1
|
Zheng RH, Wei WM. Theoretical investigation of vibrational energy transfer of water at the gas/liquid interface around 3400 cm-1. J Chem Phys 2025; 162:184101. [PMID: 40337930 DOI: 10.1063/5.0268335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 04/21/2025] [Indexed: 05/09/2025] Open
Abstract
Using molecular dynamics simulations based on neural network potentials and a mixed quantum/classical approach, we theoretically explore vibrational energy transfer pathways for OH groups around 3400 cm-1 at interfaces. Our calculations show that intramolecular vibrational energy transfer has a time constant of 369.2 fs, aligning with experimental findings. The reorientation time is 1624 fs. The intermolecular vibrational energy transfer rate is slower due to weak couplings between water molecules. Our results suggest that intramolecular energy transfer is the main driver of vibrational energy transfer for OH groups around 3400 cm-1 at the gas/water interface.
Collapse
Affiliation(s)
- Ren-Hui Zheng
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun, Beijing 100190, People's Republic of China
| | - Wen-Mei Wei
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, People's Republic of China
| |
Collapse
|
2
|
Li S, Shi R, Song J, Jiang X. Structure and Dissociation of Water at the Electrode-Solution Interface Studied by In Situ Vibrational Spectroscopic Techniques. Anal Chem 2025. [PMID: 40359500 DOI: 10.1021/acs.analchem.5c01651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
In aqueous electrochemistry, water in contact with charged surfaces is ubiquitous and indispensable, dictating the binding of solutes to electrode surfaces as well as the transport process of protons and electrons in the interfacial region. A comprehensive understanding of the structure and dissociation of interfacial water at the molecular level is extremely important yet challenging, given its critical role in various physical, chemical, and biological processes. In situ vibrational spectroscopic techniques serve as a powerful tool for acquiring the molecular structure of electrode surfaces and probing interfacial reaction mechanisms in real time. In this review, we briefly summarize the latest advances in the electric double layer model and the experimental methods employed at the electrode-solution interface. Particular emphasis is placed on in situ vibrational spectroscopic techniques that have unveiled new insights into the molecular structure of interfacial water across diverse electrode surfaces under ambient conditions. And then, it also provides an overview of recent progress on the subtle relationship between the structure of interfacial water and its dissociation activity, aiming to provide novel insights into the fields of electrochemistry, energy and catalysis.
Collapse
Affiliation(s)
- Shanshan Li
- School of Physics, Changchun Normal University, Changchun 130032, Jilin, China
- Research Institute for Scientific and Technological Innovation, Changchun Normal University, Changchun 130032, Jilin, China
| | - Ruijia Shi
- School of Physics, Changchun Normal University, Changchun 130032, Jilin, China
| | - Jiaru Song
- School of Physics, Changchun Normal University, Changchun 130032, Jilin, China
| | - Xiue Jiang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
3
|
Wang R, Tiwary P. Electric Field's Dueling Effects through Dehydration and Ion Separation in Driving NaCl Nucleation at Charged Nanoconfined Interfaces. J Am Chem Soc 2025. [PMID: 40344404 DOI: 10.1021/jacs.4c16419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
Investigating nucleation in charged nanoconfined environments under electric fields is crucial for many scientific and engineering applications. Here we study the nucleation of NaCl from aqueous solution near charged surfaces using machine-learning-augmented enhanced sampling molecular dynamics simulations. Our simulations successfully drive phase transitions between the liquid and solid phases of NaCl. The solid phase is stabilized under electric fields, particularly at an intermediate surface charge density. We examine which physical characteristics drive the nucleation of NaCl from aqueous solutions and find that the removal of solvent water from Cl- at the solid precursor surface plays a more critical role than the accumulation of ions. Our simulations reveal the competing effects of electric fields on nucleation processes: they facilitate the removal of water, promoting nucleation, but also promote the separation of ion pairs, thereby hindering nucleation. This work provides a framework for studying nucleation processes in nanoconfined environments under electric fields and provides physical insights for the design of electrochemistry materials.
Collapse
Affiliation(s)
- Ruiyu Wang
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, United States
| | - Pratyush Tiwary
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, United States
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
- University of Maryland Institute for Health Computing, Bethesda, Maryland 20852, United States
| |
Collapse
|
4
|
Zhang Y, Zheng Z, Zhu S, Xu L, Zhang Q, Gao J, Ye M, Shen S, Xing J, Wu M, Xu RX. Electroactive Electrospun Nanofibrous Scaffolds: Innovative Approaches for Improved Skin Wound Healing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416267. [PMID: 40190057 DOI: 10.1002/advs.202416267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/05/2025] [Indexed: 05/16/2025]
Abstract
The incidence and burden of skin wounds, especially chronic and complex wounds, have a profound impact on healthcare. Effective wound healing strategies require a multidisciplinary approach, and advances in materials science and bioengineering have paved the way for the development of novel wound healing dressing. In this context, electrospun nanofibers can mimic the architecture of the natural extracellular matrix and provide new opportunities for wound healing. Inspired by the bioelectric phenomena in the human body, electrospun nanofibrous scaffolds with electroactive characteristics are gaining widespread attention and gradually emerging. To this end, this review first summarizes the basic process of wound healing, the causes of chronic wounds, and the current status of clinical treatment, highlighting the urgency and importance of wound dressings. Then, the biological effects of electric fields, the preparation materials, and manufacturing techniques of electroactive electrospun nanofibrous (EEN) scaffolds are discussed. The latest progress of EEN scaffolds in enhancing skin wound healing is systematically reviewed, mainly including treatment and monitoring. Finally, the importance of EEN scaffold strategies to enhance wound healing is emphasized, and the challenges and prospects of EEN scaffolds are summarized.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Rehabilitation, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, P. R. China
- Department of Precision Machinery and Instrumentation, School of Engineering Science, University of Science and Technology of China, Hefei, Anhui, 230027, P. R. China
| | - Zhiyuan Zheng
- Department of Precision Machinery and Instrumentation, School of Engineering Science, University of Science and Technology of China, Hefei, Anhui, 230027, P. R. China
| | - Shilu Zhu
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215000, China
| | - Liang Xu
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215000, China
| | - Qingdong Zhang
- Department of Precision Machinery and Instrumentation, School of Engineering Science, University of Science and Technology of China, Hefei, Anhui, 230027, P. R. China
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215000, China
| | - Jie Gao
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215000, China
| | - Min Ye
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215000, China
| | - Shuwei Shen
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215000, China
| | - Jinyu Xing
- Department of Precision Machinery and Instrumentation, School of Engineering Science, University of Science and Technology of China, Hefei, Anhui, 230027, P. R. China
| | - Ming Wu
- Department of Rehabilitation, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, P. R. China
| | - Ronald X Xu
- Department of Precision Machinery and Instrumentation, School of Engineering Science, University of Science and Technology of China, Hefei, Anhui, 230027, P. R. China
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, 215000, China
| |
Collapse
|
5
|
Yuan Y, Li J, Zhu Y, Qiao Y, Kang Z, Wang Z, Tian X, Huang H, Lai W. Water in Electrocatalysis. Angew Chem Int Ed Engl 2025; 64:e202425590. [PMID: 39980470 DOI: 10.1002/anie.202425590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/06/2025] [Accepted: 02/20/2025] [Indexed: 02/22/2025]
Abstract
Renewable electricity-powered electrocatalysis technologies occupy a central position in clean energy conversion and the pursuit of a net-zero carbon emission future. Water can serve multiple roles in electrocatalytic reactions, for instance, as a reaction medium, reactant, modifier, promoter, etc. This significantly influences the mass transport, active site, intermediate adsorption and reaction kinetics, ultimately determining the electrocatalytic performance (e.g., activity, selectivity, and stability) as well as device efficiency. As the heart location where electrocatalytic reactions occur, the typical electrical-double layer is established at a water-electrode interface. Therefore, the comprehension and regulation of water are crucial topics in electrocatalysis, which encourages us to organize this review. We begin with the fundamental understanding on structure of water and its behavior under electrochemical conditions. Subsequently, we delve into the "water effect" by elucidating specific functions of water in electrocatalysis. Recent advances in manipulating water to enhance electrocatalytic efficiency of representative reactions such as hydrogen evolution/oxidation, oxygen evolution/reduction, CO2 reduction, N2 reduction and organic electrosynthesis, are also highlighted. We finally discuss the remaining challenges and future opportunities in this field.
Collapse
Affiliation(s)
- Yuliang Yuan
- School of Marine Science and Engineering, State Key Laboratory of Tropic Ocean Engineering Materials and Materials Evaluation, Hainan University, Haikou, Hainan, 570228, P. R. China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, China
| | - Jin Li
- School of Marine Science and Engineering, State Key Laboratory of Tropic Ocean Engineering Materials and Materials Evaluation, Hainan University, Haikou, Hainan, 570228, P. R. China
| | - Yiting Zhu
- College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, 210023, P. R. China
| | - Yan Qiao
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Zhenye Kang
- School of Marine Science and Engineering, State Key Laboratory of Tropic Ocean Engineering Materials and Materials Evaluation, Hainan University, Haikou, Hainan, 570228, P. R. China
| | - Zhitong Wang
- School of Marine Science and Engineering, State Key Laboratory of Tropic Ocean Engineering Materials and Materials Evaluation, Hainan University, Haikou, Hainan, 570228, P. R. China
| | - Xinlong Tian
- School of Marine Science and Engineering, State Key Laboratory of Tropic Ocean Engineering Materials and Materials Evaluation, Hainan University, Haikou, Hainan, 570228, P. R. China
| | - Hongwen Huang
- Key Laboratory of Mesoscopic Chemistry of MOE and Jiangsu Provincial Laboratory for Nanotechnology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Wenchuan Lai
- College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, 210023, P. R. China
| |
Collapse
|
6
|
Sakurai A, Takahashi S, Mochizuki T, Sugimoto T. Tip-Enhanced Sum Frequency Generation for Molecular Vibrational Nanospectroscopy. NANO LETTERS 2025; 25:6390-6398. [PMID: 40210593 PMCID: PMC12023042 DOI: 10.1021/acs.nanolett.4c06065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 04/12/2025]
Abstract
Vibrational sum frequency generation (SFG) is a nonlinear spectroscopic technique widely used to study the molecular structure and dynamics of surface systems. However, the spatial resolution achieved by far-field observations is constrained by the diffraction limit, obscuring molecular details in inhomogeneous structures smaller than the wavelength of light. To overcome this limitation, we developed a system for tip-enhanced SFG (TE-SFG) spectroscopy based on a scanning tunneling microscope. We successfully detected vibrational TE-SFG signals from adsorbed molecules on a gold substrate under ambient conditions. The phase analysis of interferometric SFG spectra provided information on molecular orientation. Furthermore, the observed TE-SFG signal was confirmed to originate from a highly localized region within a gap between the tip apex and the sample substrate. This method offers a novel platform for nonlinear optical nanospectroscopy, paving the way for the investigation of surface molecular systems beyond the diffraction limit.
Collapse
Affiliation(s)
- Atsunori Sakurai
- Institute
for Molecular Science, National Institutes
of Natural Sciences, Okazaki, Aichi 444-8585, Japan
- Graduate
Institute for Advanced Studies, SOKENDAI, Okazaki, Aichi 444-8585, Japan
- Laser-Driven
Electron-Acceleration Technology Group, RIKEN SPring-8 Center, Sayocho, Hyogo 679-5148, Japan
| | - Shota Takahashi
- Institute
for Molecular Science, National Institutes
of Natural Sciences, Okazaki, Aichi 444-8585, Japan
| | - Tatsuto Mochizuki
- Institute
for Molecular Science, National Institutes
of Natural Sciences, Okazaki, Aichi 444-8585, Japan
- Graduate
Institute for Advanced Studies, SOKENDAI, Okazaki, Aichi 444-8585, Japan
| | - Toshiki Sugimoto
- Institute
for Molecular Science, National Institutes
of Natural Sciences, Okazaki, Aichi 444-8585, Japan
- Graduate
Institute for Advanced Studies, SOKENDAI, Okazaki, Aichi 444-8585, Japan
- Laser-Driven
Electron-Acceleration Technology Group, RIKEN SPring-8 Center, Sayocho, Hyogo 679-5148, Japan
| |
Collapse
|
7
|
Hossain MN, Zhang L, Neagu R, Sun S. Exploring the properties, types, and performance of atomic site catalysts in electrochemical hydrogen evolution reactions. Chem Soc Rev 2025; 54:3323-3386. [PMID: 39981628 DOI: 10.1039/d4cs00333k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Atomic site catalysts (ASCs) have recently gained prominence for their potential in the electrochemical hydrogen evolution reaction (HER) due to their exceptional activity, selectivity, and stability. ASCs with individual atoms dispersed on a support material, offer expanded surface areas and increased mass efficiency. This is because each atom in these catalysts serves as an active site, which enhances their catalytic activity. This review is focused on providing a detailed analysis of ASCs in the context of the HER. It will delve into their properties, types, and performance to provide a comprehensive understanding of their role in electrochemical HER processes. The introduction part underscores HER's significance in transitioning to sustainable energy sources and emphasizes the need for innovative catalysts like ASCs. The fundamentals of the HER section emphasizes the importance of understanding the HER and highlights the key role that catalysts play in HER. The review also explores the properties of ASCs with a specific emphasis on their atomic structure and categorizes the types based on their composition and structure. Within each category of ASCs, the review discusses their potential as catalysts for the HER. The performance section focuses on a thorough evaluation of ASCs in terms of their activity, selectivity, and stability in HER. The performance section assesses ASCs in terms of activity, selectivity, and stability, delving into reaction mechanisms via experimental and theoretical approaches, including density functional theory (DFT) studies. The review concludes by addressing ASC-related challenges in HER and proposing future research directions, aiming to inspire further innovation in sustainable catalysts for electrochemical HER.
Collapse
Affiliation(s)
- M Nur Hossain
- Energy, Mining and Environment, National Research Council of Canada, Vancouver, BC, V6T 1W5, Canada.
| | - Lei Zhang
- Energy, Mining and Environment, National Research Council of Canada, Vancouver, BC, V6T 1W5, Canada.
| | - Roberto Neagu
- Energy, Mining and Environment, National Research Council of Canada, Vancouver, BC, V6T 1W5, Canada.
| | - Shuhui Sun
- Institut National de la Recherche Scientifque (INRS), Center Énergie Matériaux Télécommunications, Varennes, QC, J3X 1P7, Canada.
| |
Collapse
|
8
|
Yang C, Dai Z, Yue J, Wang G, Luo W. Dynamic surface reconstruction engineers interfacial water structure for efficient alkaline hydrogen oxidation. Chem Sci 2025; 16:5266-5274. [PMID: 40007670 PMCID: PMC11848406 DOI: 10.1039/d4sc08139k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Investigating the dynamic evolution of the catalyst and regulating the structure of interfacial water molecules participating in the hydrogen oxidation reaction (HOR) are essential for developing highly efficient electrocatalysts toward the practical application of anion exchange membrane fuel cells. Herein, we report an efficient strategy to activate hexagonal close-packed PtSe catalyst through in situ reconstruction that undergoes dynamic Se leaching and phase transition during linear sweep voltammetry cycles. The obtained Pt-Se catalyst presents as a surface Se atom-modified face-centered-cubic Pt-based nanocatalyst, and it exhibited remarkable catalytic performance in the alkaline HOR, showing an intrinsic activity of 0.552 mA cm-2 (j 0,s) and a mass activity of 1.084 mA μg-1 (j k,m @ 50 mV). The experimental results, including in situ surface-enhanced infrared absorption spectroscopy and density functional theory calculations suggest that the accumulated electrons on the surface-decorated Se of Pt-Se can induce the regulation of the interfacial water structure between the electrode and electrolyte surface in the electric double-layer region. Consequently, the migration of OH- species from the electrolyte to the catalyst surface can be apparently accelerated within this disordered water network, which together with the optimized intermediate thermodynamic binding energies, contribute to the enhanced alkaline HOR activity.
Collapse
Affiliation(s)
- Chaoyi Yang
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Zihao Dai
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Jianchao Yue
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Guangqin Wang
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 P. R. China
| | - Wei Luo
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan Hubei 430072 P. R. China
| |
Collapse
|
9
|
Li Y, Zhang S, Li B, Su Y, Kong J, Li J. Proton Relay in Hydrogen-Bond Networks Promotes Alkaline Hydrogen Evolution Electrocatalysis. ACS NANO 2025; 19:7401-7416. [PMID: 39951681 DOI: 10.1021/acsnano.5c00318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2025]
Abstract
Common O-/H-down orientation of H2O molecules on electrocatalysts brings favorable OH/H delivery; however, adverse H/OH delivery in their dissociation process hampers the H2O dissociation kinetics of the alkaline hydrogen evolution reaction (HER). To overcome this challenge, we raised a synergetic H2O dissociation concept of metal-supported electrocatalysts involving efficient OH delivery from O-down H2O to the metal, timely proton relay from O-down H2O on the metal to H-down H2O on the support through the hydrogen-bond network, and prompt H delivery from H-down H2O to the support. After theoretically profiling that a high work function difference between the metal and the support (ΔΦ) induces a strong electric field at the metal-support interface that increases hydrogen-bond connectivity to promote proton relay, we practiced this concept over cobalt phosphide-supported ruthenium (Ru/CoP) catalysts with a high ΔΦ = 0.4 eV, achieving a record-high Ru utilization HER activity of 66.1 A mgRu-1 at -0.1 V vs RHE. The insights into this synergetic H2O dissociation mechanism provide opportunity for the design of bicomponent alkaline HER electrocatalysts.
Collapse
Affiliation(s)
- Yuefei Li
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Shishi Zhang
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China
| | - Boyang Li
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yaqiong Su
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jie Kong
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jiayuan Li
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
10
|
Rashmi R, Balogun TO, Azom G, Agnew H, Kumar R, Paesani F. Revealing the Water Structure at Neutral and Charged Graphene/Water Interfaces through Quantum Simulations of Sum Frequency Generation Spectra. ACS NANO 2025; 19:4876-4886. [PMID: 39835751 DOI: 10.1021/acsnano.4c16486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The structure and dynamics of water at charged graphene interfaces fundamentally influence molecular responses to electric fields with implications for applications in energy storage, catalysis, and surface chemistry. Leveraging the realism of the MB-pol data-driven many-body potential and advanced path-integral quantum dynamics, we analyze the vibrational sum frequency generation (vSFG) spectrum of graphene/water interfaces under varying surface charges. Our quantum simulations reveal a distinctive dangling OH peak in the vSFG spectrum at neutral graphene, consistent with recent experimental findings yet markedly different from those of earlier studies. As the graphene surface becomes positively charged, interfacial water molecules reorient, decreasing the intensity of the dangling OH peak as the OH groups turn away from the graphene. In contrast, water molecules orient their OH bonds toward negatively charged graphene, leading to a prominent dangling OH peak in the corresponding vSFG spectrum. This charge-induced reorganization generates a diverse range of hydrogen-bonding topologies at the interface driven by variations in the underlying electrostatic interactions. Importantly, these structural changes extend into deeper water layers, creating an unequal distribution of molecules with OH bonds pointing toward and away from the graphene sheet. This imbalance amplifies bulk spectral features, underscoring the complexity of many-body interactions that shape the molecular structure of water at charged graphene interfaces.
Collapse
Affiliation(s)
- Richa Rashmi
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Toheeb O Balogun
- Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Golam Azom
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Henry Agnew
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
| | - Revati Kumar
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Francesco Paesani
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093, United States
- Materials Science and Engineering, University of California San Diego, La Jolla, California 92093, United States
- Halicioğlu Data Science Institute, University of California San Diego, La Jolla, California 92093, United States
- San Diego Supercomputer Center, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
11
|
Wang Z, Chen M, Wu J, Ji X, Zeng L, Peng J, Yan J, Kornyshev AA, Mao B, Feng G. Constant-Potential Modeling of Electrical Double Layers Accounting for Electron Spillover. PHYSICAL REVIEW LETTERS 2025; 134:046201. [PMID: 39951602 DOI: 10.1103/physrevlett.134.046201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/13/2024] [Accepted: 12/05/2024] [Indexed: 02/16/2025]
Abstract
Constant-potential molecular dynamics (MD) simulations are indispensable for understanding the structure, capacitance, and dynamics of electrical double layers (EDLs) at the atomistic level. However, the classical constant-potential method, relying on the so-called "fluctuating charges" to keep electrode equipotential, overlooks quantum effects on the electrode and always underestimates EDL capacitance for typical metal electrode and aqueous electrolyte interfaces. Here, we propose a constant potential method accounting for electron spillover on the outermost nuclei of the electrode. For EDLs at Au(111) electrodes, our MD simulation reveals bell-shaped capacitance curves in magnitude and shape both quantitatively consistent with experiments. It unveils the electrode-polarization-dependent local electric fields, agreeing with experimental observations of redshift vibration of interfacial water under negative polarization and predicting a blueshift under positive polarization, and further identifies geometry dependence of two timescales during charging.
Collapse
Affiliation(s)
- Zhenxiang Wang
- Huazhong University of Science and Technology, State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Wuhan 430074, China
| | - Ming Chen
- Huazhong University of Science and Technology, State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Wuhan 430074, China
| | - Jiedu Wu
- Xiamen University, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen, China
| | - Xiangyu Ji
- Huazhong University of Science and Technology, State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Wuhan 430074, China
| | - Liang Zeng
- Huazhong University of Science and Technology, State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Wuhan 430074, China
| | - Jiaxing Peng
- Huazhong University of Science and Technology, State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Wuhan 430074, China
| | - Jiawei Yan
- Xiamen University, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen, China
| | - Alexei A Kornyshev
- Imperial College London, Department of Chemistry, Faculty of Natural Sciences, Molecular Sciences Research Hub, White City Campus, W12 0BZ, London, United Kingdom
| | - Bingwei Mao
- Xiamen University, State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen, China
| | - Guang Feng
- Huazhong University of Science and Technology, State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Wuhan 430074, China
| |
Collapse
|
12
|
Wan HJ, Meng XZ, Cao FH. Sulfide and Hydrogen Bond Networks in the Electric Double Layer: Key Factors for Titanium Passivation Film Stability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:719-728. [PMID: 39718465 DOI: 10.1021/acs.langmuir.4c03980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Hydrogen sulfide (H2S), carbonyl sulfide (COS), and dimethyl sulfide (DMS) are the primary sulfur compounds found in seawater, which cause pitting corrosion on the oxide passivation film of titanium, known as "the marine metals". In this study, density functional theory (DFT) was used to analyze the adsorption and surface electronic properties of these three small molecules on the anatase TiO2(101) surface. The analysis was conducted through adsorption energy, work function, Mulliken charge population, and density of states (DOS). The hydrogen bond network structure of the electric double layer (EDL) was studied for these small-molecule systems using ab initio molecular dynamics (AIMD). The optimal adsorption configurations for H2S, COS, and DMS on the anatase TiO2(101) surface are 2Ob-vertical, O-down-vertical, and Ob-parallel, with adsorption energies of -1.32, -0.67, and -1.86 eV, respectively. The surface charge transfer was also investigated. Through comparative AIMD simulations of three different aqueous solutions on the TiO2(101) surface, we observed that COS exerts a more pronounced influence on the electrical double layer within 3.00 Å of the TiO2(101) surface. Specifically, the hydrogen atoms of water tend to aggregate toward the Ob atoms, forming hydrogen bonds, which significantly impacts the corrosion resistance of the TiO2 surface.
Collapse
Affiliation(s)
- Hong-Ji Wan
- School of Materials, Sun Yat-sen University, Shenzhen 518107, China
| | - Xian-Ze Meng
- School of Materials, Sun Yat-sen University, Shenzhen 518107, China
| | - Fa-He Cao
- School of Materials, Sun Yat-sen University, Shenzhen 518107, China
- School of Materials, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
13
|
Berthoumieux H, Démery V, Maggs AC. Nonlinear conductivity of aqueous electrolytes: Beyond the first Wien effect. J Chem Phys 2024; 161:184504. [PMID: 39530370 DOI: 10.1063/5.0226773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
The conductivity of strong electrolytes increases under high electric fields, a nonlinear response known as the first Wien effect. Here, using molecular dynamics simulations, we show that this increase is almost suppressed in moderately concentrated aqueous electrolytes due to the alignment of the water molecules by the electric field. As a consequence of this alignment, the permittivity of water decreases and becomes anisotropic, an effect that can be measured in simulations and reproduced by a model of water molecules as dipoles. We incorporate the resulting anisotropic interactions between the ions into a stochastic density field theory and calculate ionic correlations as well as corrections to the Nernst-Einstein conductivity, which are in qualitative agreement with the numerical simulations.
Collapse
Affiliation(s)
- Hélène Berthoumieux
- UMR CNRS Gulliver 7083, ESPCI Paris, PSL Research University, 75005 Paris, France
| | - Vincent Démery
- UMR CNRS Gulliver 7083, ESPCI Paris, PSL Research University, 75005 Paris, France
- Univ Lyon, ENSL, CNRS, Laboratoire de Physique, F-69342 Lyon, France
| | - Anthony C Maggs
- UMR CNRS Gulliver 7083, ESPCI Paris, PSL Research University, 75005 Paris, France
| |
Collapse
|
14
|
Cui WG, Gao F, Na G, Wang X, Li Z, Yang Y, Niu Z, Qu Y, Wang D, Pan H. Insights into the pH effect on hydrogen electrocatalysis. Chem Soc Rev 2024; 53:10253-10311. [PMID: 39239864 DOI: 10.1039/d4cs00370e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Hydrogen electrocatalytic reactions, including the hydrogen evolution reaction (HER) and the hydrogen oxidation reaction (HOR), play a crucial role in a wide range of energy conversion and storage technologies. However, the HER and HOR display anomalous non-Nernstian pH dependent kinetics, showing two to three orders of magnitude sluggish kinetics in alkaline media compared to that in acidic media. Fundamental understanding of the origins of the intrinsic pH effect has attracted substantial interest from the electrocatalysis community. More critically, a fundamental molecular level understanding of this effect is still debatable, but is essential for developing active, stable, and affordable fuel cells and water electrolysis technologies. Against this backdrop, in this review, we provide a comprehensive overview of the intrinsic pH effect on hydrogen electrocatalysis, covering the experimental observations, underlying principles, and strategies for catalyst design. We discuss the strengths and shortcomings of various activity descriptors, including hydrogen binding energy (HBE) theory, bifunctional theory, potential of zero free charge (pzfc) theory, 2B theory and other theories, across different electrolytes and catalyst surfaces, and outline their interrelations where possible. Additionally, we highlight the design principles and research progress in improving the alkaline HER/HOR kinetics by catalyst design and electrolyte optimization employing the aforementioned theories. Finally, the remaining controversies about the pH effects on HER/HOR kinetics as well as the challenges and possible research directions in this field are also put forward. This review aims to provide researchers with a comprehensive understanding of the intrinsic pH effect and inspire the development of more cost-effective and durable alkaline water electrolyzers (AWEs) and anion exchange membrane fuel cells (AMFCs) for a sustainable energy future.
Collapse
Affiliation(s)
- Wen-Gang Cui
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Fan Gao
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Guoquan Na
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Xingqiang Wang
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Zhenglong Li
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Yaxiong Yang
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Zhiqiang Niu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| | - Yongquan Qu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, P. R. China.
| |
Collapse
|
15
|
Yu CC, Chiang KY, Dhinojwala A, Bonn M, Hunger J, Nagata Y. Flipping Water Orientation at the Surface of Water-in-Salt and Salt-in-Water Solutions. J Phys Chem Lett 2024; 15:10265-10271. [PMID: 39360956 PMCID: PMC11472344 DOI: 10.1021/acs.jpclett.4c01834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/11/2024]
Abstract
Salt-in-water and water-in-salt mixtures are promising for battery applications and fine-tuning of room-temperature ionic liquid (RTIL) properties. Although critical processes take place at interfaces of these systems, including charge transfer and heterogeneous catalytic reactions, the microscopic interfacial structures remain unclear. Here, we apply heterodyne-detected sum-frequency generation spectroscopy to aqueous solutions of imidazolium-based RTILs to unveil the microscopic structure of the interfaces of these solutions with air. Our results show that, under salt-in-water conditions, the orientation of the OH group hydrogen-bonded to the other water molecules flips from the OH group pointing down into the liquid for pure water to up due to the accumulation of anions in the cation-rich interfacial region. However, under the water-in-salt condition, the interfacial water molecules are confined by RTIL, and their orientation is down. Details of the water organization depend critically on the alkyl chain length of the imidazolium cation. Our results demonstrate that the surface structure can be tuned by altering the molecular structure and concentration of the RTIL.
Collapse
Affiliation(s)
- Chun-Chieh Yu
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Kuo-Yang Chiang
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Ali Dhinojwala
- Department
of Polymer Science, The University of Akron, Akron, Ohio 44325-3909, United States
| | - Mischa Bonn
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Johannes Hunger
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Yuki Nagata
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
16
|
Joll K, Schienbein P, Rosso KM, Blumberger J. Machine learning the electric field response of condensed phase systems using perturbed neural network potentials. Nat Commun 2024; 15:8192. [PMID: 39294144 PMCID: PMC11411082 DOI: 10.1038/s41467-024-52491-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024] Open
Abstract
The interaction of condensed phase systems with external electric fields is of major importance in a myriad of processes in nature and technology, ranging from the field-directed motion of cells (galvanotaxis), to geochemistry and the formation of ice phases on planets, to field-directed chemical catalysis and energy storage and conversion systems including supercapacitors, batteries and solar cells. Molecular simulation in the presence of electric fields would give important atomistic insight into these processes but applications of the most accurate methods such as ab-initio molecular dynamics (AIMD) are limited in scope by their computational expense. Here we introduce Perturbed Neural Network Potential Molecular Dynamics (PNNP MD) to push back the accessible time and length scales of such simulations. We demonstrate that important dielectric properties of liquid water including the field-induced relaxation dynamics, the dielectric constant and the field-dependent IR spectrum can be machine learned up to surprisingly high field strengths of about 0.2 V Å-1 without loss in accuracy when compared to ab-initio molecular dynamics. This is remarkable because, in contrast to most previous approaches, the two neural networks on which PNNP MD is based are exclusively trained on molecular configurations sampled from zero-field MD simulations, demonstrating that the networks not only interpolate but also reliably extrapolate the field response. PNNP MD is based on rigorous theory yet it is simple, general, modular, and systematically improvable allowing us to obtain atomistic insight into the interaction of a wide range of condensed phase systems with external electric fields.
Collapse
Affiliation(s)
- Kit Joll
- Department of Physics and Astronomy and Thomas Young Centre, University College London, London, UK
| | - Philipp Schienbein
- Department of Physics and Astronomy and Thomas Young Centre, University College London, London, UK.
- Department of Physics, Imperial College London, South Kensington, London, UK.
| | - Kevin M Rosso
- Pacific Northwest National Laboratory, Richland, Washington, UK
| | - Jochen Blumberger
- Department of Physics and Astronomy and Thomas Young Centre, University College London, London, UK.
| |
Collapse
|
17
|
Fellows AP, Duque ÁD, Balos V, Lehmann L, Netz RR, Wolf M, Thämer M. How Thick is the Air-Water Interface?─A Direct Experimental Measurement of the Decay Length of the Interfacial Structural Anisotropy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:18760-18772. [PMID: 39171356 PMCID: PMC11375779 DOI: 10.1021/acs.langmuir.4c02571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The air-water interface is a highly prevalent phase boundary impacting many natural and artificial processes. The significance of this interface arises from the unique properties of water molecules within the interfacial region, with a crucial parameter being the thickness of its structural anisotropy, or "healing depth". This quantity has been extensively assessed by various simulations which have converged to a prediction of a remarkably short length of ∼6 Å. Despite the absence of any direct experimental measurement of this quantity, this predicted value has surprisingly become widely accepted as fact. Using an advancement in nonlinear vibrational spectroscopy, we provide the first measurement of this thickness and, indeed, find it to be ∼6-8 Å, finally confirming the prior predictions. Lastly, by combining the experimental results with depth-dependent second-order spectra calculated from ab initio parametrized molecular dynamics simulations, which are also in excellent agreement with this experimental result, we shed light on this surprisingly short correlation length of molecular orientations at the interface.
Collapse
Affiliation(s)
- Alexander P Fellows
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Álvaro Díaz Duque
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Vasileios Balos
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA Nanociencia), 28049 Madrid, Spain
| | - Louis Lehmann
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Roland R Netz
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Martin Wolf
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Martin Thämer
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| |
Collapse
|
18
|
Shahriar R, Zhao B, Aravind I, Cai Z, Wang YY, Zhang B, Cronin SB. Low Reducing Potentials Enabled by CaF 2-Supported Graphene Electrodes in High Impedance Solutions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:45724-45731. [PMID: 39161318 DOI: 10.1021/acsami.4c09551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
We report electrochemical measurements using in situ Raman spectroscopy at graphene/D2O interfaces under extremely low applied potentials. Here, the hydrophobic and catalytically inert nature of graphene and the insulating nature of the deionized (DI) water enables potentials as low as Vapplied = -7 V vs Ag/AgCl to be applied without exceeding 200 μA/cm2 of current density. At higher currents, bubble formation (i.e., hydrogen evolution reaction) prohibits reliable spectra from being obtained from the electrode surface. Using CaF2 as the supporting substrate enables significantly lower reducing potentials to be reached compared to glass substrates, likely due to trapped charge and impurities in the glass substrate. G band Raman spectra taken under various applied electrochemical potentials exhibit a linear relationship between the G band shift (ΔωG) and the applied potential, with blueshifts as high as ΔωG = 18 cm-1. These large Raman shifts indicate a large change in the Fermi level of ΔEF = -0.43 eV for graphene electrodes in contact with water, favoring reduction half-reactions. Based on the solution resistance measurement, there is a VIR = 3.1 V voltage drop across the solution for D2O (when the applied potential was Vapplied = -7 V vs Ag/AgCl) and the effective reducing potential on the working electrode is Veffective = -3.9 V vs Ag/AgCl. We have also tested these graphene electrodes in ionic liquids [DEME][TFSI], which are limited to applied potentials above Vapplied = -2.7 V vs Ag/AgCl and a corresponding shift in the Fermi level ΔEF = -0.32 eV, indicating that pure water can provide a more robust electrolyte for reaching low reducing potentials than ionic liquids.
Collapse
Affiliation(s)
- Rifat Shahriar
- Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Bofan Zhao
- Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Indu Aravind
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| | - Zhi Cai
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Yu Yun Wang
- Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Boxin Zhang
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Stephen B Cronin
- Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089, United States
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
19
|
Wang R, Tiwary P. Atomic scale insights into NaCl nucleation in nanoconfined environments. Chem Sci 2024:d4sc04042b. [PMID: 39234215 PMCID: PMC11367593 DOI: 10.1039/d4sc04042b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/23/2024] [Indexed: 09/06/2024] Open
Abstract
In this work we examine the nucleation from NaCl aqueous solutions within nano-confined environments, employing enhanced sampling molecular dynamics simulations integrated with machine learning-derived reaction coordinates. Through our simulations, we successfully induce phase transitions between solid, liquid, and a hydrated phase, typically observed at lower temperatures in bulk environments. Interestingly, while generally speaking nano-confinement serves to stabilize the solid phase and elevate melting points, there are subtle variations in the thermodynamics of competing phases with the precise extent of confinement. Our simulations explain these findings by underscoring the significant role of water, alongside ion aggregation and subtle, anisotropic dielectric behavior, in driving nucleation within nano-confined environments. This report thus provides a framework for sampling, analyzing and understanding nucleation processes under nano-confinement.
Collapse
Affiliation(s)
- Ruiyu Wang
- Institute for Physical Science and Technology, University of Maryland College Park MD 20742 USA
| | - Pratyush Tiwary
- Institute for Physical Science and Technology, University of Maryland College Park MD 20742 USA
- Department of Chemistry and Biochemistry, University of Maryland College Park MD 20742 USA
- University of Maryland Institute for Health Computing Bethesda Maryland 20852 USA
| |
Collapse
|
20
|
Zhang P, Feng M, Xu X. Double-Layer Distribution of Hydronium and Hydroxide Ions in the Air-Water Interface. ACS PHYSICAL CHEMISTRY AU 2024; 4:336-346. [PMID: 39069983 PMCID: PMC11274287 DOI: 10.1021/acsphyschemau.3c00076] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 07/30/2024]
Abstract
The acid-base nature of the aqueous interface has long been controversial. Most macroscopic experiments suggest that the air-water interface is basic based on the detection of negative charges at the interface that indicates the enrichment of hydroxides (OH-), whereas microscopic studies mostly support the acidic air-water interface with the observation of hydronium (H3O+) accumulation in the top layer of the interface. It is crucial to clarify the interfacial preference of OH- and H3O+ ions for rationalizing the debate. In this work, we perform deep potential molecular dynamics simulations to investigate the preferential distribution of OH- and H3O+ ions at the aqueous interfaces. The neural network potential energy surface is trained based on density functional theory calculations with the SCAN functional, which can accurately describe the diffusion of these two ions both in the interface and in the bulk water. In contrast to the previously reported single ion enrichment, we show that both OH- and H3O+ surprisingly prefer to accumulate in interfaces but at different interfacial depths, rendering a double-layer ionic distribution within ∼1 nm near the Gibbs dividing surface. The H3O+ preferentially resides in the topmost layer of the interface, but the OH-, which is enriched in the deeper interfacial layer, has a higher equilibrium concentration due to the more negative free energy of interfacial stabilization [-0.90 (OH-) vs -0.56 (H3O+) kcal/mol]. The present finding of the ionic double-layer distribution may qualitatively offer a self-consistent explanation for the long-term controversy about the acid-base nature of the air-water interface.
Collapse
Affiliation(s)
- Pengchao Zhang
- Center
for Combustion Energy, Department of Energy and Power Engineering,
and Key Laboratory for Thermal Science and Power Engineering of Ministry
of Education, Tsinghua University, Beijing 100084, China
| | - Muye Feng
- School
of Mechanical and Power Engineering, Nanjing
Tech University, Nanjing 211816, China
| | - Xuefei Xu
- Center
for Combustion Energy, Department of Energy and Power Engineering,
and Key Laboratory for Thermal Science and Power Engineering of Ministry
of Education, Tsinghua University, Beijing 100084, China
| |
Collapse
|
21
|
Aravind I, Wang Y, Cai Z, Li R, Shahriar R, Gibson GN, Guignon E, Cady NC, Page WD, Pilar A, Cronin SB. Voltage-induced modulation of interfacial ionic liquids measured using surface plasmon resonant grating nanostructures. J Chem Phys 2024; 161:034702. [PMID: 39007387 DOI: 10.1063/5.0202642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
We have used surface plasmon resonant metal gratings to induce and probe the dielectric response (i.e., electro-optic modulation) of ionic liquids (ILs) at electrode interfaces. Here, the cross-plane electric field at the electrode surface modulates the refractive index of the IL due to the Pockels effect. This is observed as a shift in the resonant angle of the grating (i.e., Δϕ), which can be related to the change in the local index of refraction of the electrolyte (i.e., Δnlocal). The reflection modulation of the IL is compared against a polar (D2O) and a non-polar solvent (benzene) to confirm the electro-optic origin of resonance shift. The electrostatic accumulation of ions from the IL induces local index changes to the gratings over the extent of electrical double layer (EDL) thickness. Finite difference time domain simulations are used to relate the observed shifts in the plasmon resonance and change in reflection to the change in the local index of refraction of the electrolyte and the thickness of the EDL. Simultaneously using the wavelength and intensity shift of the resonance enables us to determine both the effective thickness and Δn of the double layer. We believe that this technique can be used more broadly, allowing the dynamics associated with the potential-induced ordering and rearrangement of ionic species in electrode-solution interfaces.
Collapse
Affiliation(s)
- Indu Aravind
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, USA
| | - Yu Wang
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, USA
| | - Zhi Cai
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, USA
| | - Ruoxi Li
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, USA
| | - Rifat Shahriar
- Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089, USA
| | - George N Gibson
- Department of Physics, University of Connecticut, Storrs, Connecticut 06269, USA
- Ciencia Inc., East Hartford, Connecticut 06108, USA
| | | | - Nathaniel C Cady
- Colleges of Nanoscale Science and Engineering, SUNY Polytechnic Institute, Albany, New York 12203, USA
| | | | - Arturo Pilar
- Ciencia Inc., East Hartford, Connecticut 06108, USA
| | - Stephen B Cronin
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, USA
- Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089, USA
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
22
|
Zhu J, Guo P, Zhang J, Jiang Y, Chen S, Liu J, Jiang J, Lan J, Zeng XC, He X, Yang J. Superdiffusive Rotation of Interfacial Water on Noble Metal Surface. J Am Chem Soc 2024; 146:16281-16294. [PMID: 38812457 DOI: 10.1021/jacs.4c04588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Interfacial water on a metal surface acts as an active layer through the reorientation of water, thereby facilitating the energy transfer and chemical reaction across the metal surface in various physicochemical and industrial processes. However, how this active interfacial water collectively behaves on flat noble metal substrates remains largely unknown due to the experimental limitation in capturing librational vibrational motion of interfacial water and prohibitive computational costs at the first-principles level. Herein, by implementing a machine-learning approach to train neural network potentials, we enable performing advanced molecular dynamics simulations with ab initio accuracy at a nanosecond scale to map the distinct rotational motion of water molecules on a metal surface at room temperature. The vibrational density of states of the interfacial water with two-layer profiles reveals that the rotation and vibration of water within the strong adsorption layer on the metal surface behave as if the water molecules in the bulk ice, wherein the O-H stretching frequency is well consistent with the experimental results. Unexpectedly, the water molecules within the adjacent weak adsorption layer exhibit superdiffusive rotation, contrary to the conventional diffusive rotation of bulk water, while the vibrational motion maintains the characteristic of bulk water. The mechanism underlying this abnormal superdiffusive rotation is attributed to the translation-rotation decoupling of water, in which the translation is restrained by the strong hydrogen bonding within the bilayer interfacial water, whereas the rotation is accelerated freely by the asymmetric water environment. This superdiffusive rotation dynamics may elucidate the experimentally observed large fluctuation of the potential of zero charge on Pt and thereby the conventional Helmholtz layer model revised by including the contribution of interfacial water orientation. The surprising superdiffusive rotation of vicinal water next to noble metals will shed new light on the physicochemical processes and the activity of water molecules near metal electrodes or catalysts.
Collapse
Affiliation(s)
- Jiabao Zhu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Pan Guo
- Department of Physics, Shanghai Key Laboratory of High Temperature Superconductors, International Centre of Quantum and Molecular Structures, Shanghai University, Shanghai 200444, China
| | - Jinhuan Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yizhi Jiang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Shiwei Chen
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Jinfeng Liu
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jian Jiang
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Jinggang Lan
- Department of Chemistry, New York University, New York, New York 10003, United States
- Simons Center for Computational Physical Chemistry at New York University, New York, New York 10003, United States
| | - Xiao Cheng Zeng
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- New York University-East China Normal University Center for Computational Chemistry,New York University Shanghai, Shanghai 200062, China
| | - Jinrong Yang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
23
|
Chen X, Chen L, Chen C, Shi D, Song J, Qin Y, Wang X, Amjad MM, Sun D, Sun B, Zhang K. Rational Design of Dynamic Interface Water Evolution on Turing Electrocatalyst toward the Industrial Hydrogen Production. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401110. [PMID: 38549546 DOI: 10.1002/adma.202401110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/19/2024] [Indexed: 04/06/2024]
Abstract
Manipulating the structural and kinetic dissociation processes of water at the catalyst-electrolyte interface is vital for alkaline hydrogen evolution reactions (HER) at industrial current density. This is seldom actualized due to the intricacies of the electrochemical reaction interface. Herein, this work introduces a rapid, nonequilibrium cooling technique for synthesizing ternary Turing catalysts with short-range ordered structures (denoted as FeNiRu/C). These advanced structures empower the FeNiRu/C to exhibit excellent HER performance in 1 m KOH with an ultralow overpotential of 6.5 and 166.2 mV at 10 and 1000 mA cm-2, respectively, and a specific activity 7.3 times higher than that of Pt/C. Comprehensive mechanistic analyses reveal that abundant atomic species form asymmetric atomic electric fields on the catalyst surface inducing a directed evolution and the dissociation process of interfacial H2O molecules. In addition, the locally topologized structure effectively mitigates the high hydrogen coverage of the active site induced by the high current density. The establishment of the relationship between free water population and HER activity provides a new paradigm for the design of industrially relevant high performance alkaline HER catalysts.
Collapse
Affiliation(s)
- Xinyu Chen
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, 210094, China
| | - Lizhen Chen
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-based Composites, University of Göttingen, Büsgenweg 4, 37077, Göttingen, Germany
| | - Chuntao Chen
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, 210094, China
| | - Diwei Shi
- School of Naval Architecture and Maritime, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Jiexi Song
- School of Physical Science and Technology, Northwestern Polytechnical University, Xi 'an, 710072, China
| | - Yanqing Qin
- School of Physical Science and Technology, Northwestern Polytechnical University, Xi 'an, 710072, China
| | - Xiangmei Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, 210094, China
| | - Majeed Muhammad Amjad
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, 210094, China
| | - Dongping Sun
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, 210094, China
| | - Bianjing Sun
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, 200 Xiao Ling Wei Street, Nanjing, 210094, China
| | - Kai Zhang
- Sustainable Materials and Chemistry, Department of Wood Technology and Wood-based Composites, University of Göttingen, Büsgenweg 4, 37077, Göttingen, Germany
| |
Collapse
|
24
|
Xia Q, Pan Y, Liu B, Zhang X, Li E, Shen T, Li S, Xu N, Ding J, Wang C, Vecitis CD, Gao G. Solar-driven abnormal evaporation of nanoconfined water. SCIENCE ADVANCES 2024; 10:eadj3760. [PMID: 38820164 PMCID: PMC11141626 DOI: 10.1126/sciadv.adj3760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 04/29/2024] [Indexed: 06/02/2024]
Abstract
Intrinsic water evaporation demands a high energy input, which limits the efficacy of conventional interfacial solar evaporators. Here, we propose a nanoconfinement strategy altering inherent properties of water for solar-driven water evaporation using a highly uniform composite of vertically aligned Janus carbon nanotubes (CNTs). The water evaporation from the CNT shows the unexpected diameter-dependent evaporation rate, increasing abnormally with decreasing nanochannel diameter. The evaporation rate of CNT10@AAO evaporator thermodynamically exceeds the theoretical limit (1.47 kg m-2 hour-1 under one sun). A hybrid experimental, theoretical, and molecular simulation approach provided fundamental evidence of different nanoconfined water properties. The decreased number of H-bonds and lower interaction energy barrier of water molecules within CNT and formed water clusters may be one of the reasons for the less evaporative energy activating rapid nanoconfined water vaporization.
Collapse
Affiliation(s)
- Qiancheng Xia
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Yifan Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
- Laboratoire de Physique des Solides Bât. 510, Université Paris Saclay, 91405 Orsay, France
| | - Bin Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xin Zhang
- College of Safety Science and Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, China
| | - Enze Li
- Institute of Resources and Environmental Engineering, State Environmental Protection Key Laboratory of Efficient Utilization Technology of Coal Waste Resources, Shanxi University, Taiyuan 030006, China
| | - Tao Shen
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Shuang Li
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Ning Xu
- College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Jie Ding
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Chao Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Chad D. Vecitis
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Guandao Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
- Chongqing Innovation Research Institute of Nanjing University, Chongqing 401121, China
| |
Collapse
|
25
|
Gao X, Li J, Yang XY. Technique for in situ probing the dissociation of interfacial water. Sci Bull (Beijing) 2024; 69:1355-1358. [PMID: 38555261 DOI: 10.1016/j.scib.2024.03.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Affiliation(s)
- Xiubo Gao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & Shenzhen Research Institute & Laoshan Laboratory, Wuhan University of Technology, Wuhan 430070, China
| | - Jing Li
- Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Xiao-Yu Yang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & Shenzhen Research Institute & Laoshan Laboratory, Wuhan University of Technology, Wuhan 430070, China; School of Engineering and Applied Sciences, Harvard University, Cambridge MA, 02138, USA.
| |
Collapse
|
26
|
Wang Y, Tang F, Yu X, Ohto T, Nagata Y, Bonn M. Heterodyne-Detected Sum-Frequency Generation Vibrational Spectroscopy Reveals Aqueous Molecular Structure at the Suspended Graphene/Water Interface. Angew Chem Int Ed Engl 2024; 63:e202319503. [PMID: 38478726 DOI: 10.1002/anie.202319503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Indexed: 04/12/2024]
Abstract
Graphene, a transparent two-dimensional conductive material, has brought extensive new perspectives and prospects to various aqueous technological systems, such as desalination membranes, chemical sensors, energy storage, and energy conversion devices. Yet, the molecular-level details of graphene in contact with aqueous electrolytes, such as water orientation and hydrogen bond structure, remain elusive or controversial. Here, we employ surface-specific heterodyne-detected sum-frequency generation (HD-SFG) vibrational spectroscopy to re-examine the water molecular structure at a freely suspended graphene/water interface. We compare the response from the air/graphene/water system to that from the air/water interface. Our results indicate that theχ y y z 2 ${{\chi }_{yyz}^{\left(2\right)}}$ spectrum recorded from the air/graphene/water system arises from the topmost 1-2 water layers in contact with the graphene, with the graphene itself not generating a significant SFG response. Compared to the air/water interface response, the presence of monolayer graphene weakly affects the interfacial water. Graphene weakly affects the dangling O-H group, lowering its frequency through its interaction with the graphene sheet, and has a very small effect on the hydrogen-bonded O-H group. Molecular dynamics simulations confirm our experimental observation. Our work provides molecular insight into the interfacial structure at a suspended graphene/water interface, relevant to various technological applications of graphene.
Collapse
Affiliation(s)
- Yongkang Wang
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Fujie Tang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, 361005, Xiamen, China
- Laboratory of AI for Electrochemistry (AI4EC), IKKEM, 361005, Xiamen, China
| | - Xiaoqing Yu
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Tatsuhiko Ohto
- Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Yuki Nagata
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Mischa Bonn
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| |
Collapse
|
27
|
Liu X, Chen W, Tang Y, Xiao S, Li Q, Ding W, Wu L, Tian R, Li R, Li H. Asymmetric response of transition metal cationic orbitals to applied electric field. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133718. [PMID: 38394891 DOI: 10.1016/j.jhazmat.2024.133718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 01/28/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024]
Abstract
Understanding the quantum mechanical mechanisms underlying atomic/ionic interfacial processes and phenomena, particularly their dependence on the electronic orbital rearrangement of atoms/ions in an external electric field, remains a significant challenge. This study investigated the asymmetric response of transition metal (TM) cationic orbitals when subjected to an applied electric field. Quantum mechanical calculations were employed to quantify the newly formed hybrid orbitals and evaluate the corresponding orbital energies of the TM cations. Analysis of the quantitative contribution of asymmetric orbital hybridization to TM-surface interactions showed a significant change in orbital energy and increased effective charges of TM cations at the charged surface. This asymmetric response, induced by a negative external electric field generated from the structural charges of clay minerals (e.g., montmorillonite), repels electrons from the outer-shell orbital. This repulsion consequently increases the electron binding energy of the inner-shell orbitals, leading to new surface reactions, polarization-enhanced induction force, and polarization-induced covalent bonding between the TM cations and the charged surface. Our theoretical predictions regarding TM-clay mineral interactions are consistent with the experimental observations of TM cation adsorption. This finding has significant implications for the adsorptive removal of TM cations from wastewaters and for enhancing the catalytic efficiency of TM-surface catalysts. The unique physical and chemical characteristics exhibited by TMs at charged particle surfaces, resulting from their asymmetric response, can play pivotal roles in environmental and chemical engineering.
Collapse
Affiliation(s)
- Xinmin Liu
- Chongqing Key Laboratory of Soil Multi-scale Interfacial Process, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Wanglin Chen
- Chongqing Key Laboratory of Soil Multi-scale Interfacial Process, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Ying Tang
- Chongqing Key Laboratory of Soil Multi-scale Interfacial Process, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Shuang Xiao
- Chongqing Key Laboratory of Soil Multi-scale Interfacial Process, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Qinyi Li
- School of Geographical Sciences, Southwest University, Chongqing 400715, China
| | - Wuquan Ding
- Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, Chongqing University of Arts and Science, Chongqing 402168, China
| | - Laosheng Wu
- Department of Environmental Science, University of California, Riverside, CA 92521, USA
| | - Rui Tian
- Chongqing Key Laboratory of Soil Multi-scale Interfacial Process, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Rui Li
- Chongqing Key Laboratory of Soil Multi-scale Interfacial Process, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Hang Li
- Chongqing Key Laboratory of Soil Multi-scale Interfacial Process, College of Resources and Environment, Southwest University, Chongqing 400715, China.
| |
Collapse
|
28
|
Li CY, Tian ZQ. Sixty years of electrochemical optical spectroscopy: a retrospective. Chem Soc Rev 2024; 53:3579-3605. [PMID: 38421335 DOI: 10.1039/d3cs00734k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Sixty years ago, Reddy, Devanatan, and Bockris performed the first in situ electrochemical ellipsometry experiment, which ushered in a new era in the study of electrochemistry, using optical spectroscopy. After six decades of development, electrochemical optical spectroscopy, particularly electrochemical vibrational spectroscopy, has advanced from a phase of immaturity with few methods and limited applications to a phase of maturity with excellent substrate generality and significantly improved resolutions. Here, we divide the development of electrochemical optical spectroscopy into four phases, focusing on the proof-of-concept of different electrochemical optical spectroscopy studies, the emergence of plasmonic enhancement-based electrochemical optical spectroscopic (in particular vibrational spectroscopic) methods, the realization of electrochemical vibrational spectroscopy on well-defined surfaces, and the efforts to achieve operando spectroelectrochemical applications. Finally, we discuss the future development trend of electrochemical optical spectroscopy, as well as examples of new methodology and research paradigms for operando spectroelectrochemistry.
Collapse
Affiliation(s)
- Chao-Yu Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
29
|
Lee SE, Carr AJ, Kumal RR, Uysal A. Monovalent ion-graphene oxide interactions are controlled by carboxylic acid groups: Sum frequency generation spectroscopy studies. J Chem Phys 2024; 160:084707. [PMID: 38415831 DOI: 10.1063/5.0189203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/05/2024] [Indexed: 02/29/2024] Open
Abstract
Graphene oxide (GO) is a two-dimensional, mechanically strong, and chemically tunable material for separations. Elucidating GO-ion-water interactions at the molecular scale is highly important for predictive understanding of separation systems. However, direct observations of the nanometer region by GO surfaces under operando conditions are not trivial. Therefore, thin films of GO at the air/water interface can be used as model systems. With this approach, we study the effects of alkali metal ions on water organization near graphene oxide films at the air/water interface using vibrational sum frequency generation (SFG) spectroscopy. We also use an arachidic acid Langmuir monolayer as a benchmark for a pure carboxylic acid surface. Theoretical modeling of the concentration-dependent sum frequency signal from graphene oxide and arachidic acid surfaces reveals that the adsorption of monovalent ions is mainly controlled by the carboxylic acid groups on graphene oxide. An in-depth analysis of sum frequency spectra reveals at least three distinct water populations with different hydrogen bonding strengths. The origin of each population can be identified from concentration dependent variations of their SFG signal. Interestingly, an interfacial water structure seemed mostly insensitive to the character of the alkali cation, in contrast to similar studies conducted at the silica/water interface. However, we observed an ion-specific effect with lithium, whose strong hydration prevented direct interactions with the graphene oxide film.
Collapse
Affiliation(s)
- Seung Eun Lee
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Amanda J Carr
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Raju R Kumal
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Ahmet Uysal
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| |
Collapse
|
30
|
Wang Y, Seki T, Gkoupidenis P, Chen Y, Nagata Y, Bonn M. Aqueous chemimemristor based on proton-permeable graphene membranes. Proc Natl Acad Sci U S A 2024; 121:e2314347121. [PMID: 38300862 PMCID: PMC10861866 DOI: 10.1073/pnas.2314347121] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/30/2023] [Indexed: 02/03/2024] Open
Abstract
Memristive devices, electrical elements whose resistance depends on the history of applied electrical signals, are leading candidates for future data storage and neuromorphic computing. Memristive devices typically rely on solid-state technology, while aqueous memristive devices are crucial for biology-related applications such as next-generation brain-machine interfaces. Here, we report a simple graphene-based aqueous memristive device with long-term and tunable memory regulated by reversible voltage-induced interfacial acid-base equilibria enabled by selective proton permeation through the graphene. Surface-specific vibrational spectroscopy verifies that the memory of the graphene resistivity arises from the hysteretic proton permeation through the graphene, apparent from the reorganization of interfacial water at the graphene/water interface. The proton permeation alters the surface charge density on the CaF2 substrate of the graphene, affecting graphene's electron mobility, and giving rise to synapse-like resistivity dynamics. The results pave the way for developing experimentally straightforward and conceptually simple aqueous electrolyte-based neuromorphic iontronics using two-dimensional (2D) materials.
Collapse
Affiliation(s)
- Yongkang Wang
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing211189, China
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, Mainz55128, Germany
| | - Takakazu Seki
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, Mainz55128, Germany
| | - Paschalis Gkoupidenis
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, Mainz55128, Germany
| | - Yunfei Chen
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing211189, China
| | - Yuki Nagata
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, Mainz55128, Germany
| | - Mischa Bonn
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, Mainz55128, Germany
| |
Collapse
|
31
|
Olivieri JF, Hynes JT, Laage D. Water dynamics and sum-frequency generation spectra at electrode/aqueous electrolyte interfaces. Faraday Discuss 2024; 249:289-302. [PMID: 37791579 DOI: 10.1039/d3fd00103b] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The dynamics of water at interfaces between an electrode and an electrolyte is essential for the transport of redox species and for the kinetics of charge transfer reactions next to the electrode. However, while the effects of electrode potential and ion concentration on the electric double layer structure have been extensively studied, a comparable understanding of dynamical aspects is missing. Interfacial water dynamics presents challenges since it is expected to result from the complex combination of water-water, water-electrode and water-ion interactions. Here we perform molecular dynamics simulations of aqueous NaCl solutions at the interface with graphene electrodes, and examine the impact of both ion concentration and electrode potential on interfacial water reorientational dynamics. We show that for all salt concentrations water dynamics exhibits strongly asymmetric behavior: it slows down at increasingly positively charged electrodes but it accelerates at increasingly negatively charged electrodes. At negative potentials water dynamics is determined mostly by the electrode potential value, but in contrast at positive potentials it is governed both by ion-water and electrode-water interactions. We show how these strikingly different behaviors are determined by the interfacial hydrogen-bond network structure and by the ions' surface affinity. Finally, we indicate how the structural rearrangements impacting water dynamics can be probed via vibrational sum-frequency generation spectroscopy.
Collapse
Affiliation(s)
- Jean-François Olivieri
- PASTEUR, Department of Chemistry, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
| | - James T Hynes
- PASTEUR, Department of Chemistry, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, USA
| | - Damien Laage
- PASTEUR, Department of Chemistry, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France.
| |
Collapse
|
32
|
Wang Y, Nagata Y, Bonn M. Substrate effect on charging of electrified graphene/water interfaces. Faraday Discuss 2024; 249:303-316. [PMID: 37772472 DOI: 10.1039/d3fd00107e] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Graphene, a transparent two-dimensional (2D) conductive electrode, has brought extensive new perspectives and prospects to electrochemical systems, such as chemical sensors, energy storage, and energy conversion devices. In many of these applications, graphene, supported on a substrate, is in contact with an aqueous solution. An increasing number of studies indicate that the substrate, rather than graphene, determines the organization of water in contact with graphene, i.e., the electric double layer (EDL) structure near the electrified graphene, and the wetting behavior of the graphene: the graphene sheet is transparent in terms of its supporting substrate. By applying surface-specific heterodyne-detected sum-frequency generation (HD-SFG) spectroscopy to the silicon dioxide (SiO2)-supported graphene electrode/aqueous electrolyte interface and comparing the data with those for the calcium fluoride (CaF2)-supported graphene [Y. Wang et al., Angew. Chem., Int. Ed., 2023, 62, e202216604], we discuss the impact of the different substrates on the charging of both the graphene and the substrate upon applying potentials. The SiO2-supported graphene shows pseudocapacitive behavior, consistent with the CaF2-supported graphene case, although the surface charges on SiO2 and CaF2 differ substantially. The SiO2 surface is already negatively charged at +0.57 V (vs. Pd/H2), and the negative surface charge is doubled when negative potentials are applied, in contrast with the CaF2 case, where the positive charge is reduced when negative potentials are applied. Interestingly, the charging of the graphene sheet is almost identical between the negatively charged SiO2 surface and positively charged CaF2 surface, demonstrating that the graphene charging is decoupled from the charging of the substrates.
Collapse
Affiliation(s)
- Yongkang Wang
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Yuki Nagata
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Mischa Bonn
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| |
Collapse
|
33
|
Ye Z, Gygi F, Galli G. Raman Spectra of Electrified Si-Water Interfaces: First-Principles Simulations. J Phys Chem Lett 2024; 15:51-58. [PMID: 38128587 DOI: 10.1021/acs.jpclett.3c03122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
We investigate the Raman spectra of liquid water in contact with a semiconductor surface using first-principles molecular dynamics simulations. We focus on a hydrogenated silicon-water interface and compute the Raman spectra from time correlation functions of the polarizability. We establish a relationship between Raman spectral signatures and structural properties of the liquid at the interface, and we identify the vibrational impacts of an applied electric field. We show that negative bias leads to a reduction of the number of hydrogen bonds (HBs) formed between the surface and the topmost water layer and an enhancement of the HB interactions between water molecules. Instead, positive bias leads to an enhancement of both the HB interactions between water and the surface and between water molecules, creating a semi-ordered interfacial layer. Our work provides molecular-level insights into electrified semiconductor/water interfaces and the identification of specific structural features through Raman spectroscopy.
Collapse
Affiliation(s)
- Zifan Ye
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Francois Gygi
- Department of Computer Science, University of California, Davis, Davis, California 95616, United States
| | - Giulia Galli
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
34
|
Wilson AD, Foo ZH, Jayasinghe AS, Stetson C, Lee H, Rollins HW, Deshmukh A, Lienhard JH. Modeling Henry's law and phase separations of water-NaCl-organic mixtures with solvation and ion-pairing. Phys Chem Chem Phys 2024; 26:749-759. [PMID: 37800279 DOI: 10.1039/d3cp02003g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Empirical measurements of solution vapor pressure of ternary acetonitrile (MeCN) H2O-NaCl-MeCN mixtures were recorded, with NaCl concentrations ranging from zero to the saturation limit, and MeCN concentrations ranging from zero to an absolute mole fraction of 0.64. After accounting for speciation, the variability of the Henry's law coefficient at vapor-liquid equilibrium (VLE) of MeCN ternary mixtures decreased from 107% to 5.1%. Solute speciation was modeled using a mass action solution model that incorporates solute solvation and ion-pairing phenomena. Two empirically determined equilibrium constants corresponding to solute dissociation and ion pairing were utilized for each solute. When speciation effects were considered, the solid-liquid equilibrium of H2O-NaCl-MeCN mixtures appear to be governed by a simple saturation equilibrium constant that is consistent with the binary H2O-NaCl saturation coefficient. Further, our results indicate that the precipitation of NaCl in the MeCN ternary mixtures was not governed by changes in the dielectric constant. Our model indicates that the compositions of the salt-induced liquid-liquid equilibrium (LLE) boundary of the H2O-NaCl-MeCN mixture correspond to the binary plateau activity of MeCN, a range of concentrations over which the activity remains largely invariant in the binary water-MeCN system. Broader comparisons with other ternary miscible organic solvent (MOS) mixtures suggest that salt-induced liquid-liquid equilibrium exists if: (1) the solution displays a positive deviation from the ideal limits governed by Raoult's law; and (2) the minimum of the mixing free energy profile for the binary water-MOS system is organic-rich. This work is one of the first applications of speciation-based solution models to a ternary system, and the first that includes an organic solute.
Collapse
Affiliation(s)
- Aaron D Wilson
- Chemical Separations Group, Idaho National Laboratory, Idaho Falls, ID 83415-2208, USA.
| | - Zi Hao Foo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA
| | - Ashini S Jayasinghe
- Analytical Chemistry Group, Idaho National Laboratory, Idaho Falls, ID 83415-2208, USA
| | - Caleb Stetson
- Chemical Separations Group, Idaho National Laboratory, Idaho Falls, ID 83415-2208, USA.
| | - Hyeonseok Lee
- Chemical Separations Group, Idaho National Laboratory, Idaho Falls, ID 83415-2208, USA.
| | - Harry W Rollins
- Chemical Separations Group, Idaho National Laboratory, Idaho Falls, ID 83415-2208, USA.
| | - Akshay Deshmukh
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA
| | - John H Lienhard
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA
| |
Collapse
|
35
|
Ryan MJ, Yang N, Kwac K, Wilhelm KB, Chi BK, Weix DJ, Cho M, Zanni MT. The hydrogen-bonding dynamics of water to a nitrile-functionalized electrode is modulated by voltage according to ultrafast 2D IR spectroscopy. Proc Natl Acad Sci U S A 2023; 120:e2314998120. [PMID: 38127983 PMCID: PMC10756189 DOI: 10.1073/pnas.2314998120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023] Open
Abstract
We report the hydrogen-bonding dynamics of water to a nitrile-functionalized and plasmonic electrode surface as a function of applied voltage. The surface-enhanced two-dimensional infrared spectra exhibit hydrogen-bonded and non-hydrogen-bonded nitrile features in similar proportions, plus cross peaks between the two. Isotopic dilution experiments show that the cross peaks arise predominantly from chemical exchange between hydrogen-bonded and non-hydrogen-bonded nitriles. The chemical exchange rate depends upon voltage, with the hydrogen bond of the water to the nitriles breaking 2 to 3 times slower (>63 vs. 25 ps) under a positive as compared to a negative potential. Spectral diffusion created by hydrogen-bond fluctuations occurs on a ~1 ps timescale and is moderately potential-dependent. Timescales from molecular dynamics simulations agree qualitatively with the experiment and show that a negative voltage causes a small net displacement of water away from the surface. These results show that the voltage applied to an electrode can alter the timescales of solvent motion at its interface, which has implications for electrochemically driven reactions.
Collapse
Affiliation(s)
- Matthew J. Ryan
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI53706
| | - Nan Yang
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI53706
| | - Kijeong Kwac
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul02841, Republic of Korea
- Department of Chemistry, Korea University, Seoul02841, Republic of Korea
| | - Kiera B. Wilhelm
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI53706
| | - Benjamin K. Chi
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI53706
| | - Daniel J. Weix
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI53706
| | - Minhaeng Cho
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul02841, Republic of Korea
- Department of Chemistry, Korea University, Seoul02841, Republic of Korea
| | - Martin T. Zanni
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI53706
| |
Collapse
|
36
|
You X, Zhang D, Zhang XG, Li X, Tian JH, Wang YH, Li JF. Exploring the Cation Regulation Mechanism for Interfacial Water Involved in the Hydrogen Evolution Reaction by In Situ Raman Spectroscopy. NANO-MICRO LETTERS 2023; 16:53. [PMID: 38108934 PMCID: PMC10728385 DOI: 10.1007/s40820-023-01285-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/09/2023] [Indexed: 12/19/2023]
Abstract
Interfacial water molecules are the most important participants in the hydrogen evolution reaction (HER). Hence, understanding the behavior and role that interfacial water plays will ultimately reveal the HER mechanism. Unfortunately, investigating interfacial water is extremely challenging owing to the interference caused by bulk water molecules and complexity of the interfacial environment. Here, the behaviors of interfacial water in different cationic electrolytes on Pd surfaces were investigated by the electrochemistry, in situ core-shell nanostructure enhanced Raman spectroscopy and theoretical simulation techniques. Direct spectral evidence reveals a red shift in the frequency and a decrease in the intensity of interfacial water as the potential is shifted in the positively direction. When comparing the different cation electrolyte systems at a given potential, the frequency of the interfacial water peak increases in the specified order: Li+ < Na+ < K+ < Ca2+ < Sr2+. The structure of interfacial water was optimized by adjusting the radius, valence, and concentration of cation to form the two-H down structure. This unique interfacial water structure will improve the charge transfer efficiency between the water and electrode further enhancing the HER performance. Therefore, local cation tuning strategies can be used to improve the HER performance by optimizing the interfacial water structure.
Collapse
Affiliation(s)
- Xueqiu You
- School of Ocean Information Engineering, Fujian Provincial Key Laboratory of Oceanic Information Perception and Intelligent Processing, Jimei University, Xiamen, 361021, People's Republic of China
| | - Dongao Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, iChEM, College of Chemistry and Chemical Engineering, College of Materials, College of Energy, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Xia-Guang Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Xiangyu Li
- School of Ocean Information Engineering, Fujian Provincial Key Laboratory of Oceanic Information Perception and Intelligent Processing, Jimei University, Xiamen, 361021, People's Republic of China
| | - Jing-Hua Tian
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, People's Republic of China
| | - Yao-Hui Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, iChEM, College of Chemistry and Chemical Engineering, College of Materials, College of Energy, Xiamen University, Xiamen, 361005, People's Republic of China.
| | - Jian-Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, iChEM, College of Chemistry and Chemical Engineering, College of Materials, College of Energy, Xiamen University, Xiamen, 361005, People's Republic of China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, People's Republic of China.
| |
Collapse
|
37
|
Li S, Wu L, Liu Q, Zhu M, Li Z, Wang C, Jiang X, Li J. Uncovering the Dominant Role of an Extended Asymmetric Four-Coordinated Water Network in the Hydrogen Evolution Reaction. J Am Chem Soc 2023. [PMID: 38031299 DOI: 10.1021/jacs.3c08333] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
In situ and accurate measurement of the structure and dynamics of interfacial water in the hydrogen evolution reaction (HER) is a well-known challenge because of the coupling of water among varied structures and its dual role as reactants and solvents. Further, the interference of bulk water and intricate interfacial interactions always hinders the probing of interfacial water. Surface-enhanced infrared absorption spectroscopy is extremely sensitive for the measurement of interfacial water; herein, we develop a nanoconfinement strategy by introducing nonaqueous ionic liquids to decouple and tailor the water structure in the electric double layer and further combined with molecular dynamics simulations, successfully gaining the correlation between isolated water, water clusters, and the water network with HER activity. Our results clearly disclosed that the potential-dependent asymmetric four-coordinated water network, whose connectivity could be regulated by hydrophilic and hydrophobic cations, was positively correlated with HER activity, which provided a pioneering guidance framework for revealing the function of water in catalysis, energy, and surface science.
Collapse
Affiliation(s)
- Shanshan Li
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
- University of Science and Technology of China, Hefei 230026, Anhui, China
- School of Physics, Changchun Normal University, Changchun 130032, Jilin, China
| | - Lie Wu
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
| | - Qixin Liu
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
- University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Manyu Zhu
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
- University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Zihao Li
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
- University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Chen Wang
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
- University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Xiue Jiang
- State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
- University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Jinghong Li
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
38
|
Uysal A. Aqueous Interfaces in Chemical Separations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37917551 DOI: 10.1021/acs.langmuir.3c02170] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Chemical separations play a vital role in refinery and reprocessing of critical materials, such as platinum group metals, rare earths, and actinides. The choice of separation system─whether it is liquid-liquid extraction (LLE), sorbents, or membranes─depends on specific needs and applications. In almost all separation processes, the desired metal ions adsorb or transfer across an aqueous interface, such as the solid/liquid interface in sorbents or oil/water interfaces in LLE. Despite these separation technologies being extensively used for decades, our understanding of the molecular-scale mechanisms governing ion adsorption and transport at interfaces remains limited. This knowledge gap presents a significant challenge in meeting the increasing demands for these critical materials due to their growing use in advanced technologies. Fortunately, recent advancements in surface-specific experimental and computational techniques offer promising avenues to bridge this gap and facilitate the development of next-generation separation systems. Interestingly, unanswered questions regarding interfacial phenomena in chemical separations hold great relevance to various fields, including energy storage, geochemistry, and atmospheric chemistry. Therefore, the model interfacial systems developed for studying chemical separations, such as amphiphilic molecules assembled at a solid/water, air/water, or oil/water interface, may have far-reaching implications, extending beyond separations and opening doors to addressing a wide range of scientific inquiries. This perspective discusses recent interfacial studies elucidating amphiphile-ion interactions in chemical separations of metal ions. These studies provide direct, molecular-scale information about solute and solvent behavior at aqueous interfaces, including multivalent and complex ions in highly concentrated solutions, which play key roles in LLE of critical materials.
Collapse
Affiliation(s)
- Ahmet Uysal
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
39
|
Carr AJ, Lee SE, Uysal A. Ion and water adsorption to graphene and graphene oxide surfaces. NANOSCALE 2023; 15:14319-14337. [PMID: 37561081 DOI: 10.1039/d3nr02452k] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Graphene and graphene oxide (GO) are two particularly promising nanomaterials for a range of applications including energy storage, catalysis, and separations. Understanding the nanoscale interactions between ions and water near graphene and GO surfaces is critical for advancing our fundamental knowledge of these systems and downstream application success. This minireview highlights the necessity of using surface-specific experimental probes and computational techniques to fully characterize these interfaces, including the nanomaterial, surrounding water, and any adsorbed ions, if present. Key experimental and simulation studies considering water and ion structures near both graphene and GO are discussed. The major findings are: water forms 1-3 hydration layers near graphene; ions adsorb electrostatically to graphene under an applied potential; the chemical and physical properties of GO vary considerably depending on the synthesis route; and these variations influence water and ion adsorption to GO. Lastly, we offer outlooks and perspectives for these research areas.
Collapse
Affiliation(s)
- Amanda J Carr
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA.
| | - Seung Eun Lee
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA.
| | - Ahmet Uysal
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA.
| |
Collapse
|
40
|
Xu Y, Ma YB, Gu F, Yang SS, Tian CS. Structure evolution at the gate-tunable suspended graphene-water interface. Nature 2023; 621:506-510. [PMID: 37648858 DOI: 10.1038/s41586-023-06374-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 06/27/2023] [Indexed: 09/01/2023]
Abstract
Graphitic electrode is commonly used in electrochemical reactions owing to its excellent in-plane conductivity, structural robustness and cost efficiency1,2. It serves as prime electrocatalyst support as well as a layered intercalation matrix2,3, with wide applications in energy conversion and storage1,4. Being the two-dimensional building block of graphite, graphene shares similar chemical properties with graphite1,2, and its unique physical and chemical properties offer more varieties and tunability for developing state-of-the-art graphitic devices5-7. Hence it serves as an ideal platform to investigate the microscopic structure and reaction kinetics at the graphitic-electrode interfaces. Unfortunately, graphene is susceptible to various extrinsic factors, such as substrate effect8-10, causing much confusion and controversy7,8,10,11. Hereby we have obtained centimetre-sized substrate-free monolayer graphene suspended on aqueous electrolyte surface with gate tunability. Using sum-frequency spectroscopy, here we show the structural evolution versus the gate voltage at the graphene-water interface. The hydrogen-bond network of water in the Stern layer is barely changed within the water-electrolysis window but undergoes notable change when switching on the electrochemical reactions. The dangling O-H bond protruding at the graphene-water interface disappears at the onset of the hydrogen evolution reaction, signifying a marked structural change on the topmost layer owing to excess intermediate species next to the electrode. The large-size suspended pristine graphene offers a new platform to unravel the microscopic processes at the graphitic-electrode interfaces.
Collapse
Affiliation(s)
- Ying Xu
- Department of Physics, State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai, China
| | - You-Bo Ma
- Department of Physics, State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai, China
| | - Feng Gu
- Department of Physics, State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai, China
| | - Shan-Shan Yang
- Department of Physics, State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai, China
| | - Chuan-Shan Tian
- Department of Physics, State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai, China.
| |
Collapse
|
41
|
Zhang H, Zhou P, Daaoub A, Sangtarash S, Zhao S, Yang Z, Zhou Y, Zou YL, Decurtins S, Häner R, Yang Y, Sadeghi H, Liu SX, Hong W. Atomically well-defined nitrogen doping for cross-plane transport through graphene heterojunctions. Chem Sci 2023; 14:6079-6086. [PMID: 37293661 PMCID: PMC10246689 DOI: 10.1039/d3sc00075c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 05/10/2023] [Indexed: 06/10/2023] Open
Abstract
The nitrogen doping of graphene leads to graphene heterojunctions with a tunable bandgap, suitable for electronic, electrochemical, and sensing applications. However, the microscopic nature and charge transport properties of atomic-level nitrogen-doped graphene are still unknown, mainly due to the multiple doping sites with topological diversities. In this work, we fabricated atomically well-defined N-doped graphene heterojunctions and investigated the cross-plane transport through these heterojunctions to reveal the effects of doping on their electronic properties. We found that a different doping number of nitrogen atoms leads to a conductance difference of up to ∼288%, and the conductance of graphene heterojunctions with nitrogen-doping at different positions in the conjugated framework can also lead to a conductance difference of ∼170%. Combined ultraviolet photoelectron spectroscopy measurements and theoretical calculations reveal that the insertion of nitrogen atoms into the conjugation framework significantly stabilizes the frontier molecular orbitals, leading to a change in the relative positions of the HOMO and LUMO to the Fermi level of the electrodes. Our work provides a unique insight into the role of nitrogen doping in the charge transport through graphene heterojunctions and materials at the single atomic level.
Collapse
Affiliation(s)
- Hewei Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, IKKEM, Xiamen University 361005 Xiamen China
| | - Ping Zhou
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Abdalghani Daaoub
- Device Modelling Group, School of Engineering, University of Warwick Coventry CV4 7AL UK
| | - Sara Sangtarash
- Device Modelling Group, School of Engineering, University of Warwick Coventry CV4 7AL UK
| | - Shiqiang Zhao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, IKKEM, Xiamen University 361005 Xiamen China
| | - Zixian Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, IKKEM, Xiamen University 361005 Xiamen China
| | - Yu Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, IKKEM, Xiamen University 361005 Xiamen China
| | - Yu-Ling Zou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, IKKEM, Xiamen University 361005 Xiamen China
| | - Silvio Decurtins
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Robert Häner
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Yang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, IKKEM, Xiamen University 361005 Xiamen China
| | - Hatef Sadeghi
- Device Modelling Group, School of Engineering, University of Warwick Coventry CV4 7AL UK
| | - Shi-Xia Liu
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern Freiestrasse 3 3012 Bern Switzerland
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Pen-Tung Sah Institute of Micro-Nano Science and Technology, IKKEM, Xiamen University 361005 Xiamen China
| |
Collapse
|
42
|
Deng GH, Zhu Q, Rebstock J, Neves-Garcia T, Baker LR. Direct observation of bicarbonate and water reduction on gold: understanding the potential dependent proton source during hydrogen evolution. Chem Sci 2023; 14:4523-4531. [PMID: 37152268 PMCID: PMC10155912 DOI: 10.1039/d3sc00897e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 03/22/2023] [Indexed: 04/08/2023] Open
Abstract
The electrochemical conversion of CO2 represents a promising way to simultaneously reduce CO2 emissions and store chemical energy. However, the competition between CO2 reduction (CO2R) and the H2 evolution reaction (HER) hinders the efficient conversion of CO2 in aqueous solution. In water, CO2 is in dynamic equilibrium with H2CO3, HCO3 -, and CO3 2-. While CO2 and its associated carbonate species represent carbon sources for CO2R, recent studies by Koper and co-workers indicate that H2CO3 and HCO3 - also act as proton sources during HER (J. Am. Chem. Soc. 2020, 142, 4154-4161, ACS Catal. 2021, 11, 4936-4945, J. Catal. 2022, 405, 346-354), which can favorably compete with water at certain potentials. However, accurately distinguishing between competing reaction mechanisms as a function of potential requires direct observation of the non-equilibrium product distribution present at the electrode/electrolyte interface. In this study, we employ vibrational sum frequency generation (VSFG) spectroscopy to directly probe the interfacial species produced during competing HER/CO2R on Au electrodes. The vibrational spectra at the Ar-purged Na2SO4 solution/Au interface, where only HER occurs, show a strong peak around 3650 cm-1, which appears at the HER onset potential and is assigned to OH-. Notably, this species is absent for the CO2-purged Na2SO4 solution/gold interface; instead, a peak around 3400 cm-1 appears at catalytic potential, which is assigned to CO3 2- in the electrochemical double layer. These spectral reporters allow us to differentiate between HER mechanisms based on water reduction (OH- product) and HCO3 - reduction (CO3 2- product). Monitoring the relative intensities of these features as a function of potential in NaHCO3 electrolyte reveals that the proton donor switches from HCO3 - at low overpotential to H2O at higher overpotential. This work represents the first direct detection of OH- on a metal electrode produced during HER and provides important insights into the surface reactions that mediate selectivity between HER and CO2R in aqueous solution.
Collapse
Affiliation(s)
- Gang-Hua Deng
- State Key Laboratory of Information Photonic and Optical Communications and School of Science, Beijing University of Posts and Telecommunications (BUPT) Beijing 100876 P. R. China
| | - Quansong Zhu
- Department of Chemistry and Biochemistry, The Ohio State University Columbus Ohio 43210 USA
| | - Jaclyn Rebstock
- Department of Chemistry and Biochemistry, The Ohio State University Columbus Ohio 43210 USA
| | - Tomaz Neves-Garcia
- Department of Chemistry and Biochemistry, The Ohio State University Columbus Ohio 43210 USA
| | - L Robert Baker
- Department of Chemistry and Biochemistry, The Ohio State University Columbus Ohio 43210 USA
| |
Collapse
|
43
|
Yang N, Ryan MJ, Son M, Mavrič A, Zanni MT. Voltage-Dependent FTIR and 2D Infrared Spectroscopies within the Electric Double Layer Using a Plasmonic and Conductive Electrode. J Phys Chem B 2023; 127:2083-2091. [PMID: 36821845 DOI: 10.1021/acs.jpcb.2c08431] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Strong electric fields exist between the electric double layer and charged surfaces. These fields impact molecular structures and chemistry at interfaces. We have developed a transparent electrode with infrared plasmonic enhancement sufficient to measure FTIR and two-dimensional infrared spectra at submonolayer coverages on the surface to which a voltage can be applied. Our device consists of an infrared transparent substrate, a 10-20 nm layer of conductive indium tin oxide (ITO), an electrically resistive layer of 3-5 nm Al2O3, and a 3 nm layer of nonconductive plasmonic gold. The materials and thicknesses are set to maximize the surface number density of the monolayer molecules, electrical conductivity, and plasmonic enhancement while minimizing background signals and avoiding Fano line shape distortions. The design was optimized by iteratively characterizing the material roughness and thickness with atomic force microscopy and electron microscopy and by monitoring the plasmon resonance enhancement with spectroscopy. The design is robust to repeated fabrication. This new electrode is tested on nitrile functional groups using a monolayer of 4-mercaptobenzonitrile as well as on CO and CC stretching modes using 4-mercaptobenzoic acid methyl ester. A voltage-dependent Stark shift is observed on both monolayers. We also observe that the transition dipole strength of the CN mode scales linearly with the applied voltage, providing a second way of measuring the surface electric field strength. We anticipate that this cell will enable many new voltage-dependent infrared experiments under applied voltages.
Collapse
Affiliation(s)
- Nan Yang
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Matthew J Ryan
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Minjung Son
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Andraž Mavrič
- University of Nova Gorica, Materials Research Laboratory, Vipavska 13, SI-5000 Nova Gorica, Slovenia
| | - Martin T Zanni
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
44
|
In situ electrochemical Raman spectroscopy and ab initio molecular dynamics study of interfacial water on a single-crystal surface. Nat Protoc 2023; 18:883-901. [PMID: 36599962 DOI: 10.1038/s41596-022-00782-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/12/2022] [Indexed: 01/05/2023]
Abstract
The dynamics and chemistry of interfacial water are essential components of electrocatalysis because the decomposition and formation of water molecules could dictate the protonation and deprotonation processes on the catalyst surface. However, it is notoriously difficult to probe interfacial water owing to its location between two condensed phases, as well as the presence of external bias potentials and electrochemically induced reaction intermediates. An atomically flat single-crystal surface could offer an attractive platform to resolve the internal structure of interfacial water if advanced characterization tools are developed. To this end, here we report a protocol based on the combination of in situ Raman spectroscopy and ab initio molecular dynamics (AIMD) simulations to unravel the directional molecular features of interfacial water. We present the procedures to prepare single-crystal electrodes, construct a Raman enhancement mode with shell-isolated nanoparticle, remove impurities, eliminate the perturbation from bulk water and dislodge the hydrogen bubbles during in situ electrochemical Raman experiments. The combination of the spectroscopic measurements with AIMD simulation results provides a roadmap to decipher the potential-dependent molecular orientation of water at the interface. We have prepared a detailed guideline for the application of combined in situ Raman and AIMD techniques; this procedure may take a few minutes to several days to generate results and is applicable to a variety of disciplines ranging from surface science to energy storage to biology.
Collapse
|
45
|
Wang Y, Seki T, Liu X, Yu X, Yu CC, Domke KF, Hunger J, Koper MTM, Chen Y, Nagata Y, Bonn M. Direct Probe of Electrochemical Pseudocapacitive pH Jump at a Graphene Electrode. Angew Chem Int Ed Engl 2023; 62:e202216604. [PMID: 36592114 DOI: 10.1002/anie.202216604] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/21/2022] [Accepted: 01/02/2023] [Indexed: 01/03/2023]
Abstract
Molecular-level insight into interfacial water at a buried electrode interface is essential in electrochemistry, but spectroscopic probing of the interface remains challenging. Here, using surface-specific heterodyne-detected sum-frequency generation (HD-SFG) spectroscopy, we directly access the interfacial water in contact with the graphene electrode supported on calcium fluoride (CaF2 ). We find phase transition-like variations of the HD-SFG spectra vs. applied potentials, which arises not from the charging/discharging of graphene but from the charging/discharging of the CaF2 substrate through the pseudocapacitive process. The potential-dependent spectra are nearly identical to the pH-dependent spectra, evidencing that the pseudocapacitive behavior is associated with a substantial local pH change induced by water dissociation between the CaF2 and graphene. Our work evidences the local molecular-level effects of pseudocapacitive charging at an electrode/aqueous electrolyte interface.
Collapse
Affiliation(s)
- Yongkang Wang
- School of Mechanical Engineering, Southeast University, 211189, Nanjing, China.,Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Takakazu Seki
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Xuan Liu
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC, Leiden (The, Netherlands
| | - Xiaoqing Yu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Chun-Chieh Yu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Katrin F Domke
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.,University Duisburg-Essen, Faculty of Chemistry, Universitätsstraße 5, 45141, Essen, Germany
| | - Johannes Hunger
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Marc T M Koper
- Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333CC, Leiden (The, Netherlands
| | - Yunfei Chen
- School of Mechanical Engineering, Southeast University, 211189, Nanjing, China
| | - Yuki Nagata
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| |
Collapse
|
46
|
Wang Y, Seki T, Yu X, Yu CC, Chiang KY, Domke KF, Hunger J, Chen Y, Nagata Y, Bonn M. Chemistry governs water organization at a graphene electrode. Nature 2023; 615:E1-E2. [PMID: 36859590 DOI: 10.1038/s41586-022-05669-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 12/19/2022] [Indexed: 03/03/2023]
Affiliation(s)
- Yongkang Wang
- School of Mechanical Engineering, Southeast University, Nanjing, China
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Takakazu Seki
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Xiaoqing Yu
- Max Planck Institute for Polymer Research, Mainz, Germany
| | - Chun-Chieh Yu
- Max Planck Institute for Polymer Research, Mainz, Germany
| | | | - Katrin F Domke
- Max Planck Institute for Polymer Research, Mainz, Germany
- Faculty of Chemistry, University Duisburg-Essen, Essen, Germany
| | | | - Yunfei Chen
- School of Mechanical Engineering, Southeast University, Nanjing, China.
| | - Yuki Nagata
- Max Planck Institute for Polymer Research, Mainz, Germany.
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Mainz, Germany.
| |
Collapse
|
47
|
Hu K, Shirakashi R. Dynamic Electric Field Alignment Determines the Water Rotational Motion around Protein. J Phys Chem B 2023; 127:1376-1384. [PMID: 36749793 DOI: 10.1021/acs.jpcb.2c07405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Water rotational dynamics in biomolecular solution is crucial to evaluating and controlling biomolecule stability. In this molecular dynamics simulation (MD) study on lysozyme solutions, we present how the exerted internal electric field determines water rotational dynamics. We find that the relaxation time of water rotation is equivalent to that of the reorientation of the exerted overall electric field for every single water molecule, regardless of its translation mode. Namely, water molecular rotation synchronizes with the exerted field reorientation. We also map the reorientation process of the electric field at fixed points relative to protein in the solution, which displays the local hydration dynamics commensurate with the reported time-dependent fluorescence Stokes shift (TDFSS) measurements. Comparing the spatial distribution of local field reorientation relaxation time with that of rotational relaxation time, we further suggest that water rotation dynamics are subject to the reorientation of the local overall field within the hydration layer. While outside the hydration layer, the relaxation time of the local electric field reorientation is short enough (subpicosecond) to assume the δ function, showing the electric force with randomly changing orientation is applied to each water molecule.
Collapse
Affiliation(s)
- Kang Hu
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro City, Tokyo 153-8505, Japan.,Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ryo Shirakashi
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro City, Tokyo 153-8505, Japan
| |
Collapse
|
48
|
Chen W, Sanders SE, Özdamar B, Louaas D, Brigiano FS, Pezzotti S, Petersen PB, Gaigeot MP. On the Trail of Molecular Hydrophilicity and Hydrophobicity at Aqueous Interfaces. J Phys Chem Lett 2023; 14:1301-1309. [PMID: 36724059 DOI: 10.1021/acs.jpclett.2c03300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Uncovering microscopic hydrophilicity and hydrophobicity at heterogeneous aqueous interfaces is essential as it dictates physico/chemical properties such as wetting, the electrical double layer, and reactivity. Several molecular and spectroscopic descriptors were proposed, but a major limitation is the lack of connections between them. Here, we combine density functional theory-based MD simulations (DFT-MD) and SFG spectroscopy to explore how interfacial water responds in contact with self-assembled monolayers (SAM) of tunable hydrophilicity. We introduce a microscopic metric to track the transition from hydrophobic to hydrophilic interfaces. This metric combines the H/V descriptor, a structural descriptor based on the preferential orientation within the water network in the topmost binding interfacial layer (BIL) and spectroscopic fingerprints of H-bonded and dangling OH groups of water carried by BIL-resolved SFG spectra. This metric builds a bridge between molecular descriptors of hydrophilicity/hydrophobicity and spectroscopically measured quantities and provides a recipe to quantitatively or qualitatively interpret experimental SFG signals.
Collapse
Affiliation(s)
- Wanlin Chen
- Université Paris-Saclay, Université Evry, CNRS, LAMBE UMR8587, 91025Evry-Courcouronnes, France
| | - Stephanie E Sanders
- Department of Chemistry and Biochemistry, Ruhr University Bochum, 44801Bochum, Germany
| | - Burak Özdamar
- Université Paris-Saclay, Université Evry, CNRS, LAMBE UMR8587, 91025Evry-Courcouronnes, France
| | - Dorian Louaas
- Université Paris-Saclay, Université Evry, CNRS, LAMBE UMR8587, 91025Evry-Courcouronnes, France
| | - Flavio Siro Brigiano
- Université Paris-Saclay, Université Evry, CNRS, LAMBE UMR8587, 91025Evry-Courcouronnes, France
- Laboratoire de Chimie Théorique, Sorbonne Université, UMR 7616 CNRS, 4 Place Jussieu, 75005Paris, France
| | - Simone Pezzotti
- Université Paris-Saclay, Université Evry, CNRS, LAMBE UMR8587, 91025Evry-Courcouronnes, France
- Department of Physical Chemistry II, Ruhr University Bochum, D-44801Bochum, Germany
| | - Poul B Petersen
- Department of Chemistry and Biochemistry, Ruhr University Bochum, 44801Bochum, Germany
| | - Marie-Pierre Gaigeot
- Université Paris-Saclay, Université Evry, CNRS, LAMBE UMR8587, 91025Evry-Courcouronnes, France
| |
Collapse
|
49
|
Bonagiri LKS, Panse KS, Zhou S, Wu H, Aluru NR, Zhang Y. Real-Space Charge Density Profiling of Electrode-Electrolyte Interfaces with Angstrom Depth Resolution. ACS NANO 2022; 16:19594-19604. [PMID: 36351178 DOI: 10.1021/acsnano.2c10819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The accumulation and depletion of charges at electrode-electrolyte interfaces is crucial for all types of electrochemical processes. However, the spatial profile of such interfacial charges remains largely elusive. Here we develop charge profiling three-dimensional (3D) atomic force microscopy (CP-3D-AFM) to experimentally quantify the real-space charge distribution of the electrode surface and electric double layers (EDLs) with angstrom depth resolution. We first measure the 3D force maps at different electrode potentials using our recently developed electrochemical 3D-AFM. Through statistical analysis, peak deconvolution, and electrostatic calculations, we derive the depth profile of the local charge density. We perform such charge profiling for two types of emergent electrolytes, ionic liquids, and highly concentrated aqueous solutions, observe pronounced sub-nanometer charge variations, and find the integrated charge densities to agree with those derived from macroscopic electrochemical measurements.
Collapse
Affiliation(s)
- Lalith Krishna Samanth Bonagiri
- Materials Research Laboratory, University of Illinois, Urbana, Illinois61801, United States
- Department of Mechanical Science and Engineering, University of Illinois, Urbana, Illinois61801, United States
| | - Kaustubh S Panse
- Materials Research Laboratory, University of Illinois, Urbana, Illinois61801, United States
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois61801, United States
| | - Shan Zhou
- Materials Research Laboratory, University of Illinois, Urbana, Illinois61801, United States
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois61801, United States
| | - Haiyi Wu
- Walker Department of Mechanical Engineering and Oden Institute for Computational Engineering & Sciences, The University of Texas at Austin, Austin, Texas78712, United States
| | - Narayana R Aluru
- Walker Department of Mechanical Engineering and Oden Institute for Computational Engineering & Sciences, The University of Texas at Austin, Austin, Texas78712, United States
| | - Yingjie Zhang
- Materials Research Laboratory, University of Illinois, Urbana, Illinois61801, United States
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois61801, United States
| |
Collapse
|
50
|
Meng XZ, Li XR, Yan HJ, Zhang QH, Wu LK, Li F, Cao FH. Spectroscopic and Simulation Insights into the Corrosion Mechanism of Sulfite on Titanium. J Phys Chem B 2022; 126:9016-9025. [DOI: 10.1021/acs.jpcb.2c04885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xian-Ze Meng
- School of Materials, Sun Yat-sen University, Shenzhen518107, China
| | - Xin-Ran Li
- School of Materials, Sun Yat-sen University, Shenzhen518107, China
| | - Hao-Jie Yan
- School of Materials, Sun Yat-sen University, Shenzhen518107, China
| | - Qin-Hao Zhang
- School of Materials, Sun Yat-sen University, Shenzhen518107, China
| | - Lian-Kui Wu
- School of Materials, Sun Yat-sen University, Shenzhen518107, China
| | - Fei Li
- Engineering Research Center of Seawater Utilization of Ministry of Education, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin300130, China
| | - Fa-He Cao
- School of Materials, Sun Yat-sen University, Shenzhen518107, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai519082, China
| |
Collapse
|