showed a similar trend for miR-186-5p and miR-30e-5p to separate Grade 3 from 2, and miR-320a-3p to separate Grade 2 from 1. CONCLUSIONS Using NGS, we have identified several miRNAs that discriminate between prostate cancer patients with ISUP Grades 1, 2 and 3. Moreover, miR-186-5p, miR-320a-3p and miR-30e-5p showed a similar behaviour in an independent cohort using an alternative analytical method. Our results show that miRNAs from urinary vesicles can be potentially useful as liquid biopsies for active surveillance.
Collapse
Affiliation(s)
- Manuel Ramirez-Garrastacho
- grid.55325.340000 0004 0389 8485Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Viktor Berge
- grid.55325.340000 0004 0389 8485Department of Urology, Oslo University Hospital, Oslo, Norway ,grid.5510.10000 0004 1936 8921Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Aija Linē
- grid.419210.f0000 0004 4648 9892Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Alicia Llorente
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway. .,Department for Mechanical, Electronics and Chemical Engineering, Oslo Metropolitan University, Oslo, Norway.
| |
Collapse
|
46
|
Ramirez-Garrastacho M, Bajo-Santos C, Line A, Martens-Uzunova ES, de la Fuente JM, Moros M, Soekmadji C, Tasken KA, Llorente A. Extracellular vesicles as a source of prostate cancer biomarkers in liquid biopsies: a decade of research. Br J Cancer 2022; 126:331-350. [PMID: 34811504 PMCID: PMC8810769 DOI: 10.1038/s41416-021-01610-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 01/02/2023] Open
Abstract
Prostate cancer is a global cancer burden and considerable effort has been made through the years to identify biomarkers for the disease. Approximately a decade ago, the potential of analysing extracellular vesicles in liquid biopsies started to be envisaged. This was the beginning of a new exciting area of research investigating the rich molecular treasure found in extracellular vesicles to identify biomarkers for a variety of diseases. Vesicles released from prostate cancer cells and cells of the tumour microenvironment carry molecular information about the disease that can be analysed in several biological fluids. Numerous studies document the interest of researchers in this field of research. However, methodological issues such as the isolation of vesicles have been challenging. Remarkably, novel technologies, including those based on nanotechnology, show promise for the further development and clinical use of extracellular vesicles as liquid biomarkers. Development of biomarkers is a long and complicated process, and there are still not many biomarkers based on extracellular vesicles in clinical use. However, the knowledge acquired during the last decade constitutes a solid basis for the future development of liquid biopsy tests for prostate cancer. These are urgently needed to bring prostate cancer treatment to the next level in precision medicine.
Collapse
Affiliation(s)
- Manuel Ramirez-Garrastacho
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | | | - Aija Line
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Elena S Martens-Uzunova
- Erasmus MC Cancer Institute, University Medical Center Rotterdam, Department of Urology, Laboratory of Experimental Urology, Erasmus MC, Rotterdam, The Netherlands
| | - Jesus Martinez de la Fuente
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Maria Moros
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Carolina Soekmadji
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Kristin Austlid Tasken
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Alicia Llorente
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
- Department for Mechanical, Electronics and Chemical Engineering, Oslo Metropolitan University, Oslo, Norway.
| |
Collapse
|
47
|
Linxweiler J, Hajili T, Zeuschner P, Menger MD, Stöckle M, Junker K, Saar M. Primary Tumor Resection Decelerates Disease Progression in an Orthotopic Mouse Model of Metastatic Prostate Cancer. Cancers (Basel) 2022; 14:cancers14030737. [PMID: 35159004 PMCID: PMC8833735 DOI: 10.3390/cancers14030737] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 01/25/2023] Open
Abstract
Radical prostatectomy in oligometastatic prostate cancer is a matter of intense debate. Besides avoiding local complications, it is hypothesized that primary tumor resection may result in better oncological outcomes. The aim of our study was to analyze the effect of primary tumor resection on disease progression in an orthotopic prostate cancer mouse model. First, the optimal time point for primary tumor resection, when metastases have already occurred, but the primary tumor is still resectable, was determined as 8 weeks after inoculation of 5 × 105 LuCaP136 cells. In a second in vivo experiment, 64 mice with metastatic prostate cancer were randomized into two groups, primary tumor resection or sham operation, and disease progression was followed up for 10 weeks. The technique of orthotopic primary tumor resection was successfully established. Compared with the sham operation group, mice with primary tumor resection showed a significantly longer survival (p < 0.001), a significantly slower PSA increase (p < 0.01), and a lower number of lung metastases (p = 0.073). In conclusion, primary tumor resection resulted in slower disease progression and longer survival in an orthotopic mouse model of metastatic prostate cancer. In future studies, this model will be used to unravel the molecular mechanisms of primary tumor/metastasis interaction in prostate cancer.
Collapse
Affiliation(s)
- Johannes Linxweiler
- Department of Urology, Saarland University, 66421 Homburg, Saar, Germany; (T.H.); (P.Z.); (M.S.); (K.J.); (M.S.)
- Correspondence:
| | - Turkan Hajili
- Department of Urology, Saarland University, 66421 Homburg, Saar, Germany; (T.H.); (P.Z.); (M.S.); (K.J.); (M.S.)
| | - Philip Zeuschner
- Department of Urology, Saarland University, 66421 Homburg, Saar, Germany; (T.H.); (P.Z.); (M.S.); (K.J.); (M.S.)
| | - Michael D. Menger
- Institute for Clinical-Experimental Surgery, Saarland University, 66421 Homburg, Saar, Germany;
| | - Michael Stöckle
- Department of Urology, Saarland University, 66421 Homburg, Saar, Germany; (T.H.); (P.Z.); (M.S.); (K.J.); (M.S.)
| | - Kerstin Junker
- Department of Urology, Saarland University, 66421 Homburg, Saar, Germany; (T.H.); (P.Z.); (M.S.); (K.J.); (M.S.)
| | - Matthias Saar
- Department of Urology, Saarland University, 66421 Homburg, Saar, Germany; (T.H.); (P.Z.); (M.S.); (K.J.); (M.S.)
| |
Collapse
|
48
|
Lee SA, Yoo TH. Therapeutic application of extracellular vesicles for various kidney diseases: a brief review. BMB Rep 2022. [PMID: 34903318 PMCID: PMC8810552 DOI: 10.5483/bmbrep.2022.55.1.141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Sul A Lee
- Department of Medicine, MetroWest Medical Center/Tufts University School of Medicine, Framingham, MA 01702, USA
| | - Tae Hyun Yoo
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
49
|
Lee SA, Yoo TH. Therapeutic application of extracellular vesicles for various kidney diseases: a brief review. BMB Rep 2022; 55:3-10. [PMID: 34903318 PMCID: PMC8810552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/17/2021] [Accepted: 12/10/2021] [Indexed: 02/21/2025] Open
Abstract
Extracellular vesicles (EVs) released from different types of kidney cells under physiologic conditions contribute to homeostasis maintenance, immune-modulation, and cell-to-cell communications. EVs can also negatively affect the progression of renal diseases through their pro-inflammatory, pro-fibrotic, and tumorigenic potential. Inhibiting EVs by blocking their production, release, and uptake has been suggested as a potential therapeutic mechanism based on the significant implication of exosomes in various renal diseases. On the other hand, stem cell-derived EVs can ameliorate tissue injury and mediate tissue repair by ameliorating apoptosis, inflammation, and fibrosis while promoting angiogenesis and tubular cell proliferation. Recent advancement in biomedical engineering technique has made it feasible to modulate the composition of exosomes with diverse biologic functions, making EV one of the most popular drug delivery tools. The objective of this review was to provide updates of recent clinical and experimental findings on the therapeutic potential of EVs in renal diseases and discuss the clinical applicability of EVs in various renal diseases. [BMB Reports 2022; 55(1): 3-10].
Collapse
Affiliation(s)
- Sul A Lee
- Department of Medicine, MetroWest Medical Center/Tufts University School of Medicine, Framingham, MA 01702, USA
| | - Tae Hyun Yoo
- Department of Internal Medicine, College of Medicine, Institute of Kidney Disease Research, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
50
|
Kamińska A, Roman M, Wróbel A, Gala-Błądzińska A, Małecki MT, Paluszkiewicz C, Stępień EŁ. Raman spectroscopy of urinary extracellular vesicles to stratify patients with chronic kidney disease in type 2 diabetes. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 39:102468. [PMID: 34619362 DOI: 10.1016/j.nano.2021.102468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 07/31/2021] [Accepted: 08/15/2021] [Indexed: 01/08/2023]
Abstract
In this study, we verified the hypothesis that Raman signature of urinary extracellular vesicles (UEVs) can be used to stratify patients with diabetes at various stages of chronic kidney disease (CKD). Patients with type 2 diabetes diagnosed with different stages of CKD and healthy subjects were enrolled in the study. UEVs were isolated using low-vacuum filtration followed by ultracentrifugation. Correlation analysis, multiple linear regression and principal component analysis were used to find differences between spectral fingerprints of UEVs derived from both groups of patients. Electron microscopy and nanoparticle tracking analysis were applied to characterize the size and morphology of UEVs. We observed significant correlations between selected Raman bands measured for UEVs and clinical parameters. We found significant differences in the area under the specific bands originating mainly from proteins and lipids between the study groups. Based on the tryptophan and amide III bands, we were able to predict the estimated glomerular filtration rate (eGFR). Principal component analysis, partial least squares regression (PLSR) and correlation analysis of the UEV Raman spectra supported the results obtained from the direct analysis of Raman spectra. Our analysis revealed that PLSR and a regression model including tryptophan and amide III bands allows to estimate the value of eGFR.
Collapse
Affiliation(s)
- Agnieszka Kamińska
- Department of Medical Physics, M. Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland.
| | - Maciej Roman
- Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland.
| | - Andrzej Wróbel
- Department of Medical Physics, M. Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland.
| | - Agnieszka Gala-Błądzińska
- Department of Internal Medicine, Nephrology and Endocrinology, Rzeszów, Poland; Medical College of Rzeszow University, Institute of Medical Sciences, Rzeszów, Poland
| | - Maciej T Małecki
- Department of Metabolic Diseases, Jagiellonian University Medical College, Kraków, Poland; Department of Metabolic Diseases, University Hospital, Kraków, Poland.
| | | | - Ewa Ł Stępień
- Department of Medical Physics, M. Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, Kraków, Poland.
| |
Collapse
|