1
|
Kim PY, Zhu S, Forth J, Xie G, King DA, Helms BA, Ashby PD, Omar AK, Russell TP. Shape-Evolving Structured Liquids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2500804. [PMID: 40331500 DOI: 10.1002/adma.202500804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 04/19/2025] [Indexed: 05/08/2025]
Abstract
Migration, division, and reconfiguration - functions essential to living systems - are driven by active processes. Developing synthetic mimics is an outstanding challenge. Lipid bilayers that bound natural systems are locally deformed by active species, e.g., microtubules, but the resulting non-equilibrium shapes relax when active species motion ceases, and the shape changes lack immediate control. A fully synthetic system is described, driven by active particles encapsulated by a reconfigurable nanoparticle-surfactant membrane that undergoes shape fluctuations reminiscent of living cells. These shape changes are preserved after particle activity stops. Surfactant concentration tunes the interfacial tension over three orders of magnitude, making on-demand shape evolution possible. Directional migration, division, and reconfiguration across multiple scales are possible, leading to a new class of biomimetic, reconfigurable, and responsive materials, paving the way for autonomous synthetic machines.
Collapse
Affiliation(s)
- Paul Y Kim
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Shipei Zhu
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Joe Forth
- Department of Physics, University of Liverpool, Liverpool, L69 7ZE, UK
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
| | - Ganhua Xie
- State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - David A King
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
| | - Brett A Helms
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Paul D Ashby
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Ahmad K Omar
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA
| | - Thomas P Russell
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Polymer Science and Engineering Department, University of Massachusetts, Amherst, MA, 01003, USA
- Advanced Institute for Materials Research (AIMR), Tohoku University, Sendai, 980-8577, Japan
| |
Collapse
|
2
|
Chen C, Love CM, Carnahan CF, Ganar KA, Parikh AN, Deshpande S. Regulating Biocondensates within Synthetic Cells via Segregative Phase Separation. ACS NANO 2025. [PMID: 40293809 DOI: 10.1021/acsnano.4c18971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Living cells orchestrate a myriad of biological reactions within a highly complex and crowded environment. A major factor responsible for such seamless assembly is the preferential interactions between the constituent macromolecules, that can drive demixing to produce coexisting phases and thus provide dynamic intracellular compartmentalization. However, the way multiple-phase separation phenomena, occurring simultaneously within the cytoplasmic space, influence each other is still largely unknown. Here, we show that the interplay between segregative and associative phase separation within cell-mimicking confinements can lead to rich dynamics between multiple phases and the lipid boundary. Using on-chip microfluidic systems, we encapsulate the associative and segregative components and externally trigger their phase separation within cell-sized vesicles. We find that segregative phases create microdomains and tend to dictate the fate of associative components by acting as molecular recruiters, membrane-targeting agents, and initiators of condensation. The obtained multiphase architecture provides an isolated microenvironment for condensates, restricting their molecular communication as well as diffusive motion, and can further lead to global shape transformation of the confinement itself in the form of wetted, hierarchical domains at the lipid membrane. In conclusion, we propose segregative phase separation as a universal condensation regulation strategy by managing their molecular distribution, process initiation, and spatial localization, including membrane interaction. The presented interplay between the two phase separation systems suggests a distinct design principle in constructing complex synthetic cells and controlling the behavior of artificial membraneless organelles within.
Collapse
Affiliation(s)
- Chang Chen
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University & Research, 6708 WE Wageningen, The Netherlands
| | - Caroline M Love
- Department of Materials Science and Engineering, University of California, Davis, Davis, California 95616, United States
| | - Christopher F Carnahan
- Biophysics Graduate Group, University of California, Davis, Davis, California 95616, United States
| | - Ketan A Ganar
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University & Research, 6708 WE Wageningen, The Netherlands
| | - Atul N Parikh
- Department of Materials Science and Engineering, University of California, Davis, Davis, California 95616, United States
- Biophysics Graduate Group, University of California, Davis, Davis, California 95616, United States
- Department of Biomedical Engineering, University of California, Davis, Davis, California 95616, United States
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 636921 Singapore
- Institute for Digital Molecular Analytics and Science, Nanyang Technological University, 637551 Singapore
| | - Siddharth Deshpande
- Laboratory of Physical Chemistry and Soft Matter, Wageningen University & Research, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
3
|
Wan H, Jiao Z, Li J, Dai X, Li J, Yan LT. Dynamic Interplay between Deformability and Activity in Cell Entry of Soft Active Nanoparticles. NANO LETTERS 2025; 25:6797-6802. [PMID: 40227871 DOI: 10.1021/acs.nanolett.5c01445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Deformability has been recognized as a prime important characteristic influencing cellular uptake. But little is known about whether it controls cell-nanoparticle interfaces driven out of equilibrium. Here, we report on soft elastic active nanoparticles whose deformability due to the rigidity regulates the nonequilibrium interaction and dynamics in their endocytosis process. Simulations demonstrate a definitely nonmonotonic feature for the dependence of uptake efficiency on nanoparticle rigidity, in striking contrast to their passive counterpart. There exists a minimum activity for certain cellular uptake, which turns to a larger rigidity for a more vertical orientation of the nanoparticle. We analyze these results by developing analytical theories that reveal the physical origin of various energetic contributions and dissipations governed by the dynamic interplay between nanoparticle deformability and activity. Altogether, the present findings provide new insights into the nonequilibrium physics at cellular interfaces and might be of immediate interest to designing soft systems for the desired biomedical applications.
Collapse
Affiliation(s)
- Haixiao Wan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Zheng Jiao
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Jiaqi Li
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Xiaobin Dai
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Jianfeng Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Li-Tang Yan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
4
|
Liese S, Zhao X, Weber CA, Jülicher F. Chemically active wetting. Proc Natl Acad Sci U S A 2025; 122:e2403083122. [PMID: 40203039 PMCID: PMC12012514 DOI: 10.1073/pnas.2403083122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 02/24/2025] [Indexed: 04/11/2025] Open
Abstract
Wetting of liquid droplets on passive surfaces is ubiquitous in our daily lives, and the governing physical laws are well understood. When surfaces become active, however, the governing laws of wetting remain elusive. Here, we propose chemically active wetting as a class of active systems where the surface is active due to a binding process that is maintained away from equilibrium. We derive the corresponding nonequilibrium thermodynamic theory and show that active binding fundamentally changes the wetting behavior, leading to steady, nonequilibrium states with droplet shapes reminiscent of a pancake or a mushroom. The origin of such anomalous shapes can be explained by mapping to electrostatics, where pairs of binding sinks and sources correspond to electrostatic dipoles along the triple line. This is an example of a more general analogy, where localized chemical activity gives rise to a multipole field of the chemical potential. The underlying physics is relevant for cells, where droplet-forming proteins can bind to membranes accompanied by the turnover of biological fuels.
Collapse
Affiliation(s)
- Susanne Liese
- Faculty of Mathematics, Natural Sciences, and Materials Engineering, and Institute of Physics, University of Augsburg, Augsburg86159, Germany
| | - Xueping Zhao
- Department of Mathematical Sciences, University of Nottingham, Ningbo315100, China
| | - Christoph A. Weber
- Faculty of Mathematics, Natural Sciences, and Materials Engineering, and Institute of Physics, University of Augsburg, Augsburg86159, Germany
| | - Frank Jülicher
- Max Planck Institute for the Physics of Complex Systems, Dresden01187, Germany
- Center for Systems Biology Dresden, Dresden01307, Germany
- Cluster of Excellence Physics of Life, Technical University Dresden, Dresden01062, Germany
| |
Collapse
|
5
|
Eberhard E, Burger L, Pastrana CL, Seyed-Allaei H, Giunta G, Gerland U. Force Generation by Enhanced Diffusion in Enzyme-Loaded Vesicles. NANO LETTERS 2025; 25:5754-5761. [PMID: 40138661 PMCID: PMC11987064 DOI: 10.1021/acs.nanolett.5c00306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/14/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
The diffusion coefficient of some metabolic enzymes increases with the concentration of their cognate substrate, a phenomenon known as enhanced diffusion. In the presence of substrate gradients, enhanced diffusion induces enzymatic drift, resulting in a nonhomogeneous enzyme distribution. Here, we study the effects of enhanced diffusion on enzyme-loaded vesicles placed in external substrate gradients using a combination of computer simulations and analytical modeling. We observe that the spatially inhomogeneous enzyme profiles generated by enhanced diffusion result in a pressure gradient across the vesicle, which leads to macroscopically observable effects, namely deformation and self-propulsion of the vesicle. Our analytical model allows us to characterize the dependence of the velocity of propulsion on experimentally tunable parameters. The effects predicted by our work provide an avenue for further validation of enhanced diffusion, and might be leveraged for the design of novel synthetic cargo transporters, such as targeted drug delivery systems.
Collapse
Affiliation(s)
| | | | | | - Hamid Seyed-Allaei
- Physics of Complex Biosystems, Department
of Bioscience, School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Giovanni Giunta
- Physics of Complex Biosystems, Department
of Bioscience, School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Ulrich Gerland
- Physics of Complex Biosystems, Department
of Bioscience, School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| |
Collapse
|
6
|
Shao J, Luo Y, Wu H, Wang J, Zhou X, Er S, Cao S, Sun H, Pérez Garza HH, Zheng H, Friedrich H, Abdelmohsen LKEA, van Hest JCM. Designing polymersomes with surface-integrated nanoparticles through hierarchical phase separation. Nat Commun 2025; 16:2445. [PMID: 40069209 PMCID: PMC11897236 DOI: 10.1038/s41467-025-57711-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 02/28/2025] [Indexed: 03/15/2025] Open
Abstract
Polymersomes with surface-integrated nanoparticles, in which a smaller sphere is attached to a larger capsule, are typically formed through complex processes like membrane deformation, polymerization, or membrane functionalization. This complexity restricts facile application of this unusual topology, for example in drug delivery or nanomotor science. Our study introduces a robust method for crafting polymersomes with surface-integrated nanoparticles using a hierarchical phase separation approach. By co-assembling block copolymers with aromatic aggregation-induced emission (AIE) moieties as side chains and photothermal-responsive guest molecules (PTM), spontaneous sequential phase separation processes occur that lead to their controlled formation. Polymer-rich liquid droplets form first, followed by internal phase separation of the guest molecules, which determines the formation of asymmetric morphology. This mechanism is elucidated in detail using liquid-phase transmission and cryogenic transmission electron microscopy (LP-TEM and cryo-TEM) and corroborated by theoretical simulations of the interaction forces between the block copolymers and guest molecules. Finally, the application potential of polymersomes with surface-integrated nanoparticles as nanomotors is demonstrated.
Collapse
Affiliation(s)
- Jingxin Shao
- Bio-Organic Chemistry, Department of Chemical Engineering and Chemistry, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Yingtong Luo
- Bio-Organic Chemistry, Department of Chemical Engineering and Chemistry, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Hanglong Wu
- Bio-Organic Chemistry, Department of Chemical Engineering and Chemistry, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
- Department of Chemical Engineering and Chemistry, Center for Multiscale Electron Microscopy (CMEM), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Jianhong Wang
- Bio-Organic Chemistry, Department of Chemical Engineering and Chemistry, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Xuan Zhou
- DIFFER-Dutch Institute for Fundamental Energy Research, Eindhoven, The Netherlands
| | - Süleyman Er
- DIFFER-Dutch Institute for Fundamental Energy Research, Eindhoven, The Netherlands
| | - Shoupeng Cao
- College of Polymer Science and Engineering, Sichuan University, Chengdu, PR China
| | - Hongyu Sun
- DENSsolutions B.V., Delft, The Netherlands
| | | | | | - Heiner Friedrich
- Department of Chemical Engineering and Chemistry, Center for Multiscale Electron Microscopy (CMEM), Eindhoven University of Technology, Eindhoven, The Netherlands
- Laboratory of Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Loai K E A Abdelmohsen
- Bio-Organic Chemistry, Department of Chemical Engineering and Chemistry, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Jan C M van Hest
- Bio-Organic Chemistry, Department of Chemical Engineering and Chemistry, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
7
|
Li B, Fu CL, Sun ZY. Shaping membrane vesicles by tuning the activity of confined active polymer chains. J Chem Phys 2025; 162:094901. [PMID: 40029089 DOI: 10.1063/5.0244184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/13/2025] [Indexed: 03/05/2025] Open
Abstract
Semi-flexible polymers, such as actin filaments, can deform the shape of membrane when confined in a membrane vesicle, playing an important role in biological processes. Here, we use dynamic Monte Carlo simulations to study an active polymer chain confined in a membrane vesicle. For flexible polymer chains, the membrane shape is governed by the competition between membrane bending rigidity and polymer activity. Stiff membrane is unaffected by small active forces, but moderate forces cause the polymer to alternate between stretched and disordered configurations, increasing the asphericity of both the polymer and the vesicle. For semi-flexible polymer chains, their stiffness can significantly impact both the vesicle and polymer shapes. We identify distinct classes of configurations that emerge as a function of polymer stiffness, membrane bending rigidity, and polymer activity. A weak polymer activity can cause the polymer to align along its contour, effectively increasing its stiffness. However, a moderate polymer activity softens the polymer chain. For membranes with low bending rigidities κ, large-scale deformations, such as wormlike or tadpole-shaped vesicles, appear at a weak polymer activity and high polymer stiffness. In the wormlike configuration, the polymer chain adopts a hairpin configuration to minimize the polymer bending energy. As the polymer stiffness increases, a tadpole-like vesicle forms, with part of the polymer deforming the membrane into a protrusion while the rest remaining confined in a bud-like structure. For stiffer membranes, we observe oblate vesicles containing toroidal polymer chains, resulting from the high cost of membrane bending energy. A moderate polymer activity causes the softening of the polymer chain, leading to a nearly spherical vesicle with slight shape fluctuation. We further characterize the order parameter of toroidal polymer chains in oblate vesicles and reveal that a slight increase in polymer activity leads to a more ordered helical structure of polymer chains.
Collapse
Affiliation(s)
- Bing Li
- State Key Laboratory of Polymer Physics and Chemistry and Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022 Changchun, China
| | - Cui-Liu Fu
- State Key Laboratory of Polymer Physics and Chemistry and Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022 Changchun, China
| | - Zhao-Yan Sun
- State Key Laboratory of Polymer Physics and Chemistry and Key Laboratory of Polymer Science and Technology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 130022 Changchun, China
- University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
8
|
Díaz J, Pagonabarraga I. Activity-Driven Emulsification of Phase-Separating Binary Mixtures. PHYSICAL REVIEW LETTERS 2025; 134:098301. [PMID: 40131075 DOI: 10.1103/physrevlett.134.098301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/15/2024] [Accepted: 02/13/2025] [Indexed: 03/26/2025]
Abstract
Active particles self-assemble into emergent structures that respond sensitively to external constraints. Consequently, their behavior under confinement is complex, especially in soft confined media, leading to diverse emergent morphologies. Through computer simulations, we investigate the dynamical interplay between active Brownian particles and a binary mixture. Our results show that active particles stabilize nonequilibrium morphologies, arresting coarsening by exerting active pressure that competes with surface tension. For moderate activities, particles stabilize an active emulsion with a well-defined droplet size. At higher activities, when particles can cross the liquid domains, a dynamic emulsion with large droplet dispersion is sustained. Furthermore, active particles drive phase-separated mixtures away from equilibrium configurations, demonstrating a rich coassembly behavior due to competing energy scales in the system.
Collapse
Affiliation(s)
- Javier Díaz
- Universitat de Barcelona, Universitat de Barcelona, Departament de Física de la Matèria Condensada, Martí i Franqués 1, 08028 Barcelona, Spain and Universitat de Barcelona Institute of Complex Systems (UBICS), 08028 Barcelona, Spain
| | - Ignacio Pagonabarraga
- Universitat de Barcelona, Universitat de Barcelona, Departament de Física de la Matèria Condensada, Martí i Franqués 1, 08028 Barcelona, Spain and Universitat de Barcelona Institute of Complex Systems (UBICS), 08028 Barcelona, Spain
| |
Collapse
|
9
|
Gu AA, Uçar MC, Tran P, Prindle A, Kamat NP, Steinkühler J. Remodeling of lipid-foam prototissues by network-wide tension fluctuations induced by active particles. Nat Commun 2025; 16:2026. [PMID: 40016255 PMCID: PMC11868539 DOI: 10.1038/s41467-025-57178-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 02/11/2025] [Indexed: 03/01/2025] Open
Abstract
Recent advances in the field of bottom-up synthetic biology have led to the development of synthetic cells that mimic some features of real cells, such as division, protein synthesis, or DNA replication. Larger assemblies of synthetic cells may be used to form prototissues. However, existing prototissues are limited by their relatively small lateral dimensions or their lack of remodeling ability. Here, we introduce a lipid-based tissue mimetic that can be easily prepared and functionalized, consisting of a millimeter-sized "lipid-foam" with individual micrometer-sized compartments bound by lipid bilayers. We characterize the structural and mechanical properties of the lipid-foam tissue mimetic, and we demonstrate self-healing capabilities enabled by the fluidity of the lipid bilayers. Upon inclusion of bacteria in the tissue compartments, we observe that the tissue mimetic exhibits network-wide tension fluctuations driven by membrane tension generation by the swimming bacteria. Active tension fluctuations facilitate the fluidization and reorganization of the prototissue, providing a versatile platform for understanding and mimicking biological tissues.
Collapse
Affiliation(s)
- Andre A Gu
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Department of Chemical and Biological Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA
| | - Mehmet Can Uçar
- Institute of Science and Technology Austria, Klosterneuburg, Austria
- School of Mathematical and Physical Sciences, University of Sheffield, Sheffield, UK
| | - Peter Tran
- Department of Chemical and Biological Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA
| | - Arthur Prindle
- Department of Chemical and Biological Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
- Department of Microbiology-Immunology, Feinberg School of Medicine, IL, Chicago, USA
- Chan Zuckerberg Biohub Chicago, IL, Chicago, USA
| | - Neha P Kamat
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - Jan Steinkühler
- Bio-Inspired Computation, Institute of Electrical and Information Engineering, Kiel University, Kiel, Germany.
- Kiel Nano, Surface and Interface Science KiNSIS, Kiel University, Kiel, Germany.
| |
Collapse
|
10
|
Gompper G, Stone HA, Kurzthaler C, Saintillan D, Peruani F, Fedosov DA, Auth T, Cottin-Bizonne C, Ybert C, Clément E, Darnige T, Lindner A, Goldstein RE, Liebchen B, Binysh J, Souslov A, Isa L, di Leonardo R, Frangipane G, Gu H, Nelson BJ, Brauns F, Marchetti MC, Cichos F, Heuthe VL, Bechinger C, Korman A, Feinerman O, Cavagna A, Giardina I, Jeckel H, Drescher K. The 2025 motile active matter roadmap. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2025; 37:143501. [PMID: 39837091 PMCID: PMC11836640 DOI: 10.1088/1361-648x/adac98] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/01/2024] [Accepted: 01/21/2025] [Indexed: 01/23/2025]
Abstract
Activity and autonomous motion are fundamental aspects of many living and engineering systems. Here, the scale of biological agents covers a wide range, from nanomotors, cytoskeleton, and cells, to insects, fish, birds, and people. Inspired by biological active systems, various types of autonomous synthetic nano- and micromachines have been designed, which provide the basis for multifunctional, highly responsive, intelligent active materials. A major challenge for understanding and designing active matter is their inherent non-equilibrium nature due to persistent energy consumption, which invalidates equilibrium concepts such as free energy, detailed balance, and time-reversal symmetry. Furthermore, interactions in ensembles of active agents are often non-additive and non-reciprocal. An important aspect of biological agents is their ability to sense the environment, process this information, and adjust their motion accordingly. It is an important goal for the engineering of micro-robotic systems to achieve similar functionality. Many fundamental properties of motile active matter are by now reasonably well understood and under control. Thus, the ground is now prepared for the study of physical aspects and mechanisms of motion in complex environments, the behavior of systems with new physical features like chirality, the development of novel micromachines and microbots, the emergent collective behavior and swarming of intelligent self-propelled particles, and particular features of microbial systems. The vast complexity of phenomena and mechanisms involved in the self-organization and dynamics of motile active matter poses major challenges, which can only be addressed by a truly interdisciplinary effort involving scientists from biology, chemistry, ecology, engineering, mathematics, and physics. The 2025 motile active matter roadmap of Journal of Physics: Condensed Matter reviews the current state of the art of the field and provides guidance for further progress in this fascinating research area.
Collapse
Affiliation(s)
- Gerhard Gompper
- Theoretical Physics of Living Matter, Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Howard A Stone
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, United States of America
| | - Christina Kurzthaler
- Max Planck Institute for the Physics of Complex Systems, Center for Systems Biology Dresden, Cluster of Excellence, Physics of Life, TU Dresden, Dresden, Germany
| | - David Saintillan
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093, United States of America
| | | | - Dmitry A Fedosov
- Theoretical Physics of Living Matter, Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Thorsten Auth
- Theoretical Physics of Living Matter, Institute for Advanced Simulation, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Cecile Cottin-Bizonne
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, Villeurbanne, France
| | - Christophe Ybert
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, Villeurbanne, France
| | - Eric Clément
- Laboratoire PMMH-ESPCI, UMR 7636 CNRS-PSL-Research University, Sorbonne Université, Université Paris Cité, 75005 Paris, France
- Institut Universitaire de France, Paris, France
| | - Thierry Darnige
- Laboratoire PMMH-ESPCI, UMR 7636 CNRS-PSL-Research University, Sorbonne Université, Université Paris Cité, 75005 Paris, France
| | - Anke Lindner
- Laboratoire PMMH-ESPCI, UMR 7636 CNRS-PSL-Research University, Sorbonne Université, Université Paris Cité, 75005 Paris, France
- Institut Universitaire de France, Paris, France
| | - Raymond E Goldstein
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
| | - Benno Liebchen
- Technische Universität Darmstadt, 64289 Darmstadt, Germany
| | - Jack Binysh
- Institute of Physics, Universiteit van Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Anton Souslov
- T.C.M. Group, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Lucio Isa
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| | | | | | - Hongri Gu
- Department of Physics, University of Konstanz, Konstanz, Germany
| | - Bradley J Nelson
- Institute of Robotics and Intelligent Systems, ETH Zürich, Zurich, Switzerland
| | - Fridtjof Brauns
- Kavli Institute for Theoretical Physics, University of California Santa Barbara, Santa Barbara, CA 93106, United States of America
| | - M Cristina Marchetti
- Department of Physics, University of California Santa Barbara, Santa Barbara, CA 93106, United States of America
| | - Frank Cichos
- Molecular Nanophotonics, Leipzig University, 04013 Leipzig, Germany
| | | | | | - Amos Korman
- Department of Computer Science, University of Haifa, Haifa, Israel
| | - Ofer Feinerman
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel
| | - Andrea Cavagna
- Istituto Sistemi Complessi (ISC-CNR), Rome, Italy
- Dipartimento di Fisica, Sapienza Università di Roma & INFN, Unità di Roma 1, Rome, Italy
| | - Irene Giardina
- Istituto Sistemi Complessi (ISC-CNR), Rome, Italy
- Dipartimento di Fisica, Sapienza Università di Roma & INFN, Unità di Roma 1, Rome, Italy
| | - Hannah Jeckel
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, United States of America
| | - Knut Drescher
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
11
|
Shi XH, Zhao W, Yang Z, Wang L, Ren W. Simultaneous Guidance of Intraoperative Tumor Resection by Near-Infrared-II Imaging Combined with Complementary Surface-Enhanced Raman Imaging via Janus Au-PbS Nanoparticles. Anal Chem 2025; 97:3161-3170. [PMID: 39885699 DOI: 10.1021/acs.analchem.4c06559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
The development of sophisticated nanomaterials with synergistically enhanced functionalities and applications has been greatly promoted via the construction of Janus nanoparticles with controlled compositions. In this work, we described and demonstrated the formation of Janus Au-PbS nanoparticles (NPs) by Au NPs-mediated spontaneous epitaxial nucleation and growth. The mechanism of formation of Janus Au-PbS NPs was investigated in detail. Then, we also found that there was a strong electronic interaction between the Au NPs and PbS quantum dots (QDs) in Janus Au-PbS NPs, where electrons were transferred from the Au NPs domain to the PbS QDs domain. Moreover, the Janus Au-PbS NPs integrated the high-brightness tunable second near-infrared (NIR-II) photoluminescence emission and surface-enhanced Raman scattering (SERS), which achieved good intraoperative tumor resection. This complementary dual-functional imaging had the potential to enable more accurate tumor imaging and resection.
Collapse
Affiliation(s)
- Xue-Hui Shi
- Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang 453003, P. R. China
| | - Wei Zhao
- College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zhimou Yang
- Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang 453003, P. R. China
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University,Tianjin 300071, P. R. China
| | - Lei Wang
- Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang 453003, P. R. China
| | - Wenjie Ren
- Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang 453003, P. R. China
| |
Collapse
|
12
|
Wang Y, Chen H, Xie L, Liu J, Zhang L, Yu J. Swarm Autonomy: From Agent Functionalization to Machine Intelligence. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2312956. [PMID: 38653192 PMCID: PMC11733729 DOI: 10.1002/adma.202312956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/17/2024] [Indexed: 04/25/2024]
Abstract
Swarm behaviors are common in nature, where individual organisms collaborate via perception, communication, and adaptation. Emulating these dynamics, large groups of active agents can self-organize through localized interactions, giving rise to complex swarm behaviors, which exhibit potential for applications across various domains. This review presents a comprehensive summary and perspective of synthetic swarms, to bridge the gap between the microscale individual agents and potential applications of synthetic swarms. It is begun by examining active agents, the fundamental units of synthetic swarms, to understand the origins of their motility and functionality in the presence of external stimuli. Then inter-agent communications and agent-environment communications that contribute to the swarm generation are summarized. Furthermore, the swarm behaviors reported to date and the emergence of machine intelligence within these behaviors are reviewed. Eventually, the applications enabled by distinct synthetic swarms are summarized. By discussing the emergent machine intelligence in swarm behaviors, insights are offered into the design and deployment of autonomous synthetic swarms for real-world applications.
Collapse
Affiliation(s)
- Yibin Wang
- School of Science and EngineeringThe Chinese University of Hong KongShenzhen518172China
- Shenzhen Institute of Artificial Intelligence and Robotics for SocietyShenzhen518172China
| | - Hui Chen
- School of Science and EngineeringThe Chinese University of Hong KongShenzhen518172China
- Shenzhen Institute of Artificial Intelligence and Robotics for SocietyShenzhen518172China
| | - Leiming Xie
- School of Science and EngineeringThe Chinese University of Hong KongShenzhen518172China
- Shenzhen Institute of Artificial Intelligence and Robotics for SocietyShenzhen518172China
| | - Jinbo Liu
- School of Science and EngineeringThe Chinese University of Hong KongShenzhen518172China
- Shenzhen Institute of Artificial Intelligence and Robotics for SocietyShenzhen518172China
| | - Li Zhang
- Department of Mechanical and Automation EngineeringThe Chinese University of Hong KongHong Kong999077China
| | - Jiangfan Yu
- School of Science and EngineeringThe Chinese University of Hong KongShenzhen518172China
- Shenzhen Institute of Artificial Intelligence and Robotics for SocietyShenzhen518172China
| |
Collapse
|
13
|
Othman S, Midya J, Auth T, Gompper G. Phase behavior and dynamics of active Brownian particles in an alignment field. Phys Rev E 2025; 111:015425. [PMID: 39972835 DOI: 10.1103/physreve.111.015425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 12/20/2024] [Indexed: 02/21/2025]
Abstract
Self-propelled particles that are subject to noise are a well-established generic model system for active matter. A homogeneous alignment field can be used to orient the direction of the self-propulsion velocity and to model systems like phoretic Janus particles with a magnetic dipole moment or magnetotactic bacteria in an external magnetic field. Computer simulations are used to predict the phase behavior and dynamics of self-propelled Brownian particles in a homogeneous alignment field in two dimensions. Phase boundaries of the gas-liquid coexistence region are calculated for various Péclet numbers, particle densities, and alignment field strengths. Critical points and exponents are calculated and, in agreement with previous simulations, do not seem to belong to the universality class of the 2D Ising model. Finally, the dynamics of spinodal decomposition for quenching the system from the one-phase to the two-phase coexistence region by increasing the Péclet number is characterized. Our results may help to identify parameters for optimal transport of active matter in complex environments.
Collapse
Affiliation(s)
- Sameh Othman
- Forschungszentrum Jülich, Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, 52425 Jülich, Germany
| | - Jiarul Midya
- Forschungszentrum Jülich, Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, 52425 Jülich, Germany
- Indian Institute of Technology, School of Basic Sciences, Bhubaneswar 752050, India
| | - Thorsten Auth
- Forschungszentrum Jülich, Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, 52425 Jülich, Germany
| | - Gerhard Gompper
- Forschungszentrum Jülich, Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, 52425 Jülich, Germany
| |
Collapse
|
14
|
Wang H, Jia Z, Fang Y. Chemo-mechanical model of cell polarization initiated by structural polarity. SOFT MATTER 2024; 20:8407-8419. [PMID: 39392308 DOI: 10.1039/d4sm00800f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Cell polarization is crucial in most physiological functions. Living cells at the extracellular matrix (ECM) actively coordinate a polarized morphology to target the preferred signals. In particular, the initial heterogeneity of subcellular components, termed as structural polarity, has been discovered to mediate the early attachment and transmigration of cells in tumour metastasis. However, how heterogeneous cells initiate the early polarization remains incompletely discovered. Here, we establish a multiscale model of a cell to explore the chemo-mechanical mechanisms of cell polarization initiated by structural polarity. The two-dimensional vertex model of the cell is built with the main mechanical components of eukaryotic cells. The initial structural polarity of the modeled cell is introduced by seeding heterogeneous actin filaments at the cell cortex and quantified by the ratio of the filamentous forces at the vertices. Then, the structural polarity is integrated in the reaction-diffusion system of Rho GTPase (Cdc42) at the cell cortex to obtain the traction forces at the leading vertices. Finally, the modeled cell is actuated to spread under the traction forces and discovered to develop into a characteristic polarized morphology. The results indicate that the cell polarization is initiated and dynamically developed by structural polarity through the reaction-diffusion system of Cdc42. In addition, the bistability of Cdc42 activation at the cell cortex is defined and discovered to dominate the polarization status of the cell. Furthermore, biphasic (i.e., positive and negative) durotaxis of the cell is successfully modeled at an ECM with a stiffness gradient, and concluded to be codetermined by the chemo-mechanical coupling of the initial structural polarity and ECM stiffness gradient. The proposed multiscale model provides a quantitative way to probe cell polarization coupled with mechanical stimuli, biochemical reaction and cytoskeletal reorganization, and holds the potential to guide studies of cell polarization under multiple stimuli.
Collapse
Affiliation(s)
- Hexiang Wang
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, China.
| | - Zhimeng Jia
- College of Automotive Engineering, Jilin University, Changchun, China
| | - Yuqiang Fang
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, China.
| |
Collapse
|
15
|
Wan H, Xu D, Wang W, Cheng Y, Dai X, Jin X, Gao L, Zhang X, Miao B, He Q, Yan LT. Nonequilibrium Dynamic Phase Diagram for Transmembrane Transport of Active Particles. ACS NANO 2024; 18:24024-24034. [PMID: 39167054 DOI: 10.1021/acsnano.4c03565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
In recent years, there has been considerable push toward the biomedical applications with active particles, which have great potential to revolutionize disease diagnostics and therapy. The direct penetration of active particles through the cell membrane leads to more efficient intracellular delivery than previously considered endocytosis processes but may cause membrane disruption. Understanding fundamental behaviors of cell membranes in response to such extreme impacts by active particles is crucial to develop active particle-based biomedical technologies and manage health and safety issues in this emerging field. Unfortunately, the physical principles underlying the nonequilibrium behaviors from endocytosis to direct penetration remain elusive, and experiments are challenging. Here, we present a computed dynamic phase diagram for transmembrane transport of active particles and identify four characteristic dynamic phases in endocytosis and direct penetration according to the particle activity and membrane tension. The boundaries dividing these phases are analytically obtained with theoretical models, elucidating the nonequilibrium physics and criteria for the transition between different phases. Furthermore, we numerically and experimentally show three distinct dynamic regimes related to the interplay between necking and wrapping during the endocytosis process of active particles, which strikingly contrast the regimes for passive particles. Overall, these findings could be useful for sharpening the understanding of basic principles underlying biological issues related to the safe and efficient biomedical applications of such emerging matters.
Collapse
Affiliation(s)
- Haixiao Wan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing 100084, China
| | - Duo Xu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing 100084, China
| | - Wei Wang
- College of Science, Sichuan Agricultural University, Xin Kang Road, Ya'an 625014, China
| | - Yanfang Cheng
- School of Medicine and Health, Harbin Institute of Technology, Yi Kuang Street 2, Harbin 150080, China
| | - Xiaobin Dai
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing 100084, China
| | - Xueqing Jin
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing 100084, China
| | - Lijuan Gao
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing 100084, China
| | - Xuanyu Zhang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing 100084, China
| | - Bing Miao
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Lanzhou Center for Theoretical Physics, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Qiang He
- School of Medicine and Health, Harbin Institute of Technology, Yi Kuang Street 2, Harbin 150080, China
- Wenzhou Institute, University of Chinese Academy of Sciences, 1 Jinlian Street, Wenzhou 325000, China
| | - Li-Tang Yan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing 100084, China
| |
Collapse
|
16
|
Sirch MM, Kamenac A, Neidinger SV, Wixforth A, Westerhausen C. Phase-State-Dependent Silica Nanoparticle Uptake of Giant Unilamellar Vesicles. J Phys Chem B 2024; 128:7172-7179. [PMID: 38995207 DOI: 10.1021/acs.jpcb.4c02383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
We quantify endocytosis-like nanoparticle (NP) uptake of model membranes as a function of temperature and, therefore, phase state. As model membranes, we use giant unilamellar vesicles (GUV) consisting of 1,2-dipentadecanoyl-sn-glycero-3-phosphocholine (15:0 PC). Time-series micrographs of the vesicle shrinkage show uptake rates that are a highly nonlinear function of temperature. A global maximum appears close to the main structural phase transition at T = Tm + 3 K = 37 °C and a minor peak at the pretransition T = Tp = 22 °C. The quality of linear fits to the shrinkage, and thus uptake kinetics, reveals a deviation from the linear trend at the vesicle shrinkage peaks. Taking values for the bending modulus as a function of temperature from literature and Helfrich's model allows us to draw qualitative conclusions on the membrane tension and the adhesion of the NP to the membrane as a function of temperature. These findings provide valuable insights into the dynamic interplay between temperature, membrane phase transitions, and NP uptake, shedding light on the complex behavior of biological membranes.
Collapse
Affiliation(s)
- Manuel M Sirch
- Institute of Theoretical Medicine, Physiology, University of Augsburg, Augsburg 86159, Germany
- Institute of Physics, University of Augsburg, Augsburg 86159, Germany
| | - Andrej Kamenac
- Institute of Theoretical Medicine, Physiology, University of Augsburg, Augsburg 86159, Germany
- Institute of Physics, University of Augsburg, Augsburg 86159, Germany
| | - Simon V Neidinger
- Institute of Theoretical Medicine, Physiology, University of Augsburg, Augsburg 86159, Germany
- Institute of Physics, University of Augsburg, Augsburg 86159, Germany
| | - Achim Wixforth
- Institute of Physics, University of Augsburg, Augsburg 86159, Germany
- Center for NanoScience (CeNS), Ludwig-Maximilians-Universität Munich, Munich 80799, Germany
| | - Christoph Westerhausen
- Institute of Theoretical Medicine, Physiology, University of Augsburg, Augsburg 86159, Germany
- Institute of Physics, University of Augsburg, Augsburg 86159, Germany
- Center for NanoScience (CeNS), Ludwig-Maximilians-Universität Munich, Munich 80799, Germany
| |
Collapse
|
17
|
Arora P, Sadhukhan S, Nandi SK, Bi D, Sood AK, Ganapathy R. A shape-driven reentrant jamming transition in confluent monolayers of synthetic cell-mimics. Nat Commun 2024; 15:5645. [PMID: 38969629 PMCID: PMC11226658 DOI: 10.1038/s41467-024-49044-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/21/2024] [Indexed: 07/07/2024] Open
Abstract
Many critical biological processes, like wound healing, require densely packed cell monolayers/tissues to transition from a jammed solid-like to a fluid-like state. Although numerical studies anticipate changes in the cell shape alone can lead to unjamming, experimental support for this prediction is not definitive because, in living systems, fluidization due to density changes cannot be ruled out. Additionally, a cell's ability to modulate its motility only compounds difficulties since even in assemblies of rigid active particles, changing the nature of self-propulsion has non-trivial effects on the dynamics. Here, we design and assemble a monolayer of synthetic cell-mimics and examine their collective behaviour. By systematically increasing the persistence time of self-propulsion, we discovered a cell shape-driven, density-independent, re-entrant jamming transition. Notably, we observed cell shape and shape variability were mutually constrained in the confluent limit and followed the same universal scaling as that observed in confluent epithelia. Dynamical heterogeneities, however, did not conform to this scaling, with the fast cells showing suppressed shape variability, which our simulations revealed is due to a transient confinement effect of these cells by their slower neighbors. Our experiments unequivocally establish a morphodynamic link, demonstrating that geometric constraints alone can dictate epithelial jamming/unjamming.
Collapse
Affiliation(s)
- Pragya Arora
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India.
| | - Souvik Sadhukhan
- Tata Institute of Fundamental Research, Hyderabad, 500046, India
| | | | - Dapeng Bi
- Department of Physics, Northeastern University, Boston, MA, 02115, USA
| | - A K Sood
- Department of Physics, Indian Institute of Science, Bangalore, 560012, India
- International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India
| | - Rajesh Ganapathy
- International Centre for Materials Science, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India.
- School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, 560064, India.
| |
Collapse
|
18
|
Fessler F, Wittmann M, Simmchen J, Stocco A. Autonomous engulfment of active colloids by giant lipid vesicles. SOFT MATTER 2024. [PMID: 38938147 DOI: 10.1039/d4sm00337c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Our ability to design artificial micro/nanomachines able to perform sophisticated tasks crucially depends on our understanding of their interaction with biosystems and their compatibility with the biological environment. Here, we design Janus colloids fuelled only by glucose and light, which can autonomously interact with cell-like compartments and trigger endocytosis. We evidence the crucial role played by the far-field hydrodynamic interaction arising from the puller/pusher swimming mode and adhesion. We show that a large contact time between the active particle and the lipid membrane is required to observe the engulfment of a particle inside a floppy giant lipid vesicle. Active Janus colloids showing relatively small velocities and a puller type swimming mode are able to target giant vesicles, deform their membranes and subsequently get stably engulfed. An instability arising from the unbound membrane segment is responsible for the transition between partial and complete stable engulfment. These experiments shed light on the physical criteria required for autonomous active particle engulfment in giant vesicles, which can serve as general principles in disciplines ranging from drug delivery and microbial infection to nanomedicine.
Collapse
Affiliation(s)
- Florent Fessler
- Institut Charles Sadron, CNRS UPR-22, 23 rue du Loess, Strasbourg, France.
| | - Martin Wittmann
- Physical Chemistry, TU Dresden, Zellescher Weg 19, 01069 Dresden, Germany
| | - Juliane Simmchen
- Pure and Applied Chemistry, University of Strathclyde, Cathedral Street, Glasgow, UK
| | - Antonio Stocco
- Institut Charles Sadron, CNRS UPR-22, 23 rue du Loess, Strasbourg, France.
| |
Collapse
|
19
|
Allolio C, Fábián B, Dostalík M. OrganL: Dynamic triangulation of biomembranes using curved elements. Biophys J 2024; 123:1553-1562. [PMID: 38704638 PMCID: PMC11213972 DOI: 10.1016/j.bpj.2024.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/25/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024] Open
Abstract
We describe a method for simulating biomembranes of arbitrary shape. In contrast to other dynamically triangulated surface (DTS) algorithms, our method provides a rich, quasi-tangent-continuous, yet local description of the surface. We use curved Nagata triangles, which we generalize to cubic order to achieve the requisite flexibility. The resulting interpolation can be constructed locally without iterations, at the cost of having only approximate tangent continuity away from the vertices. This allows us to provide a parallelized and fine-tuned Monte Carlo implementation. As a first example of the potential benefits of the enhanced description, our method supports inhomogeneous lipid distributions as well as lipid mixing. It also supports restraints and constraints of various types and is constructed to be as easily extensible as possible. We validate the approach by testing its numerical accuracy, followed by reproducing the known Helfrich solutions for shapes with rotational symmetry. Finally, we present some example applications, including curvature-driven demixing and stylized effects of proteins. Input files for these examples, as well as the implementation itself, are freely available for researchers under the name OrganL (https://zenodo.org/doi/10.5281/zenodo.11204709).
Collapse
Affiliation(s)
- Christoph Allolio
- Charles University, Faculty of Mathematics and Physics, Mathematical Institute, Prague, Czech Republic.
| | - Balázs Fábián
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Mark Dostalík
- Charles University, Faculty of Mathematics and Physics, Mathematical Institute, Prague, Czech Republic
| |
Collapse
|
20
|
Dong H, Hu F, Ma X, Yang J, Pan L, Xu J. Collective Cell Radial Ordered Migration in Spatial Confinement. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307487. [PMID: 38520715 PMCID: PMC11132034 DOI: 10.1002/advs.202307487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 03/04/2024] [Indexed: 03/25/2024]
Abstract
Collective cells, a typical active matter system, exhibit complex coordinated behaviors fundamental for various developmental and physiological processes. The present work discovers a collective radial ordered migration behavior of NIH3T3 fibroblasts that depends on persistent top-down regulation with 2D spatial confinement. Remarkably, individual cells move in a weak-oriented, diffusive-like rather than strong-oriented ballistic manner. Despite this, the collective movement is spatiotemporal heterogeneous and radial ordering at supracellular scale, manifesting as a radial ordered wavefront originated from the boundary and propagated toward the center of pattern. Combining bottom-up cell-to-extracellular matrix (ECM) interaction strategy, numerical simulations based on a developed mechanical model well reproduce and explain above observations. The model further predicts the independence of geometric features on this ordering behavior, which is validated by experiments. These results together indicate such radial ordered collective migration is ascribed to the couple of top-down regulation with spatial restriction and bottom-up cellular endogenous nature.
Collapse
Affiliation(s)
- Hao Dong
- The Key Laboratory of Weak‐Light Nonlinear Photonics of Education MinistrySchool of Physics and TEDA Institute of Applied PhysicsNankai UniversityTianjin300071China
| | - Fen Hu
- The Key Laboratory of Weak‐Light Nonlinear Photonics of Education MinistrySchool of Physics and TEDA Institute of Applied PhysicsNankai UniversityTianjin300071China
| | - Xuehe Ma
- The Key Laboratory of Weak‐Light Nonlinear Photonics of Education MinistrySchool of Physics and TEDA Institute of Applied PhysicsNankai UniversityTianjin300071China
| | - Jianyu Yang
- The Key Laboratory of Weak‐Light Nonlinear Photonics of Education MinistrySchool of Physics and TEDA Institute of Applied PhysicsNankai UniversityTianjin300071China
| | - Leiting Pan
- The Key Laboratory of Weak‐Light Nonlinear Photonics of Education MinistrySchool of Physics and TEDA Institute of Applied PhysicsNankai UniversityTianjin300071China
- State Key Laboratory of Medicinal Chemical BiologyFrontiers Science Center for Cell ResponsesCollege of Life SciencesNankai UniversityTianjin300071China
- Shenzhen Research Institute of Nankai UniversityShenzhenGuangdong518083China
- Collaborative Innovation Center of Extreme OpticsShanxi UniversityTaiyuanShanxi030006China
| | - Jingjun Xu
- The Key Laboratory of Weak‐Light Nonlinear Photonics of Education MinistrySchool of Physics and TEDA Institute of Applied PhysicsNankai UniversityTianjin300071China
- Shenzhen Research Institute of Nankai UniversityShenzhenGuangdong518083China
| |
Collapse
|
21
|
Cheng Z, Wang J, Bian Y, Tan M, Chen Y, Wang Y, Li B. Oral polysaccharide-coated liposome-modified double-layered nanoparticles containing anthocyanins: preparation, characterization, biocompatibility and evaluation of lipid-lowering activity in vitro. Food Chem 2024; 439:138166. [PMID: 38091786 DOI: 10.1016/j.foodchem.2023.138166] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 11/04/2023] [Accepted: 12/05/2023] [Indexed: 01/10/2024]
Abstract
Anthocyanins (ACNs) systems encapsulated in nanomaterials have received widespread attention and rapid development due to its good delivery potential. Here, the favorable benefits of four natural polysaccharide food additives coated ACNs-liposome nanoparticles (ACNs-Lipo NPs) on the stability and possible lipid-lowering effects of ACNs are discussed in this work. The polysaccharides were coupled to the ACNs-Lipo NPs and self-assembled to create ACNs-Lipo@polysaccharide NPs. The impact of various polysaccharides on the physical, chemical, and stability characteristics of NPs was examined. We found that the NPs prepared with gum arabic (GA) had the best stability. FT-IR and XRD analysis revealed electrostatic adsorption and hydrogen binding forces between the components, as well as an amorphous structure. A series of tests in vitro confirmed the excellent stability, bioavailability, antioxidant activity, and biocompatibility of NPs. Finally, cellular antioxidant activity (CAA) and oleic acid (OA)-induced lipid deposition cell models revealed that ACNs-Lipo@GA might be more readily absorbed by cells, resulting in improved antioxidant activity and lipid-lowering impact, with possible targeted delivery qualities and lipid-lowering effect.
Collapse
Affiliation(s)
- Zhen Cheng
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China; Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang, Liaoning, 110866, China
| | - Jiaxin Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China; Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang, Liaoning, 110866, China
| | - Yuanyuan Bian
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China; Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang, Liaoning, 110866, China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yuehua Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China; Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang, Liaoning, 110866, China.
| | - Bin Li
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China; Key Laboratory of Healthy Food Nutrition and Innovative Manufacturing of Liaoning Province, Shenyang, Liaoning, 110866, China.
| |
Collapse
|
22
|
van der Ham S, Agudo-Canalejo J, Vutukuri HR. Role of Shape in Particle-Lipid Membrane Interactions: From Surfing to Full Engulfment. ACS NANO 2024; 18:10407-10416. [PMID: 38513125 PMCID: PMC11025115 DOI: 10.1021/acsnano.3c11106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 03/23/2024]
Abstract
Understanding and manipulating the interactions between foreign bodies and cell membranes during endo- and phagocytosis is of paramount importance, not only for the fate of living cells but also for numerous biomedical applications. This study aims to elucidate the role of variables such as anisotropic particle shape, curvature, orientation, membrane tension, and adhesive strength in this essential process using a minimal experimental biomimetic system comprising giant unilamellar vesicles and rod-like particles with different curvatures and aspect ratios. We find that the particle wrapping process is dictated by the balance between the elastic free energy penalty and adhesion free energy gain, leading to two distinct engulfment pathways, tip-first and side-first, emphasizing the significance of the particle orientation in determining the pathway. Moreover, our experimental results are consistent with theoretical predictions in a state diagram, showcasing how to control the wrapping pathway from surfing to partial to complete wrapping by the interplay between membrane tension and adhesive strength. At moderate particle concentrations, we observed the formation of rod clusters, which exhibited cooperative and sequential wrapping. Our study contributes to a comprehensive understanding of the mechanistic intricacies of endocytosis by highlighting how the interplay between the anisotropic particle shape, curvature, orientation, membrane tension, and adhesive strength can influence the engulfment pathway.
Collapse
Affiliation(s)
- Stijn van der Ham
- Active
Soft Matter and Bio-inspired Materials Lab, Faculty of Science and
Technology, MESA+ Institute, University
of Twente, 7500 AE Enschede, The Netherlands
| | - Jaime Agudo-Canalejo
- Department
of Living Matter Physics, Max Planck Institute
for Dynamics and Self-Organization, Göttingen, D-37077, Germany
- Department
of Physics and Astronomy, University College
London, London WC1E 6BT, United Kingdom
| | - Hanumantha Rao Vutukuri
- Active
Soft Matter and Bio-inspired Materials Lab, Faculty of Science and
Technology, MESA+ Institute, University
of Twente, 7500 AE Enschede, The Netherlands
| |
Collapse
|
23
|
Yang C, Du Y, Li Q, Gao X, Zha P, Zhan W, Liu K, Bi F, Hua Z, Yang G. Morphological Transformation and Surface Engineering of Glycovesicles Driven by Bioinspired Hydrogen Bonds of Nucleobases. ACS Macro Lett 2024; 13:468-474. [PMID: 38574471 DOI: 10.1021/acsmacrolett.4c00037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Glycopolymer-based supramolecular glycoassemblies with signal-driven cascade morphological deformation and accessible surface engineering toward bioinspired functional glycomaterials have attracted much attention due to their diverse applications in fundamental and practical scenarios. Herein, we achieved the cascade morphological transformation and surface engineering of a nucleobase-containing polymeric glycovesicle through exploiting the bioinspired complementary multiple hydrogen bonds of complementary nucleobases. First, the synthesized thymine-containing glycopolymers (PGal30-b-PTAm249) are capable of self-assembling into well-defined glycovesicles. Several kinds of amphiphilic adenine-containing block copolymers with neutral, positive, and negative charges were synthesized to engineer the glycovesicles through the multiple hydrogen bonds between adenine and thymine. A cascade of morphological transformations from vesicles to ruptured vesicles with tails, to worm-like micelles, and finally to spherical micelles were observed via continuously adding the adenine-containing polymer into the thymine-containing glycovesicles. Furthermore, the surface charge properties of these glyconano-objects can be facilely regulated through incorporating various adenine-containing polymers. This work demonstrates the potential application of a unique bioinspired approach to precisely engineer the morphology and surface properties of glycovesicles for boosting their biological applications.
Collapse
Affiliation(s)
- Caiyun Yang
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yixuan Du
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Qiaoran Li
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xinru Gao
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Peng Zha
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Wanli Zhan
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Ketao Liu
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Feihu Bi
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Zan Hua
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, and Department of Materials Chemistry, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 214002, China
| | - Guang Yang
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, Anhui Agricultural University, Hefei, Anhui 230036, China
| |
Collapse
|
24
|
Fedosov DA, Gompper G. Cells on a string: Characterizing cellular structure and dynamics through viscoelastic phenotyping. Biophys J 2024; 123:757-758. [PMID: 38419329 PMCID: PMC10995419 DOI: 10.1016/j.bpj.2024.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024] Open
Affiliation(s)
- Dmitry A Fedosov
- Theoretical Physics of Living Matter, Institute for Advanced Simulation, Forschungszentrum Jülich, Jülich, Germany
| | - Gerhard Gompper
- Theoretical Physics of Living Matter, Institute for Advanced Simulation, Forschungszentrum Jülich, Jülich, Germany.
| |
Collapse
|
25
|
Overberg FA, Gompper G, Fedosov DA. Motion of microswimmers in cylindrical microchannels. SOFT MATTER 2024; 20:3007-3020. [PMID: 38495021 DOI: 10.1039/d3sm01480k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Biological and artificial microswimmers often have to propel through a variety of environments, ranging from heterogeneous suspending media to strong geometrical confinement. Under confinement, local flow fields generated by microswimmers, and steric and hydrodynamic interactions with their environment determine the locomotion. We propose a squirmer-like model to describe the motion of microswimmers in cylindrical microchannels, where propulsion is generated by a fixed surface slip velocity. The model is studied using an approximate analytical solution for cylindrical swimmer shapes, and by numerical hydrodynamics simulations for spherical and spheroidal shapes. For the numerical simulations, we employ the dissipative particle dynamics method for modelling fluid flow. Both the analytical model and simulations show that the propulsion force increases with increasing confinement. However, the swimming velocity under confinement remains lower than the swimmer speed without confinement for all investigated conditions. In simulations, different swimming modes (i.e. pusher, neutral, puller) are investigated, and found to play a significant role in the generation of propulsion force when a swimmer approaches a dead end of a capillary tube. Propulsion generation in confined systems is local, such that the generated flow field generally vanishes beyond the characteristic size of the swimmer. These results contribute to a better understanding of microswimmer force generation and propulsion under strong confinement, including the motion in porous media and in narrow channels.
Collapse
Affiliation(s)
- Florian A Overberg
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany.
| | - Gerhard Gompper
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany.
| | - Dmitry A Fedosov
- Theoretical Physics of Living Matter, Institute of Biological Information Processing and Institute for Advanced Simulation, Forschungszentrum Jülich, 52425 Jülich, Germany.
| |
Collapse
|
26
|
Reboucas RB, Faizi HA, Miksis MJ, Vlahovska PM. Stationary shapes of axisymmetric vesicles beyond lowest-energy configurations. SOFT MATTER 2024; 20:2258-2271. [PMID: 38353299 PMCID: PMC11325145 DOI: 10.1039/d3sm01463k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
We conduct a systematic exploration of the energy landscape of vesicle morphologies within the framework of the Helfrich model. Vesicle shapes are determined by minimizing the elastic energy subject to constraints of constant area and volume. The results show that pressurized vesicles can adopt higher-energy spindle-like configurations that require the action of point forces at the poles. If the internal pressure is lower than the external one, multilobed shapes are predicted. We utilize our results to rationalize experimentally observed spindle shapes of giant vesicles in a uniform AC electric field.
Collapse
Affiliation(s)
- Rodrigo B Reboucas
- Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL 60208, USA.
| | - Hammad A Faizi
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Michael J Miksis
- Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL 60208, USA.
| | - Petia M Vlahovska
- Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
27
|
Sebtosheikh M, Naji A. Active osmoticlike pressure on permeable inclusions. Phys Rev E 2024; 109:034607. [PMID: 38632760 DOI: 10.1103/physreve.109.034607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/14/2024] [Indexed: 04/19/2024]
Abstract
We use a standard minimal active Brownian model to investigate the osmotic-like effective pressure generated by active fluids on fixed hollow inclusions. These inclusions are enclosed by a permeable (albeit nonflexible) membrane, and the interior and exterior regions of the inclusions have different particle motility strengths. We consider both rectangular and disklike inclusions and analyze the effects of various system parameters, such as excluded volume interaction between active particles, hardness of membrane, and active particle density, on the effective pressure produced on the enclosing membrane. We focus on the range of intermediate to high motility strengths and analyze the effective pressure in the steady state. Our findings for the active pressure produced in the interior and exterior regions of the inclusion indicate that the pressure is higher in the region with lower motility due to the relatively stronger accumulation of active particles.
Collapse
Affiliation(s)
- Mahmoud Sebtosheikh
- School of Nano Science, Institute for Research in Fundamental Sciences (IPM), Tehran 19538-33511, Iran
- School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran 19538-33511, Iran
| | - Ali Naji
- School of Nano Science, Institute for Research in Fundamental Sciences (IPM), Tehran 19538-33511, Iran
- Department of Physics, College of Science, Sultan Qaboos University, Muscat 123, Oman
| |
Collapse
|
28
|
Han X, Xu S, Wang L, Bi Z, Wang D, Bu H, Da J, Liu Y, Tan W. Artificial DNA Framework Channel Modulates Antiapoptotic Behavior in Ischemia-Stressed Cells via Destabilizing Promoter G-Quadruplex. ACS NANO 2024; 18:6147-6161. [PMID: 38372229 DOI: 10.1021/acsnano.3c06563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Regulating folding/unfolding of gene promoter G-quadruplexes (G4s) is important for understanding the topological changes in genomic DNAs and the biological effects of such changes on important cellular events. Although many G4-stabilizing ligands have been screened out, effective G4-destabilizing ligands are extremely rare, posing a great challenge for illustrating how G4 destabilization affects gene function in living cells under stress, a long-standing question in neuroscience. Herein, we report a distinct methodology able to destabilize gene promoter G4s in ischemia-stressed neural cells by mitigating the ischemia-induced accumulation of intracellular K+ with an artificial membrane-spanning DNA framework channel (DFC). We also show that ischemia-triggered K+ influx is positively correlated to anomalous stabilization of promoter G4s and downregulation of Bcl-2, an antiapoptotic gene with neuroprotective effects against ischemic injury. Intriguingly, the DFC enables rapid transmembrane transport of excessive K+ mediated by the internal G4 filter, leading to the destabilization of endogenous promoter G4 in Bcl-2 and subsequent turnover of gene expression at both transcription and translation levels under ischemia. Consequently, this work enriches our understanding of the biological roles of endogenous G4s and may offer important clues to study the cellular behaviors in response to stress.
Collapse
Affiliation(s)
- Xiaoyan Han
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Shujuan Xu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Linlin Wang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Zhengyan Bi
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Dan Wang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Huitong Bu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Jun Da
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Yanlan Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
29
|
Pham AT, Mani M, Wang X, Vafabakhsh R. Multiscale biophysical analysis of nucleolus disassembly during mitosis. Proc Natl Acad Sci U S A 2024; 121:e2312250121. [PMID: 38285946 PMCID: PMC10861868 DOI: 10.1073/pnas.2312250121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/01/2024] [Indexed: 01/31/2024] Open
Abstract
During cell division, precise and regulated distribution of cellular material between daughter cells is a critical step and is governed by complex biochemical and biophysical mechanisms. To achieve this, membraneless organelles and condensates often require complete disassembly during mitosis. The biophysical principles governing the disassembly of condensates remain poorly understood. Here, we used a physical biology approach to study how physical and material properties of the nucleolus, a prominent nuclear membraneless organelle in eukaryotic cells, change during mitosis and across different scales. We found that nucleolus disassembly proceeds continuously through two distinct phases with a slow and reversible preparatory phase followed by a rapid irreversible phase that was concurrent with the nuclear envelope breakdown. We measured microscopic properties of nucleolar material including effective diffusion rates and binding affinities as well as key macroscopic properties of surface tension and bending rigidity. By incorporating these measurements into the framework of critical phenomena, we found evidence that near mitosis surface tension displays a power-law behavior as a function of biochemically modulated interaction strength. This two-step disassembly mechanism maintains structural and functional stability of nucleolus while enabling its rapid and efficient disassembly in response to cell cycle cues.
Collapse
Affiliation(s)
- An T. Pham
- Department of Molecular Biosciences, Northwestern University, Evanston, IL60208
| | - Madhav Mani
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL60208
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL60208
| | - Xiaozhong Wang
- Department of Molecular Biosciences, Northwestern University, Evanston, IL60208
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL60208
| | - Reza Vafabakhsh
- Department of Molecular Biosciences, Northwestern University, Evanston, IL60208
| |
Collapse
|
30
|
Li W, Zhang S, Kleuskens S, Portale G, Engelkamp H, Christianen PCM, Wilson DA. Programmable Compartment Networks by Unraveling the Stress-Dependent Deformation of Polymer Vesicles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306219. [PMID: 37803926 DOI: 10.1002/smll.202306219] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Indexed: 10/08/2023]
Abstract
Nanocontainers that can sense and respond to environmental stimuli like cells are desirable for next-generation delivery systems. However, it is still a grand challenge for synthetic nanocontainers to mimic or even surpass the shape adaption of cells, which may produce novel compartments for cargo loading. Here, this work reports the engineering of compartment network with a single polymer vesicle by unraveling osmotic stress-dependent deformation. Specifically, by manipulating the way in exerting the stress, sudden increase or gradual increase, polymer vesicles can either undergo deflation into the stomatocyte, a bowl-shaped vesicle enclosing a new compartment, or tubulation into the tubule of varied length. Such stress-dependent deformation inspired us to program the shape transformation of polymer vesicles, including tubulation, deflation, or first tubulation and then deflation. The coupled deformation successfully transforms the polymer vesicle into the stomatocyte with tubular arms and a network of two or three small stomatocytes connected by tubules. To the author's knowledge, these morphologies are still not accessed by synthetic nanocontainers. This work envisions that the network of stomatocytes may enable the loading of different catalysts to construct novel motile systems, and the well-defined morphology of vesicles helps to define the effect of morphology on cellar uptake.
Collapse
Affiliation(s)
- Wei Li
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525AJ, The Netherlands
| | - Shaohua Zhang
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525AJ, The Netherlands
| | - Sandra Kleuskens
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525AJ, The Netherlands
- High Field Magnet Laboratory (HFML-EMFL), Radboud University, Toernooiveld 7, Nijmegen, 6525ED, The Netherlands
| | - Giuseppe Portale
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, 9747AG, The Netherlands
| | - Hans Engelkamp
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525AJ, The Netherlands
- High Field Magnet Laboratory (HFML-EMFL), Radboud University, Toernooiveld 7, Nijmegen, 6525ED, The Netherlands
| | - Peter C M Christianen
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525AJ, The Netherlands
- High Field Magnet Laboratory (HFML-EMFL), Radboud University, Toernooiveld 7, Nijmegen, 6525ED, The Netherlands
| | - Daniela A Wilson
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525AJ, The Netherlands
| |
Collapse
|
31
|
Yu N, Shah ZH, Yang M, Gao Y. Morphology-Tailored Dynamic State Transition in Active-Passive Colloidal Assemblies. RESEARCH (WASHINGTON, D.C.) 2024; 7:0304. [PMID: 38269028 PMCID: PMC10807723 DOI: 10.34133/research.0304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 12/29/2023] [Indexed: 01/26/2024]
Abstract
Mixtures of active self-propelled and passive colloidal particles promise rich assembly and dynamic states that are beyond reach via equilibrium routes. Yet, controllable transition between different dynamic states remains rare. Here, we reveal a plethora of dynamic behaviors emerging in assemblies of chemically propelled snowman-like active colloids and passive spherical particles as the particle shape, size, and composition are tuned. For example, assembles of one or more active colloids with one passive particle exhibit distinct translating or orbiting states while those composed of one active colloid with 2 passive particles display persistent "8"-like cyclic motion or hopping between circling states around one passive particle in the plane and around the waist of 2 passive ones out of the plane, controlled by the shape of the active colloid and the size of the passive particles, respectively. These morphology-tailored dynamic transitions are in excellent agreement with state diagrams predicted by mesoscale dynamics simulations. Our work discloses new dynamic states and corresponding transition strategies, which promise new applications of active systems such as micromachines with functions that are otherwise impossible.
Collapse
Affiliation(s)
- Nan Yu
- Institute for Advanced Study,
Shenzhen University, 518060, Shenzhen, China
- Key Laboratory of Optoelectronic Device and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering,
Shenzhen University, 518060, Shenzhen, China
| | - Zameer H. Shah
- Institute for Advanced Study,
Shenzhen University, 518060, Shenzhen, China
- Key Laboratory of Optoelectronic Device and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering,
Shenzhen University, 518060, Shenzhen, China
| | - Mingcheng Yang
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics,
Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences,
University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Yongxiang Gao
- Institute for Advanced Study,
Shenzhen University, 518060, Shenzhen, China
| |
Collapse
|
32
|
Pezeshkian W, Ipsen JH. Mesoscale simulation of biomembranes with FreeDTS. Nat Commun 2024; 15:548. [PMID: 38228588 PMCID: PMC10792169 DOI: 10.1038/s41467-024-44819-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 01/05/2024] [Indexed: 01/18/2024] Open
Abstract
We present FreeDTS software for performing computational research on biomembranes at the mesoscale. In this software, a membrane is represented by a dynamically triangulated surface equipped with vertex-based inclusions to integrate the effects of integral and peripheral membrane proteins. Several algorithms are included in the software to simulate complex membranes at different conditions such as framed membranes with constant tension, vesicles and high-genus membranes with various fixed volumes or constant pressure differences and applying external forces to membrane regions. Furthermore, the software allows the user to turn off the shape evolution of the membrane and focus solely on the organization of proteins. As a result, we can take realistic membrane shapes obtained from, for example, cryo-electron tomography and backmap them into a finer simulation model. In addition to many biomembrane applications, this software brings us a step closer to simulating realistic biomembranes with molecular resolution. Here we provide several interesting showcases of the power of the software but leave a wide range of potential applications for interested users.
Collapse
Affiliation(s)
- Weria Pezeshkian
- Niels Bohr International Academy, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100, Copenhagen, Denmark.
| | - John H Ipsen
- MEMPHYS/PhyLife, Department of Physics, Chemistry and Pharmacy (FKF), University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark
| |
Collapse
|
33
|
Llopis-Lorente A, Schotman MJG, Humeniuk HV, van Hest JCM, Dankers PYW, Abdelmohsen LKEA. Artificial cells with viscoadaptive behavior based on hydrogel-loaded giant unilamellar vesicles. Chem Sci 2024; 15:629-638. [PMID: 38179539 PMCID: PMC10763548 DOI: 10.1039/d3sc04687g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/01/2023] [Indexed: 01/06/2024] Open
Abstract
Viscoadaptation is an essential process in natural cells, where supramolecular interactions between cytosolic components drive adaptation of the cellular mechanical features to regulate metabolic function. This important relationship between mechanical properties and function has until now been underexplored in artificial cell research. Here, we have created an artificial cell platform that exploits internal supramolecular interactions to display viscoadaptive behavior. As supramolecular material to mimic the cytosolic component of these artificial cells, we employed a pH-switchable hydrogelator based on poly(ethylene glycol) coupled to ureido-pyrimidinone units. The hydrogelator was membranized in its sol state in giant unilamellar lipid vesicles to include a cell-membrane mimetic component. The resulting hydrogelator-loaded giant unilamellar vesicles (designated as HL-GUVs) displayed reversible pH-switchable sol-gel behavior through multiple cycles. Furthermore, incorporation of the regulatory enzyme urease enabled us to increase the cytosolic pH upon conversion of its substrate urea. The system was able to switch between a high viscosity (at neutral pH) and a low viscosity (at basic pH) state upon addition of substrate. Finally, viscoadaptation was achieved via the incorporation of a second enzyme of which the activity was governed by the viscosity of the artificial cell. This work represents a new approach to install functional self-regulation in artificial cells, and opens new possibilities for the creation of complex artificial cells that mimic the structural and functional interplay found in biological systems.
Collapse
Affiliation(s)
- Antoni Llopis-Lorente
- Department of Chemical Engineering & Chemistry, Laboratory of Bio-Organic Chemistry, Eindhoven University of Technology Het Kranenveld 14 5600 MB Eindhoven The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology Het Kranenveld 14, Eindhoven 5600 MB Eindhoven The Netherlands
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, CIBER de Bioingeniería, Biomateriales y Nanomedicina, Universitat Politècnica de València, Universitat de València Camino de Vera s/n 46022 València Spain
| | - Maaike J G Schotman
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology Eindhoven, Het Kranenveld 14 5600 MB Eindhoven The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology Het Kranenveld 14, Eindhoven 5600 MB Eindhoven The Netherlands
| | - Heorhii V Humeniuk
- Department of Chemical Engineering & Chemistry, Laboratory of Bio-Organic Chemistry, Eindhoven University of Technology Het Kranenveld 14 5600 MB Eindhoven The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology Het Kranenveld 14, Eindhoven 5600 MB Eindhoven The Netherlands
| | - Jan C M van Hest
- Department of Chemical Engineering & Chemistry, Laboratory of Bio-Organic Chemistry, Eindhoven University of Technology Het Kranenveld 14 5600 MB Eindhoven The Netherlands
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology Eindhoven, Het Kranenveld 14 5600 MB Eindhoven The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology Het Kranenveld 14, Eindhoven 5600 MB Eindhoven The Netherlands
| | - Patricia Y W Dankers
- Department of Biomedical Engineering, Laboratory of Chemical Biology, Eindhoven University of Technology Eindhoven, Het Kranenveld 14 5600 MB Eindhoven The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology Het Kranenveld 14, Eindhoven 5600 MB Eindhoven The Netherlands
| | - Loai K E A Abdelmohsen
- Department of Chemical Engineering & Chemistry, Laboratory of Bio-Organic Chemistry, Eindhoven University of Technology Het Kranenveld 14 5600 MB Eindhoven The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology Het Kranenveld 14, Eindhoven 5600 MB Eindhoven The Netherlands
| |
Collapse
|
34
|
Lee SY, Schönhöfer PWA, Glotzer SC. Complex motion of steerable vesicular robots filled with active colloidal rods. Sci Rep 2023; 13:22773. [PMID: 38123626 PMCID: PMC10733302 DOI: 10.1038/s41598-023-49314-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
While the collective motion of active particles has been studied extensively, effective strategies to navigate particle swarms without external guidance remain elusive. We introduce a method to control the trajectories of two-dimensional swarms of active rod-like particles by confining the particles to rigid bounding membranes (vesicles) with non-uniform curvature. We show that the propelling agents spontaneously form clusters at the membrane wall and collectively propel the vesicle, turning it into an active superstructure. To further guide the motion of the superstructure, we add discontinuous features to the rigid membrane boundary in the form of a kinked tip, which acts as a steering component to direct the motion of the vesicle. We report that the system's geometrical and material properties, such as the aspect ratio and Péclet number of the active rods as well as the kink angle and flexibility of the membrane, determine the stacking of active particles close to the kinked confinement and induce a diverse set of dynamical behaviors of the superstructure, including linear and circular motion both in the direction of, and opposite to, the kink. From a systematic study of these various behaviors, we design vesicles with switchable and reversible locomotions by tuning the confinement parameters. The observed phenomena suggest a promising mechanism for particle transportation and could be used as a basic element to navigate active matter through complex and tortuous environments.
Collapse
Affiliation(s)
- Sophie Y Lee
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Philipp W A Schönhöfer
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Sharon C Glotzer
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan, 48109, USA.
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, USA.
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, 48109, USA.
| |
Collapse
|
35
|
Schiltz-Rouse E, Row H, Mallory SA. Kinetic temperature and pressure of an active Tonks gas. Phys Rev E 2023; 108:064601. [PMID: 38243499 DOI: 10.1103/physreve.108.064601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 11/06/2023] [Indexed: 01/21/2024]
Abstract
Using computer simulation and analytical theory, we study an active analog of the well-known Tonks gas, where active Brownian particles are confined to a periodic one-dimensional (1D) channel. By introducing the notion of a kinetic temperature, we derive an accurate analytical expression for the pressure and clarify the paradoxical behavior where active Brownian particles confined to 1D exhibit anomalous clustering but no motility-induced phase transition. More generally, this work provides a deeper understanding of pressure in active systems as we uncover a unique link between the kinetic temperature and swim pressure valid for active Brownian particles in higher dimensions.
Collapse
Affiliation(s)
- Elijah Schiltz-Rouse
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Hyeongjoo Row
- Department of Chemical and Biomolecular Engineering, UC Berkeley, Berkeley, California 94720, USA
| | - Stewart A Mallory
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
36
|
Marín-Aguilar S, Camerin F, van der Ham S, Feasson A, Vutukuri HR, Dijkstra M. A colloidal viewpoint on the sausage catastrophe and the finite sphere packing problem. Nat Commun 2023; 14:7896. [PMID: 38036561 PMCID: PMC10689752 DOI: 10.1038/s41467-023-43722-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/16/2023] [Indexed: 12/02/2023] Open
Abstract
It is commonly believed that the most efficient way to pack a finite number of equal-sized spheres is by arranging them tightly in a cluster. However, mathematicians have conjectured that a linear arrangement may actually result in the densest packing. Here, our combined experimental and simulation study provides a physical realization of the finite sphere packing problem by studying arrangements of colloids in a flaccid lipid vesicle. We map out a state diagram displaying linear, planar, and cluster conformations of spheres, as well as bistable states which alternate between cluster-plate and plate-linear conformations due to membrane fluctuations. Finally, by systematically analyzing truncated polyhedral packings, we identify clusters of 56 ≤ N ≤ 70 number of spheres, excluding N = 57 and 63, that pack more efficiently than linear arrangements.
Collapse
Affiliation(s)
- Susana Marín-Aguilar
- Soft Condensed Matter & Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, Utrecht, 3584 CC, Utrecht, The Netherlands.
| | - Fabrizio Camerin
- Soft Condensed Matter & Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, Utrecht, 3584 CC, Utrecht, The Netherlands.
- International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM²), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526, Hiroshima, Japan.
| | - Stijn van der Ham
- Active Soft Matter and Bio-inspired Materials Lab, Faculty of Science and Technology, MESA+ Institute, University of Twente, 7500 AE, Enschede, The Netherlands
| | - Andréa Feasson
- Active Soft Matter and Bio-inspired Materials Lab, Faculty of Science and Technology, MESA+ Institute, University of Twente, 7500 AE, Enschede, The Netherlands
| | - Hanumantha Rao Vutukuri
- Active Soft Matter and Bio-inspired Materials Lab, Faculty of Science and Technology, MESA+ Institute, University of Twente, 7500 AE, Enschede, The Netherlands.
| | - Marjolein Dijkstra
- Soft Condensed Matter & Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, Utrecht, 3584 CC, Utrecht, The Netherlands.
- International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM²), Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526, Hiroshima, Japan.
| |
Collapse
|
37
|
Pham AT, Mani M, Wang XA, Vafabakhsh R. The Physical Biology of Nucleolus Disassembly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.27.559731. [PMID: 37808669 PMCID: PMC10557732 DOI: 10.1101/2023.09.27.559731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
During cell division, precise and regulated distribution of cellular material between daughter cells is a critical step and is governed by complex biochemical and biophysical mechanisms. To achieve this, membraneless organelles and condensates often require complete disassembly during mitosis. The biophysical principles governing the disassembly of condensates remain poorly understood. Here, we used a physical biology approach to study how physical and material properties of the nucleolus, a prominent nuclear membraneless organelle in eukaryotic cells, change during mitosis and across different scales. We found that nucleolus disassembly proceeds continuously through two distinct phases with a slow and reversible preparatory phase followed by a rapid irreversible phase that was concurrent with the nuclear envelope breakdown. We measured microscopic properties of nucleolar material including effective diffusion rates and binding affinities as well as key macroscopic properties of surface tension and bending rigidity. By incorporating these measurements into the framework of critical phenomena, we found evidence that near mitosis surface tension displays a power-law behavior as a function of biochemically modulated interaction strength. This two-step disassembly mechanism, which maintains structural and functional stability of nucleolus while allowing for its rapid and efficient disassembly in response to cell cycle cues, may be a universal design principle for the disassembly of other biomolecular condensates.
Collapse
Affiliation(s)
- An T. Pham
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Madhav Mani
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL 60208, USA
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL 60208, USA
| | - Xiaozhong A. Wang
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL 60208, USA
| | - Reza Vafabakhsh
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
38
|
Xiong Y, Yuan H, Olvera de la Cruz M. Janus magnetoelastic membrane swimmers. SOFT MATTER 2023; 19:6721-6730. [PMID: 37622382 DOI: 10.1039/d3sm00788j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Soft swimming microrobots have attracted considerable attention due to their potential applications in diverse fields ranging from biomedicines to environmental remediation. The locomotion control is of importance to the research of micromachines and microrobots. Inspired by the motility strategies of living microorganisms, such as flagella, cilia, and euglenoids, we focus on propulsion mechanisms with a design of Janus magnetoelastic crystalline membrane microswimmers actuated by time-varying magnetic fields. Such a Janus swimmer consists of a ferromagnetic cap completed by a magnetoelastic membrane body, where superparamagnetic particles are uniformly distributed on the surface. Under the influence of external magnetic fields, the swimmer undergoes complex shape transitions due to the interplay between the magnetic dipole-dipole interactions, the elasticity of the magnetoelastic membranes, and also the hydrodynamics of surrounding fluids. We show that those shape changes are nonreciprocal, which can generate locomotion such that the propulsion speed can be optimized by tailoring the membrane elastic properties. Besides, we also demonstrate that the Janus swimmer can be magnetically guided in a spiral trajectory. With such adequate control of locomotion in both speed and direction via non-invasive magnetic fields, this study provides another promising candidate design for the future development of microswimmers.
Collapse
Affiliation(s)
- Yao Xiong
- Center for Computation & Theory of Soft Materials, Northwestern University, Evanston, IL, 60208, USA.
| | - Hang Yuan
- Applied Physics Graduate Program, Northwestern University, Evanston, IL, 60208, USA
| | - Monica Olvera de la Cruz
- Center for Computation & Theory of Soft Materials, Northwestern University, Evanston, IL, 60208, USA.
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- Department of Physics and Astronomy, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
39
|
Xu H, Nejad MR, Yeomans JM, Wu Y. Geometrical control of interface patterning underlies active matter invasion. Proc Natl Acad Sci U S A 2023; 120:e2219708120. [PMID: 37459530 PMCID: PMC10372614 DOI: 10.1073/pnas.2219708120] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 06/16/2023] [Indexed: 07/20/2023] Open
Abstract
Interaction between active materials and the boundaries of geometrical confinement is key to many emergent phenomena in active systems. For living active matter consisting of animal cells or motile bacteria, the confinement boundary is often a deformable interface, and it has been unclear how activity-induced interface dynamics might lead to morphogenesis and pattern formation. Here, we studied the evolution of bacterial active matter confined by a deformable boundary. We found that an ordered morphological pattern emerged at the interface characterized by periodically spaced interfacial protrusions; behind the interfacial protrusions, bacterial swimmers self-organized into multicellular clusters displaying +1/2 nematic defects. Subsequently, a hierarchical sequence of transitions from interfacial protrusions to creeping branches allowed the bacterial active drop to rapidly invade surrounding space with a striking self-similar branch pattern. We found that this interface patterning is geometrically controlled by the local curvature of the interface, a phenomenon we denote as collective curvature sensing. Using a continuum active model, we revealed that the collective curvature sensing arises from enhanced active stresses near high-curvature regions, with the active length scale setting the characteristic distance between the interfacial protrusions. Our findings reveal a protrusion-to-branch transition as a unique mode of active matter invasion and suggest a strategy to engineer pattern formation of active materials.
Collapse
Affiliation(s)
- Haoran Xu
- Department of Physics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, People’s Republic of China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, People’s Republic of China
| | - Mehrana R. Nejad
- Department of Physics, The Rudolf Peierls Centre for Theoretical Physics, University of Oxford, OxfordOX1 3PU, United Kingdom
| | - Julia M. Yeomans
- Department of Physics, The Rudolf Peierls Centre for Theoretical Physics, University of Oxford, OxfordOX1 3PU, United Kingdom
| | - Yilin Wu
- Department of Physics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, People’s Republic of China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, People’s Republic of China
| |
Collapse
|
40
|
Ureña Marcos JC, Liebchen B. Inverted Sedimentation of Active Particles in Unbiased ac Fields. PHYSICAL REVIEW LETTERS 2023; 131:038201. [PMID: 37540873 DOI: 10.1103/physrevlett.131.038201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 06/26/2023] [Indexed: 08/06/2023]
Abstract
Gaining control over the motion of active particles is crucial for applications ranging from targeted cargo delivery to nanomedicine. While much progress has been made recently to control active motion based on external forces, flows, or gradients in concentration or light intensity, which all have a well-defined direction or bias, little is known about how to steer active particles in situations where no permanent bias can be realized. Here, we show that ac fields with a vanishing time average provide an alternative route to steering active particles. We exemplify this route for inertial active particles in a gravitational field, observing that a substantial fraction of them persistently travels in the upward direction upon switching on the ac field, resulting in an inverted sedimentation profile at the top wall of a confining container. Our results offer a generic control principle that could be used in the future to steer active motion, direct collective behaviors, and purify mixtures.
Collapse
Affiliation(s)
- José Carlos Ureña Marcos
- Institut für Physik Kondensierter Materie, Technische Universität Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany
| | - Benno Liebchen
- Institut für Physik Kondensierter Materie, Technische Universität Darmstadt, Hochschulstraße 8, 64289 Darmstadt, Germany
| |
Collapse
|
41
|
Yu Y, Lin R, Yu H, Liu M, Xing E, Wang W, Zhang F, Zhao D, Li X. Versatile synthesis of metal-compound based mesoporous Janus nanoparticles. Nat Commun 2023; 14:4249. [PMID: 37460612 DOI: 10.1038/s41467-023-40017-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 07/06/2023] [Indexed: 07/20/2023] Open
Abstract
The construction of mesoporous Janus nanoparticles (mJNPs) with controllable components is of great significance for the development of sophisticated nanomaterials with synergistically enhanced functionalities and applications. However, the compositions of reported mJNPs are mainly the functionally inert SiO2 and polymers. The universal synthesis of metal-compound based mJNPs with abundant functionalities is urgently desired, but remains a substantial challenge. Herein, we present a hydrophilicity mediated interfacial selective assembly strategy for the versatile synthesis of metal-compound based mJNPs. Starting from the developed silica-based mJNPs with anisotropic dual-surface of hydrophilic SiO2 and hydrophobic organosilica, metal precursor can selectively deposit onto the hydrophilic SiO2 subunit to form the metal-compound based mJNPs. This method shows good universality and can be used for the synthesis of more than 20 kinds of metal-compound based mJNPs, including alkali-earth metal compounds, transition metal compounds, rare-earth metal compounds etc. Besides, the composition of the metal-compound subunit can be well tuned from single to multiple metal elements, even high-entropy complexes. We believe that the synthesis method and obtained new members of mJNPs provide a very broad platform for the construction and application of mJNPs with rational designed functions and structures.
Collapse
Affiliation(s)
- Yan Yu
- Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Runfeng Lin
- Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Hongyue Yu
- Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Minchao Liu
- Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Enyun Xing
- Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Wenxing Wang
- Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Fan Zhang
- Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Dongyuan Zhao
- Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China
| | - Xiaomin Li
- Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
42
|
Farnudi A, Ejtehadi MR, Everaers R. Dynamics of fluid bilayer vesicles: Soft meshes and robust curvature energy discretization. Phys Rev E 2023; 108:015301. [PMID: 37583159 DOI: 10.1103/physreve.108.015301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 05/26/2023] [Indexed: 08/17/2023]
Abstract
Continuum models like the Helfrich Hamiltonian are widely used to describe fluid bilayer vesicles. Here we study the molecular dynamics compatible dynamics of the vertices of two-dimensional meshes representing the bilayer, whose in-plane motion is only weakly constrained. We show (i) that Jülicher's discretization of the curvature energy offers vastly superior robustness for soft meshes compared to the commonly employed expression by Gommper and Kroll and (ii) that for sufficiently soft meshes, the typical behavior of fluid bilayer vesicles can emerge even if the mesh connectivity remains fixed throughout the simulations. In particular, soft meshes can accommodate large shape transformations, and the model can generate the typical ℓ^{-4} signal for the amplitude of surface undulation modes of nearly spherical vesicles all the way up to the longest wavelength modes. Furthermore, we compare results for Newtonian, Langevin, and Brownian dynamics simulations of the mesh vertices to demonstrate that the internal friction of the membrane model is negligible, making it suitable for studying the internal dynamics of vesicles via coupling to hydrodynamic solvers or particle-based solvent models.
Collapse
Affiliation(s)
- Ali Farnudi
- Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran
| | - Mohammad Reza Ejtehadi
- Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran, Iran
| | - Ralf Everaers
- Ecole Normale Supérieure (ENS) de Lyon, CNRS, Laboratoire de Physique and Centre Blaise Pascal de l'ENS de Lyon, F-69342 Lyon, France
| |
Collapse
|
43
|
Ray S, Zhang J, Dogic Z. Rectified Rotational Dynamics of Mobile Inclusions in Two-Dimensional Active Nematics. PHYSICAL REVIEW LETTERS 2023; 130:238301. [PMID: 37354394 DOI: 10.1103/physrevlett.130.238301] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/14/2023] [Indexed: 06/26/2023]
Abstract
We investigate the dynamics of mobile inclusions embedded in 2D active nematics. The interplay between the inclusion shape, boundary-induced nematic order, and autonomous flows powers the inclusion motion. Disks and achiral gears exhibit unbiased rotational motion, but with distinct dynamics. In comparison, chiral gear-shaped inclusions exhibit long-term rectified rotation, which is correlated with dynamics and polarization of nearby +1/2 topological defects. The chirality of defect polarities and the active nematic texture around the inclusion correlate with the inclusion's instantaneous rotation rate. Inclusions provide a promising tool for probing the rheological properties of active nematics and extracting ordered motion from their inherently chaotic motion.
Collapse
Affiliation(s)
- Sattvic Ray
- Department of Physics, University of California at Santa Barbara, Santa Barbara, California 93106, USA
| | - Jie Zhang
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China (USTC), 230026 Hefei, China
- Department of Polymer Science and Engineering, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China (USTC), 230026 Hefei, China
| | - Zvonimir Dogic
- Department of Physics, University of California at Santa Barbara, Santa Barbara, California 93106, USA
| |
Collapse
|
44
|
Wittmann R, Monderkamp PA, Löwen H. Statistics of carrier-cargo complexes. Phys Rev E 2023; 107:064602. [PMID: 37464670 DOI: 10.1103/physreve.107.064602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/17/2023] [Indexed: 07/20/2023]
Abstract
We explore the statistics of assembling soft-matter building blocks to investigate the uptake and encapsulation of cargo particles by carriers engulfing their load. While the such carrier-cargo complexes are important for many applications out of equilibrium, such as drug delivery and synthetic cell encapsulation, we uncover here the basic statistical physics in minimal hard-core-like models for particle uptake. Introducing an exactly solvable equilibrium model in one dimension, we demonstrate that the formation of carrier-cargo complexes can be largely tuned by both the cargo concentration and the carriers' interior size. These findings are intuitively explained by interpreting the internal free space (partition function) of the cargo inside a carrier as its engulfment strength, which can be mapped to an external control parameter (chemical potential) of an additional effective particle species. Assuming a hard carrier membrane, such a mapping can be exactly applied to account for multiple cargo uptake involving various carrier or cargo species and even attractive uptake mechanisms, while soft interactions require certain approximations. We further argue that the Boltzmann occupation law identified within our approach is broken when particle uptake is governed by nonequilibrium forces. Speculating on alternative occupation laws using effective parameters, we put forward a Bose-Einstein-like phase transition associated with polydisperse carrier properties.
Collapse
Affiliation(s)
- René Wittmann
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Paul A Monderkamp
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
45
|
Xiao K, Ma R, Wu CX. Wrapping dynamics and critical conditions for active nonspherical nanoparticle uptake. Phys Rev E 2023; 107:054401. [PMID: 37329073 DOI: 10.1103/physreve.107.054401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/17/2023] [Indexed: 06/18/2023]
Abstract
The cellular uptake of self-propelled nonspherical nanoparticles (NPs) or viruses by cell membrane is crucial in many biological processes, but its universal dynamics have yet to be elucidated. In this study, using the Onsager variational principle, we obtain a general wrapping equation for nonspherical self-propelled nanoparticles. Two analytical critical conditions are theoretically found, indicating a continuous full uptake for prolate particles and a snapthrough full uptake for oblate particles. They precisely capture the full uptake critical boundaries in the phase diagrams numerically constructed in terms of active force, aspect ratio, adhesion energy density, and membrane tension. It is found that enhancing activity (active force), reducing effective dynamic viscosity, increasing adhesion energy density, and decreasing membrane tension can significantly improve the wrapping efficiency of the self-propelled nonspherical nanoparticles. These results give a panoramic view of the uptake dynamics of active nonspherical nanoparticles, and may offer instructions for designing an effective active NP-based vehicle for controlled drug delivery.
Collapse
Affiliation(s)
- Ke Xiao
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325016, People's Republic of China and Department of Physics, College of Physical Science and Technology, Xiamen University, Xiamen 361005, People's Republic of China
| | - Rui Ma
- Fujian Provincial Key Lab for Soft Functional Materials Research, Research Institute for Biomimetics and Soft Matter, Department of Physics, College of Physical Science and Technology, Xiamen University, Xiamen 361005, People's Republic of China
| | - Chen-Xu Wu
- Fujian Provincial Key Lab for Soft Functional Materials Research, Research Institute for Biomimetics and Soft Matter, Department of Physics, College of Physical Science and Technology, Xiamen University, Xiamen 361005, People's Republic of China
| |
Collapse
|
46
|
Siebers F, Jayaram A, Blümler P, Speck T. Exploiting compositional disorder in collectives of light-driven circle walkers. SCIENCE ADVANCES 2023; 9:eadf5443. [PMID: 37058561 PMCID: PMC10104457 DOI: 10.1126/sciadv.adf5443] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 03/15/2023] [Indexed: 06/19/2023]
Abstract
Emergent behavior in collectives of "robotic" units with limited capabilities that is robust and programmable is a promising route to perform tasks on the micro and nanoscale that are otherwise difficult to realize. However, a comprehensive theoretical understanding of the physical principles, in particular steric interactions in crowded environments, is still largely missing. Here, we study simple light-driven walkers propelled through internal vibrations. We demonstrate that their dynamics is well captured by the model of active Brownian particles, albeit with an angular speed that differs between individual units. Transferring to a numerical model, we show that this polydispersity of angular speeds gives rise to specific collective behavior: self-sorting under confinement and enhancement of translational diffusion. Our results show that, while naively perceived as imperfection, disorder of individual properties can provide another route to realize programmable active matter.
Collapse
|
47
|
Lee WS, Enomoto T, Akimoto AM, Yoshida R. Capsule self-oscillating gels showing cell-like nonthermal membrane/shape fluctuations. MATERIALS HORIZONS 2023; 10:1332-1341. [PMID: 36722870 DOI: 10.1039/d2mh01490d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A primary interest in cell membrane and shape fluctuations is establishing experimental models reflecting only nonthermal active contributions. Here we report a millimeter-scaled capsule self-oscillating gel model mirroring the active contribution effect on cell fluctuations. In the capsule self-oscillating gels, the propagating chemical signals during a Belousov-Zhabotinsky (BZ) reaction induce simultaneous local deformations in the various regions, showing cell-like shape fluctuations. The capsule self-oscillating gels do not fluctuate without the BZ reaction, implying that only the active chemical parameter induces the gel fluctuations. The period and amplitude depend on the gel layer thickness and the concentration of the chemical substrate for the BZ reaction. Our results allow for a solid experimental platform showing actively driven cell-like fluctuations, which can potentially contribute to investigating the active parameter effect on cell fluctuations.
Collapse
Affiliation(s)
- Won Seok Lee
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Takafumi Enomoto
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Aya Mizutani Akimoto
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| | - Ryo Yoshida
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| |
Collapse
|
48
|
Zhu Q, Tree DR. Simulations of morphology control of self‐assembled amphiphilic surfactants. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20220771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Affiliation(s)
- Qinyu Zhu
- Department of Chemical Engineering Brigham Young University Provo Utah USA
| | - Douglas R. Tree
- Department of Chemical Engineering Brigham Young University Provo Utah USA
| |
Collapse
|
49
|
Nsamela A, Garcia Zintzun AI, Montenegro-Johnson TD, Simmchen J. Colloidal Active Matter Mimics the Behavior of Biological Microorganisms-An Overview. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2202685. [PMID: 35971193 DOI: 10.1002/smll.202202685] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/18/2022] [Indexed: 06/15/2023]
Abstract
This article provides a review of the recent development of biomimicking behaviors in active colloids. While the behavior of biological microswimmers is undoubtedly influenced by physics, it is frequently guided and manipulated by active sensing processes. Understanding the respective influences of the surrounding environment can help to engineering the desired response also in artificial swimmers. More often than not, the achievement of biomimicking behavior requires the understanding of both biological and artificial microswimmers swimming mechanisms and the parameters inducing mechanosensory responses. The comparison of both classes of microswimmers provides with analogies in their dependence on fuels, interaction with boundaries and stimuli induced motion, or taxis.
Collapse
Affiliation(s)
- Audrey Nsamela
- Chair of Physical Chemistry, TU Dresden, 01069, Dresden, Germany
- Elvesys SAS, 172 Rue de Charonne, Paris, 75011, France
| | | | | | - Juliane Simmchen
- Chair of Physical Chemistry, TU Dresden, 01069, Dresden, Germany
| |
Collapse
|
50
|
The crucial role of adhesion in the transmigration of active droplets through interstitial orifices. Nat Commun 2023; 14:1096. [PMID: 36841803 PMCID: PMC9968312 DOI: 10.1038/s41467-023-36656-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 02/09/2023] [Indexed: 02/26/2023] Open
Abstract
Active fluid droplets are a class of soft materials exhibiting autonomous motion sustained by an energy supply. Such systems have been shown to capture motility regimes typical of biological cells and are ideal candidates as building-block for the fabrication of soft biomimetic materials of interest in pharmacology, tissue engineering and lab on chip devices. While their behavior is well established in unconstrained environments, much less is known about their dynamics under strong confinement. Here, we numerically study the physics of a droplet of active polar fluid migrating within a microchannel hosting a constriction with adhesive properties, and report evidence of a striking variety of dynamic regimes and morphological features, whose properties crucially depend upon droplet speed and elasticity, degree of confinement within the constriction and adhesiveness to the pore. Our results suggest that non-uniform adhesion forces are instrumental in enabling the crossing through narrow orifices, in contrast to larger gaps where a careful balance between speed and elasticity is sufficient to guarantee the transition. These observations may be useful for improving the design of artificial micro-swimmers, of interest in material science and pharmaceutics, and potentially for cell sorting in microfluidic devices.
Collapse
|